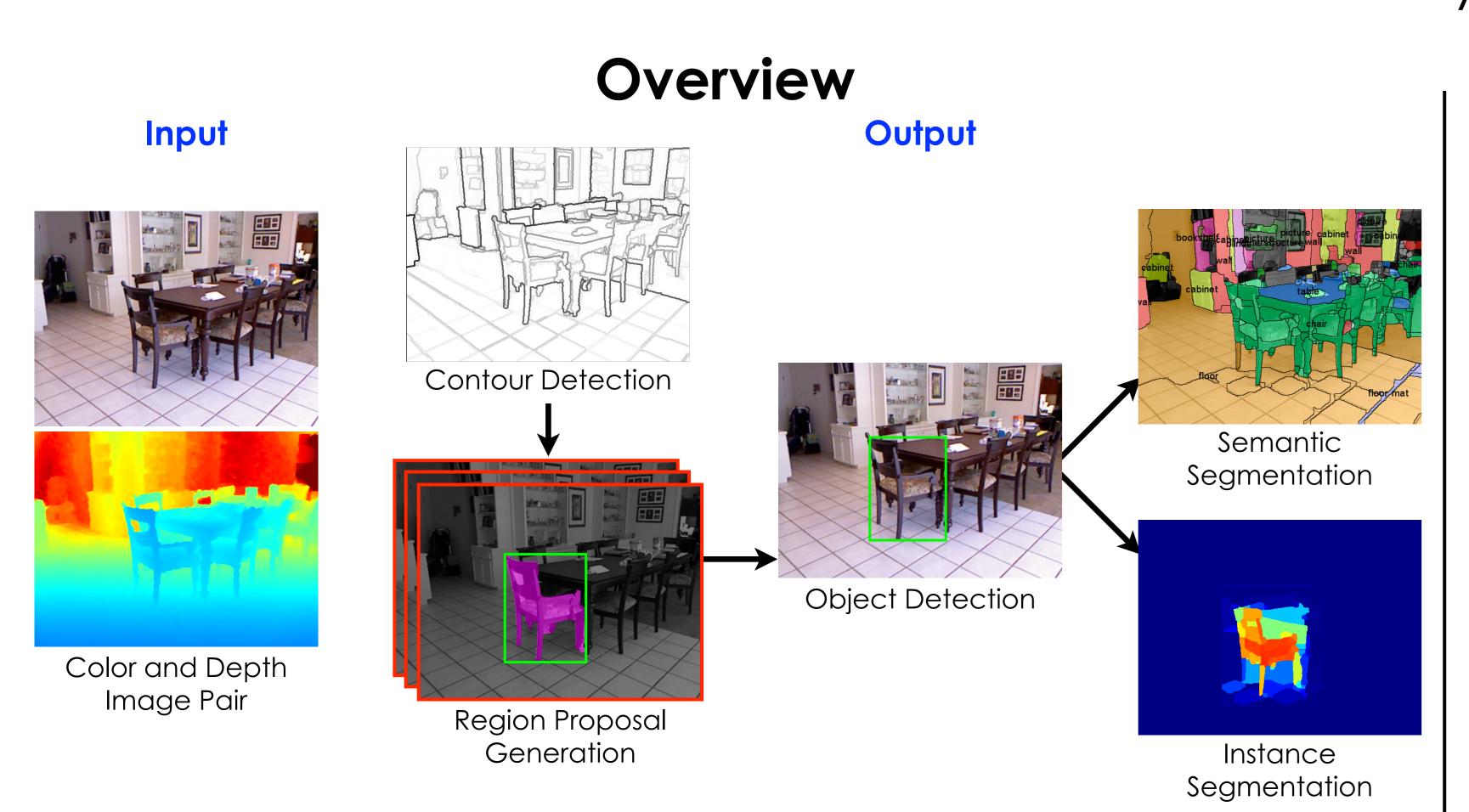
Learning Rich Features from RGB-D Images for Object Detection and Segmentation

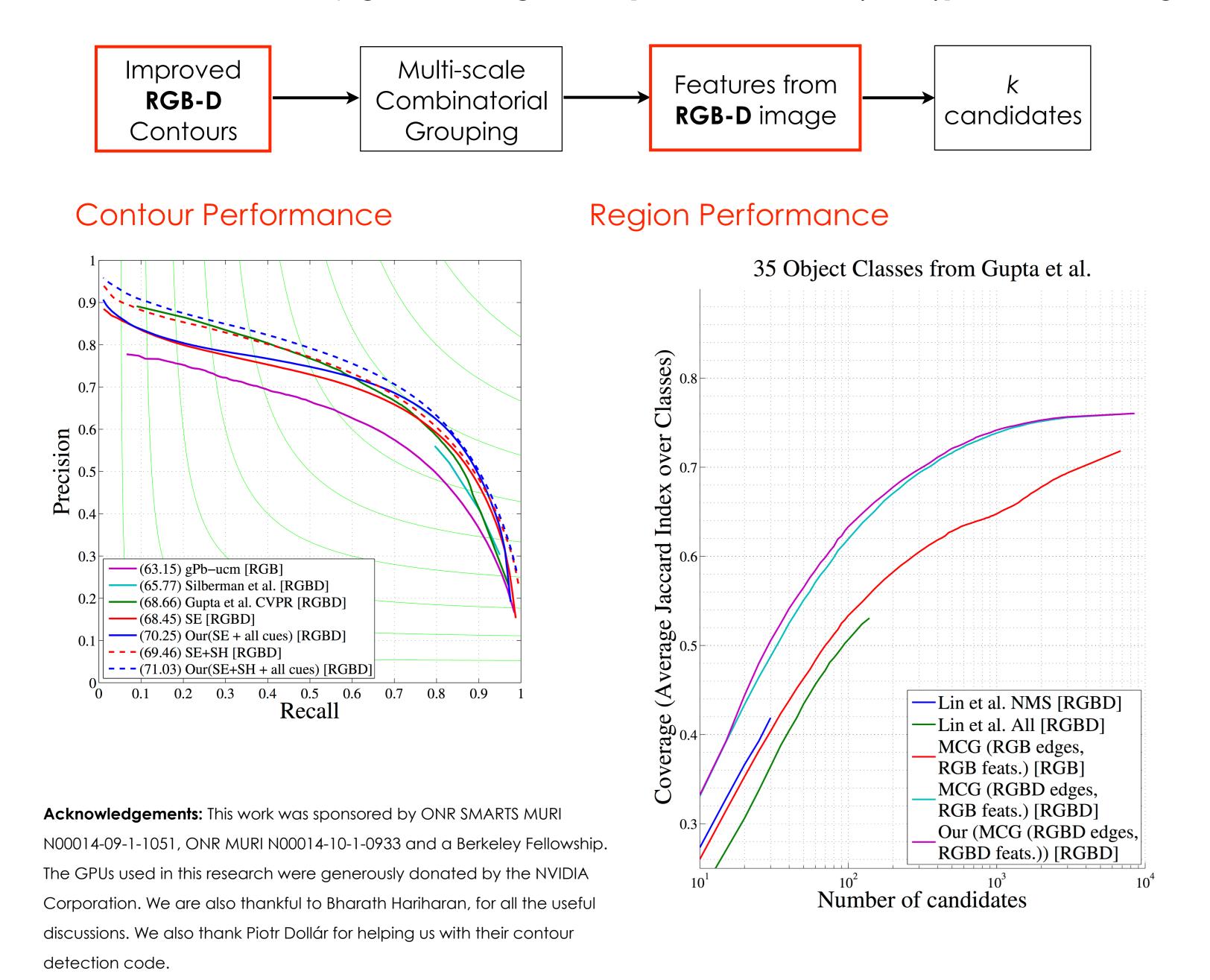
Saurabh Gupta¹ Pablo Arbeláez^{1,2} Ross Girshick^{1,3} Jitendra Malik¹

¹UC Berkeley ²Universidad de los Andes, Colombia ³Microsoft Research



Contour Detection and Region Proposals

- Better contours by enriching SE [Dollár et al. (2013)] with surface normal gradients
- Better candidates by generalizing MCG [Arbeláez et al. (2014)] to RGB-D images



[Arbeláez et al.] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, J. Malik Multiscale Combinatorial Grouping, CVPR 2014

[Lin et al.] D. Lin, S. Fidler and R. Urtasun. Holistic Scene Understanding for 3D Object Detection with RGBD cameras, ICCV 2013

[Silberman et al.] N. Silberman, D. Hoiem, P. Kohli, R. Fergus Indoor segmentation and support inference from RGBD images, ECCV 2012

[Girshick et al.] R. Girshick, J. Donahue, T. Darell, J. Malik Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014

[Gupta et al.] S. Gupta, P Arbeláez, J. Malik Perceptual Organization and Recognition in Indoor RGB-D Images, CVPR 2013

[Hariharan et al.] B. Hariharan, P. Arbeláez, R. Girshick, J. Malik Simultaneous Detection and Segmentation, ECCV, 2014

[Dollar et al.] P. Dollár and L. Zitnick **Structured Forests for fast edge detection**, ICCV 2013

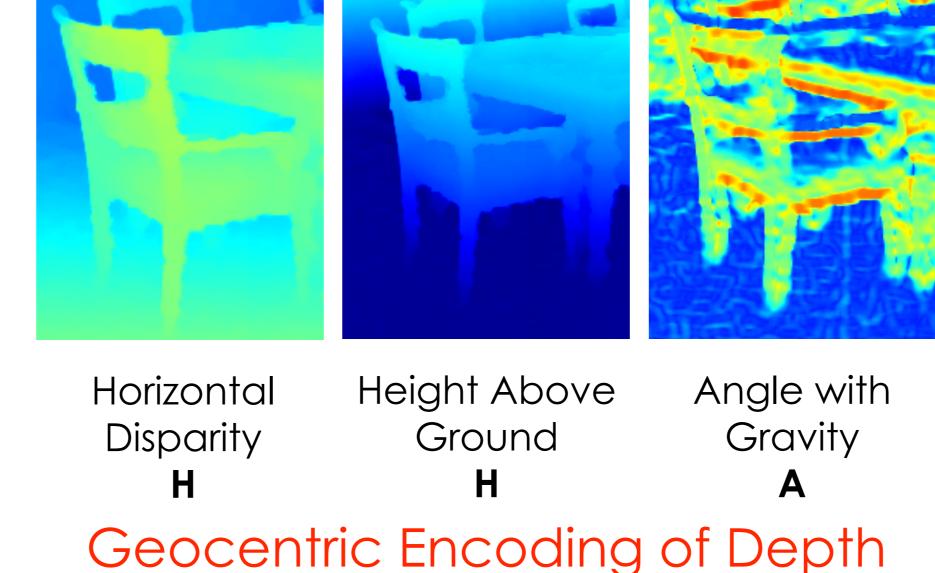
Object Detection

Learning representations from depth images for use in object detectors

Depth Images are **image-like enough** to use Convolutional Neural Network models

Geocentric embedding into Horizontal Disparity, Height Above Ground, and Angle with Gravity (HHA) works better than just raw disparity

Synthetic depth data can help



Performance (APb)

	mean	bath tub	bed	book shelf	box	chair	count er	desk	door	dress er	garb age bin	lamp	monit or	night stand	pillow	sink	sofa	table	televi sion	toilet
RGB DPM	9	1	28	9	0	8	7	1	3	1	7	22	10	9	4	6	9	6	6	34
RGBD DPM	24	19	56	18	1	24	24	6	10	16	27	27	35	33	21	23	34	17	20	45
RGB RCNN	22	17	45	28	1	26	30	10	16	19	16	28	32	17	11	17	29	13	27	44
Our	37	44	71	33	1	43	44	15	24	30	39	37	53	40	35	36	54	24	38	47

Semantic Segmentation

Gupta et al. (2013) + Additional superpixel features based on deep detectors

- Take detections with precision more than 50%
- Assign best scoring overlapping detection to each superpixel
- Compute features between superpixel and detection

score of detector, overlap between detector and superpixel, mean and median of depth in superpixel and detector

	Silberman et al. ECCV 12	Ren et al. CVPR 12	Gupta et al. CVPR 13	Gupta et al. + RGB-D DPM	Gupta et al. + Our
fwavacc	38.2	37.6	45.2	45.6	47.0
avacc	19	20.5	26.4	27.4	28.6
mean (maxIU)	_	21.4	29.1	30.5	31.3
pixacc	54.6	49.3	59.1	60.1	60.3
obj avg	18.4	21.1	28.4	31	35.1

