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Abstract. We describe a Guess-and-Check algorithm for computing
algebraic equation invariants of the form ∧ifi(x1, . . . , xn) = 0, where
each fi is a polynomial over the variables x1, . . . , xn of the program. The
“guess” phase is data driven and derives a candidate invariant from data
generated from concrete executions of the program. This candidate in-
variant is subsequently validated in a “check” phase by an off-the-shelf
SMT solver. Iterating between the two phases leads to a sound algo-
rithm. Moreover, we are able to prove a bound on the number of decision
procedure queries which Guess-and-Check requires to obtain a sound
invariant. We show how Guess-and-Check can be extended to generate
arbitrary boolean combinations of linear equalities as invariants, which
enables us to generate expressive invariants to be consumed by tools that
cannot handle non-linear arithmetic. We have evaluated our technique on
a number of benchmark programs from recent papers on invariant gen-
eration. Our results are encouraging – we are able to efficiently compute
algebraic invariants in all cases, with only a few tests.
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1 Introduction

The task of generating loop invariants lies at the heart of any program verifica-
tion technique. A wide variety of techniques have been developed for generating
linear invariants, including methods based on abstract interpretation [8, 13] and
constraint solving [7, 11], among others.

Recently, researchers have also applied these techniques to the generation of
non-linear loop invariants [23, 17, 21, 22, 18]. These techniques discover algebraic
invariants, that is, invariants of the form

∧ifi(x1, . . . , xn) = 0

where each fi is a polynomial defined over the variables x1, . . . , xn of the pro-
gram. Note that algebraic invariants implicitly handle disjunctions: if f1 =
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0 ∨ f2 = 0 is an invariant then f1 = 0 ∨ f2 = 0 ⇔ f1f2 = 0. Thus, alge-
braic invariants are as expressive as arbitrary boolean combinations of algebraic
equations.

Most previous techniques for algebraic loop invariants are based on Gröbner
bases computations, which cause a considerable slowdown [4]. Therefore, there
has been recent interest in techniques for generating algebraic invariants that
do not use Gröbner bases [4, 18] (see Section 7). In this paper, we address the
problem of invariant generation from a data driven perspective. In particular,
we use techniques from linear algebra to analyze data generated from execu-
tions of a program in order to efficiently “guess” a candidate invariant. This
phase can leverage test suites of programs for data generation. This guessed
invariant is subsequently checked for validity via a decision procedure. Our al-
gorithm Guess-and-Check for generating algebraic invariants calls these guess
and check phases iteratively until it finds the desired invariant. Failure to prove
that a candidate is an invariant results in counterexamples or more data that
are used to refine the guess in the next iteration. Furthermore, we are also able
to prove a bound on the number of iterations of Guess-and-Check.

Our guess and check data driven approach for computing invariants has a
number of advantages:

– Checking whether the candidate invariant is an invariant is done via a de-
cision procedure. Our belief is that using a decision procedure to check the
validity of a candidate invariant can be much more efficient than using it to
infer an actual invariant.

– Since the guess phase operates over data, its complexity is largely indepen-
dent of the complexity or size of the program (the amount of data depends
on the number of variables in scope). This is in contrast to approaches based
on static analysis, and therefore it is at least plausible that a data driven
approach may work well even in situations that are difficult for static anal-
ysis. Moreover, the guess step just involves basic matrix manipulations, for
which very efficient implementations exist.

There are major drawbacks, both theoretical and practical, with most previous
techniques for algebraic invariants. First, these techniques either restrict predi-
cates on branches to either equalities or dis-equalities [6, 17], or cannot handle
nested loops [15, 22], or interpret program variables as real numbers [23, 4, 21].
It is well known that the semantics of a program assuming integer variables, in
the presence of division and modulo operators, is not over-approximated by the
semantics of the program assuming real variables. Therefore, these approaches
may not produce correct invariants in cases where the program variables are
actually integers. Our technique does not suffer from these drawbacks: our check
phase can consume a rich syntax and answer queries over both integers and reals
(see Section 4.2). Moreover, since these techniques can find algebraic invariants,
they can find non-linear invariants representing boolean combinations of linear
equalities. If a loop has the invariant y = x ∨ y = −x then these techniques can
find the invariant x2 = y2 that is semantically equivalent to the linear invariant:

x = y ∨ x = −y ⇔ (x+ y)(x− y) = 0⇔ x2 = y2
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But if the invariant is to be consumed by a verification tool that works over linear
arithmetic (as most tools do), then x2 = y2 is not useful. A simple extension
to our technique allows us to extract an equivalent (disjunctive) linear invariant
from an algebraic invariant when such a linear invariant exists. This extension
is possible as our technique is data driven (see Section 5.1).

It is also interesting to note that our algorithm is an iterative refinement
procedure similar to the counterexample-guided abstraction refinement (CE-
GAR) [5] technique used in software model checking. In CEGAR, we start with
an over-approximation of program behaviors and perform iterative refinement
until we have either found a proof of correctness or a bug. Guess-and-Check
is dual to CEGAR – we start with an under-approximation of program behav-
iors and add more behaviors until we are done. Most techniques for invariant
discovery using CEGAR-like techniques have no termination guarantees. Since
we focus on the language of polynomial equalities for invariants, we are able to
give a termination guarantee for our technique.

Our main contribution is a new sound data driven algorithm for computing
algebraic invariants. Specifically:

– We provide a data driven algorithm for generation of invariants restricted to
conjunctions of algebraic equations. We observe that a known algorithm [18]
is a suitable fit for our guess step. We formally prove that this algorithm
computes an under-approximation of the algebraic loop invariant. That is,
if G is the guess or candidate invariant, and I is an invariant then G ⇒ I.
This guess will contain all algebraic equations constituting the invariants
and possibly more spurious equations.

– We augment our guessing procedure with a decision procedure to obtain a
sound algorithm. If the decision procedure successfully answers the queries
made, then the output is an invariant and we do generate all valid invariants
up to a given degree d. Moreover we are able to prove a bound on the number
of decision procedure queries.

– Using the observation that a boolean combination of linear equalities with d
disjunctions (in DNF form) is equivalent to an algebraic invariant of degree
d [17, 26], we describe an algorithm to generate an equivalent linear invariant
from an algebraic invariant.

– We evaluate our technique on benchmark programs from various papers on
generation of algebraic loop invariants and our results are encouraging—
starting with a small amount of data, Guess-and-Check terminates on all
benchmarks in one iteration, that is, our first guess is an actual invariant.

The remainder of the paper is organized as follows. Section 2 motivates and in-
formally illustrates the Guess-and-Check algorithm over an example program.
Section 3 introduces the background for the technical material in the paper. Sec-
tion 4 presents the Guess-and-Check algorithm for algebraic invariants and
also proves its correctness and termination. Section 5 describes some extensions:
our technique for obtaining disjunctive linear invariants from algebraic invariants
and a discussion about richer theories such as arrays. Section 6 evaluates our
implementation of the Guess-and-Check algorithm on several benchmarks for
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algebraic loop invariants. Section 7 surveys related work and, finally, Section 8
concludes the paper.

2 Overview of the Technique

1: assume(x=0 && y=0);

2: writelog(x, y);

3: while (nondet()) do

4: y := y+1;

5: x := x+y;

6: writelog(x, y);

Fig. 1: Example for algebraic invariants.

1: if (x >= 0) then y := x

2: else y := -x;

3: writelog(x, y);

4: while (y>=0 && nondet()) do

5: if(x >= y) then

6: y := y+1; x := x+1;

7: else y := y+1; x := x-1;

8: writelog(x, y);

Fig. 2: Example for (disjunctive) lin-
ear invariants.

We will illustrate our technique over the example program shown in Figure 1.
Our objective is to compute the loop invariant for the loop in this program.
Informally, a loop invariant over-approximates the set of all possible program
states that are possible at a loop head. This method can be generalized to obtain
invariants at any program point. This program has a loop (lines 3 – 6) that is
non-deterministic. In line 2 and 6, we have instrumentation code that writes
the program state (the values of the variables x and y) to a log file. The loop
invariant for this program is I ≡ y+ y2 = 2x. Since our approach is data driven,
the starting point is to run the program with test inputs and accumulate the
resulting data (in other words, the resulting program states) in a log. Assume
that the program execution exercises the loop once. On such an execution, we
obtain program states x = y = 0 and x = y = 1.

It turns out that for our technique to work, we need to assume an upper
bound d on the degree of the polynomials that constitute the invariant. For
this example, we assume that d = 2, which allows us to exhaustively enumerate
all the monomials over the program variables up to the chosen degree. For our
example, ~α = {1, x, y, y2, x2, xy} is the set of all monomials over the variables x
and y with degree less than or equal to 2. The number of monomials of degree d
in n variables is large:

(
n+d−1

d

)
. Heuristics exist to discard the monomials that

are unlikely to be a part of an invariant [24].

Using ~α and the program states, we construct a data matrix A that is a 2×6
matrix with one row corresponding to each program state and six columns, one
for each monomial in ~α. Every entry in jth column of A represents the value of
the jth monomial over the program execution. Therefore,
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A =
1 x y y2 x2 xy
1 0 0 0 0 0
1 1 1 1 1 1

(1)

As we will see in Section 4.1, we can employ the null space of A to compute a
candidate invariant I as follows. If {b1, b2, . . . , bk} is a basis for the null space of
the data matrix A, then

I ≡
k∧

i=1

([1, x, y, y2, x2, xy]bi = 0) (2)

is a candidate invariant that is logically stronger than the strongest algebraic
invariant. The null space of A is defined by four basis vectors, representing four
algebraic equations:

I ≡ x = y ∧ x = y2 ∧ x = x2 ∧ x = xy (3)

Next, in the check phase, we check whether I as specified by Equation 3 is
actually an invariant. Abstractly, if L ≡ while B do S is a loop, then to check
if I is a loop invariant, we need to establish the following conditions:

1. If ϕ is a precondition at the beginning of L, then ϕ⇒ I.
2. Furthermore, executing the loop body S with a state satisfying I∧B, always

results in a state satisfying the invariant I.

The above checks for validating I are performed by an off-the-shelf decision
procedure [16]. For our example, we first check whether the precondition at the
beginning of the loop implies I:

(x = 0 ∧ y = 0)⇒ (x = y = x2 = y2 = xy)

This condition is indeed valid, and therefore we check whether I is inductive (we
obtain the predicate representing the loop body via symbolic execution [14]):

((x = y = x2 = y2 = xy) ∧ y′ = y + 1 ∧ x′ = x+ y′)⇒ (x′ = y′ = x′2 = y′2 = x′y′)

This predicate is not valid, and we obtain a counterexample x′ = 3, y′ = 2 at
line 3 of the program. Let us assume that we generate more program states by
executing the loop for three iterations and starting with x = 3 and y = 2. As a
result, we get a data matrix (that also includes the rows from the previous data
matrix) as shown:

A =

1 x y y2 x2 xy
1 0 0 0 0 0
1 1 1 1 1 1
1 3 2 4 9 8
1 6 3 9 36 18
1 10 4 16 100 40

(4)
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As with the earlier iteration, we require the basis of the null space of A and this
is defined by the single vector: [0, 2,−1,−1, 0, 0]. Therefore, from Equation 2, it
follows that the candidate invariant is I ≡ 2x− y − y2 = 0.

Now, the conditions that must hold for I to be a loop invariant are:

1. (x = 0 ∧ y = 0)⇒ y + y2 = 2x, and

2. (y + y2 = 2x ∧ y′ = y + 1 ∧ x′ = x+ y′)⇒ (y′ + y′2 = 2x′)

both of which are deemed to be valid by the check phase, and therefore I ≡
y + y2 = 2x is the desired loop invariant.

Following a similar approach, we can infer the algebraic invariant x2 = y2 for
Figure 2. In Section 5.1, we show a data-driven procedure to generate equivalent
linear invariants from algebraic invariants and use the same to infer the linear
invariant y = x ∨ y = −x for Figure 2.

3 Preliminaries

We consider programs belonging to the following language of while programs:

S ::= x:=M | S; S | if B then S else S | while B do S

where x is a variable over a countably infinite sort loc of memory locations, M
is an expression, and B is a boolean expression. Expressions in this language are
either of type int or bool.

A monomial α over the variables ~x = x1, . . . xn is a term of the form α(~x) =
xk1
1 x

k2
2 . . . xkn

n . The degree of a monomial is
∑n

i=1 ki. A polynomial f(x1, . . . , xn)
defined over n variables ~x = x1, . . . , xn is a weighted sum of monomials and has
the following form.

f(~x) =
∑
k

wkx
k1
1 x

k2
2 . . . xkn

n =
∑
k

wkαk (5)

where αk = xk1
1 x

k2
2 . . . xkn

n is a monomial. We are interested in polynomials over
rationals, that is, ∀k . wk ∈ Q. The degree of a polynomial is the maximum
degree over its constituent monomials: maxk {degree(αk) | wk 6= 0}.

An algebraic equation is of the form f(~x) = 0, where f is a polynomial. Given
a loop L = while B do S defined over variables ~x = x1, . . . , xn together with
a precondition ϕ, a loop invariant I is the strongest predicate such that ϕ⇒ I
and {I ∧B}S{I}. Any predicate I satisfying these two conditions is an invariant
for L. If we do not impose the condition that we need the strongest invariant,
then the trivial predicate I = true is a valid invariant. In this section, we will
focus on algebraic invariants for a loop. An algebraic invariant I is of the form
∧ifi(~x) = 0, where each fi is a polynomial over the variables ~x of the loop.
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3.1 Matrix Algebra

This section reviews basic linear algebra. Readers familiar with matrix algebra
may safely skip this section.

The span of a set of vectors {x1, x2, . . . , xn}, xi ∈ Qm, is the set of all vectors
that can be expressed as a linear combination of {x1, x2, . . . , xn}. Therefore,

span({x1, x2, . . . , xn}) = {v | v =

n∑
i=1

αixi, αi ∈ Q} (6)

For any P = span(x1, . . . , xn) ⊆ Qm, if every vector v ∈ P can be writ-
ten as a linear combination of vectors from a linearly independent set B =
{b1, b2, . . . , bk}, and B is minimal, then B forms a basis of P , and k is called the
dimension of the set P .

The range of a matrix A ∈ Qm×n is the span of the columns of A. That is,

range(A) = {v ∈ Qm | v = Ax, x ∈ Qn} (7)

The dimension of range(A) is called rank(A). The null space of a matrix A ∈
Qm×n is the set of all vectors that equal to 0 when multiplied by A. More
precisely,

NullSpace(A) = {x ∈ Qn | Ax = 0} (8)

The dimension of NullSpace(A) is called its nullity. For instance, the matrix

A =

1 2 −3
3 5 9
5 9 3

 has a null space spanned by


−33

18
1

 with nullity(A) = 1.

A basis for the null space of a m× n matrix can be computed in time O(m2n).
A subspace of Qn, spanned by a basis B, are the vectors x that satisfy Ax = 0,
where A is a basis for the null space of B. From the fundamental theorem of
linear algebra, for any matrix A ∈ Qm×n, we know

rank(A) + nullity(A) = n (9)

4 The Guess-and-Check Algorithm

The Guess-and-Check algorithm is described in Figure 3. The algorithm takes
as input a while program L, a precondition ϕ on the inputs to L, and an upper
bound d on the degree of the desired invariant, and returns an algebraic loop
invariant I. If L = while B do S, then recall that I is the strongest predicate
such that

ϕ⇒ I and {I ∧B}S{I} (10)

As the name suggests, Guess-and-Check consists of two phases.
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Guess-And-Check(L,ϕ,d)
Returns: A loop invariant I for L.

1: ~x := vars(L)
2: Tests := TestGen(ϕ,L)
3: logfile := 〈〉
4: for ~t ∈ Tests do
5: logfile := logfile :: Execute(L, ~x = ~t)
6: end for
7: repeat
8: I := Guess(logfile,d)
9: (done,~t) := Check(I, L, ϕ)

10: if ¬done then
11: logfile := logfile :: t
12: end if
13: until done
14: return I

Guess(logfile,d)
Returns: A candidate invariant

1: if logfile = 〈〉 then
2: return false
3: end if
4: A := DataMatrix (logfile, d)
5: B := Basis(NullSpace(A))
6: if B = ∅ then
7: // No non-trivial invariant
8: return true
9: end if

10: return CandidateInvariant(B)

Fig. 3: Guess-and-Check computes an algebraic invariant of degree d for an input
while program L with a precondition ϕ.

1. Guess phase : this phase processes the data in the form of concrete program
states at the loop head to compute a data matrix, and uses linear algebra
techniques to compute a candidate invariant.

2. Check phase (line 9): this phase uses an off-the-shelf decision procedure for
checking if the candidate invariant computed in the guess phase is indeed a
true invariant (using the conditions in Equation 10) [16].

The Guess-and-Check algorithm works as follows. In line 1, ~x represents the
input variables of the while program L. The procedure TestGen is any test
generation technique that generates a set of test inputs Tests that satisfy the
precondition ϕ. Alternatively, our technique could also employ an existing test
suite for Tests. The variable logfile maintains a sequence of concrete program
states at the loop head of L. Line 3 initializes logfile to the empty sequence.
Lines 4–13 perform the main computation of the algorithm. First, the program
L is executed over every test ~t ∈ Tests via the call to Execute in line 5. Execute
runs a loop till termination (or for a timeout to avoid non-terminating execu-
tions) on a test input and generates a sequence of states at the loop head. E.g.,
Execute(while(x! = 0) do x−−, x = 2) will generate states {x = 2, x = 1, x = 0}
for the data matrix. Note that this sequence also include the states that violate
the loop guard. The call to Guess (line 8) constructs a matrix A with one row
for every program state in logfile and one column for every monomial from the
set of all monomials over ~x whose degree is bounded above by d (as informally
illustrated in Section 2). The (i, j)th entry of A is the value of the jth monomial
evaluated over the program state represented by the ith row.

Next, using off-the-shelf linear algebra solvers, we compute the basis for the
null space of A. If B is empty, then this means that there is no algebraic equation,
of given degree d, that the data satisfies and we return true. Otherwise, the
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candidate invariant represented by B is given to the checking procedure Check in
line 9. The procedure Check uses off-the-shelf SMT solvers [16] to check whether
the candidate invariant I satisfies the conditions in Equation 10. If so, then I
is an invariant and the procedure terminates by returning I. Otherwise, Check
returns a counter-example in the form of a test input ~t that explains why I is not
an invariant – the computation is repeated with this new test input ~t, and the
process continues until we have found an invariant. Note that, as in Section 2, we
can also add the states generated by Execute(L, ~x = ~t) to logfile (instead of just
adding ~t). In either case, the size of logfile strictly increases in every iteration.

In summary, the guess and check phases of Guess-and-Check operate iter-
atively, and in each iteration if the actual invariant cannot be derived, then the
algorithm automatically figures out the reason for this and corrective measures
are taken in the form of generating more test inputs (this corresponds to the case
where the data generated is insufficient for guessing a sound invariant). In the
next section, we will formally show the correctness of the Guess-and-Check
algorithm – we prove that it is a sound and we bound the number of iterations
of Guess-and-Check (the loop consisting of lines 7 to 13 of Figure 3).

4.1 Connections between Null Spaces and Invariants

In the previous section, we have seen how Guess-and-Check computes an
algebraic invariant over monomials ~α that consist of all monomials over the
variables of the input while program with degree bounded above by d. The
starting point for proving correctness of Guess-and-Check is the data matrix
A as computed in line 1 of Guess procedure of Figure 3.

An invariant I ≡ ∧ki (wT
i ~α = 0) has the property that for each wi, 1 ≤ i ≤ k,

wT
i aj = 0 for each row aj ∈ Qn of A – in other words, Awi = 0. This shows that

each wi is a vector in the null space of the data matrix A. Conversely, any vector
in NullSpace(A) is a reasonable candidate for being a part of an invariant.

We make the observation that a candidate invariant will be a true invariant if
the dimension of the space spanned by the set {wi}1≤i≤k equals nullity(A). We
will assume, without loss of generality, that {wi}1≤i≤k is a linearly independent
set. Then, by definition, the dimension of the space spanned by {wi}1≤i≤k is k.

Consider an n-dimensional space where each axis corresponds to a monomial
of ~α. Then the rows of the matrix A are points in this n-dimensional space. Now
assume that wT ~α = 0 is an invariant, that is, k = 1. This means that all rows aj
of A satisfy wTaj = 0. In particular, the points corresponding to the rows of A
lie on an n−1 dimensional subspace defined by wT ~α = 0. If the data or program
states generated by the test inputs Tests (line 2 in Figure 3) is insufficient, then A
might not have rows spanning the n−1 dimensions. Therefore, from Equation 9,
we have n − rank(A) = nullity(A) ≥ 1 if the invariant is a single algebraic
equation. Generalizing this, we can say that nullity(A) is an upper bound on
the number of algebraic equations in the invariant. The following lemma and
theorem formalize this intuition.

Lemma 1 (Invariant is in null space). If ∧kiwT
i ~α = 0 is an invariant, and

A is the data matrix, then all wi lie in NullSpace(A).
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Proof. This follows from the fact that for every wi, 1 ≤ i ≤ k, Awi = 0.

Therefore, the null space of the data matrix A gives us the subspace in which
the invariants lie. In particular, if we arrange the vectors that form the basis
for NullSpace(A) as columns in a matrix V , then range(V ) defines the space of
candidate invariants.

Theorem 1. If ∧ki=1w
T
i ~α = 0 is an invariant with the set {w1, w2, . . . , wk}

forming a linearly independent set, A is the data matrix and nullity(A) = k,
then any basis for NullSpace(A) forms an invariant.

Proof. Let B = [v1 · · · vk] be a matrix with each vi, 1 ≤ i ≤ k being a column
vector, and with span({v1, . . . , vk}) equal to NullSpace(A). That is, {v1, . . . , vk}
is a basis for NullSpace(A). From Lemma 1, we know that every wi, 1 ≤ i ≤ k,
lies in span({v1, . . . , vk}). This means that every wi, 1 ≤ i ≤ k, can be written
as wi = Bui for some vector ui ∈ Qk. Therefore, if BT ~α = 0 then uTi B

T ~α = 0,
which implies that wT

i ~α = 0, 1 ≤ i ≤ k.
Observe that {w1, w2, . . . , wk} form a basis for NullSpace(A), and therefore

every vj , 1 ≤ j ≤ k, can be written as a linear combination of vectors from
{w1, w2, . . . , wk}. From this, it follows that ∧ki=1w

T
i ~α = 0 =⇒ vTj ~α = 0 for all

1 ≤ j ≤ k. Thus, ∧ki=1w
T
i ~α = 0⇔ ∧kj=1v

T
j ~α = 0.

Theorem 1 precisely defines the implementation of the “guess” step. Further-
more, Theorem 1 also states that we need to have enough data represented
by the data matrix A so that nullity(A) equals k, the dimension of the space
spanned by {wi}1≤i≤k. If this is indeed the case, then I ≡ ∧kj=1v

T
j ~α = 0 will

be an invariant. On the other hand, if the data is not enough, then Lemma 1
guarantees that the candidate invariant I is a sound under-approximation of
the loop invariant. If the null space is zero-dimensional, then only the trivial
invariant true constitutes an invariant over conjunction of polynomial equations
that has degree less than or equal to d.

The question of how much data must be generated in order to attain nullity(A)
= k is an empirical one. In our experiments, we were able to generate invariants
using a relatively small data matrix for various benchmarks from the literature.

4.2 Check Candidate Invariants

Computing the null space of the data matrix provides us a way for proposing
candidate invariants. The candidates are complete; they do not miss any al-
gebraic equations. But they might be unsound. They might contain spurious
equations. To obtain soundness, we will use a decision procedure analogous to
the technique proposed in [25].

Theorem 2 (Soundness). If the algorithm Guess-and-Check terminates and
the underlying decision procedure for checking candidate invariants (Check) is
sound, then it returns an invariant.

Next, we prove that the algorithm Guess-and-Check terminates.
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Theorem 3 (Termination). If the underlying decision procedure Check is
sound and complete, then the algorithm Guess-and-Check will terminate after
at most n iterations, where n is the total number of monomials whose degree is
bounded by d.

Proof. Let A ∈ Qm×n be the data matrix computed in line 4 in the Guess
procedure of Figure 3. If the candidate invariant I computed in line 8 of Guess-
and-Check is an invariant (that is, done = true), then Guess-and-Check
terminates.

Therefore, let us assume that I is not an invariant, and let ~t be the test or
counterexample that violates the candidate invariant as computed in line 9 of the
algorithm. As a result, Guess-and-Check adds ~t to A – call the resulting matrix
Â. By construction, we also know that ~t 6∈ range(AT ). Therefore, it follows that
rank(Â) = rank(A) + 1. More generally, adding a counter-example to the data
matrix A necessarily increases its rank by 1. From Equation 9, we know that the
rank of A is bounded above by n, which implies that Guess-and-Check will
terminate in at most n iterations.

Note that since we are concerned with integer manipulating programs, a sound
and complete decision procedure for Check cannot exist: the queries are in Peano
arithmetic which is undecidable. However, for our experiments, we found that the
Z3 [16] SMT solver sufficed (see Section 6). Z3 has limited support for non-linear
integer arithmetic: It combines extensions on top of simplex and reduction to
SAT (after bounding) for these queries. One might try to achieve completeness
for Guess-and-Check by giving up soundness. Just as [23, 4, 21], if we interpret
program variables as real numbers then Z3 does have a sound and complete
decision procedure for non-linear real arithmetic [12] that has been demonstrated
to be practical. Since Z3 supports both non-linear integer and real arithmetic,
we can easily combine or switch between the two, if desired (see Section 6).

4.3 Nested Loops

Guess-and-Check easily extends to nested loops, while maintaining soundness
and termination properties. Given a program with M loops, we construct data
matrices for each loop. Let the number of columns of the data matrix of ith loop
be denoted by ni. We run tests and generate candidate invariants ~I at all loop
heads. Next, the candidate invariants are checked simultaneously. For checking
the candidate invariant of an outer loop, the inner loop is replaced by its can-
didate invariant and a constraint is generated. For checking the inner loop, the
candidate invariant of the outer loop is used to compute a pre-condition. If a
counter-example is obtained then it generates more data and invariant com-
putation is repeated. We continue these guess and check iterations until the
check phase passes for all the loops; thus, on termination the output consists
of sound invariants for all loops. Also, the initial candidate invariants ~I are
under-approximations of the actual invariants by Lemma 1, a property that is
maintained throughout the procedure and allows us to conclude that when the
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procedure terminates the output invariants are the strongest possible over alge-
braic equations. To prove termination, note that each failed decision procedure
query increases the rank of some data matrix for some loop, which implies that
the number of decision procedure queries which can fail is bounded by

∑M
i=1 ni.

Hence, if N = max ni then the total number of decision procedure queries is
bounded by M2N .

5 Extensions

In this section we discuss two extensions of our technique. We first discuss how
algebraic invariants can be converted to equivalent linear invariants. Then we
discuss how our approach can be extended to compute invariants over more
expressive theories, such as the theory of arrays.

5.1 From Algebraic to Linear Invariants

Conventional invariant generation techniques for linear equalities [13] do not han-
dle disjunctions. Using disjunctive completion to obtain disjunctions of equalities
entails a careful design of the widening operator. Techniques for generation of
non-linear invariants can generate algebraic invariants that are equivalent to a
boolean combination of linear equalities. But if these invariants are to be con-
sumed by a tool that understands only linear arithmetic, it is important to
obtain the original linear invariant from the algebraic invariant. For example,
verification engines like [10] are based on linear arithmetic and cannot use non-
linear predicates for predicate abstraction. It is not obvious how this step can be
performed since the discovered polynomials might not factor into linear factors.

Since our approach is data driven, we can solve this problem using stan-
dard machine learning techniques. Here is another perspective on converting
algebraic to linear invariants. Assume that the algebraic invariant is equivalent
to a boolean combination of linear equalities. Express this linear invariant in
DNF form. For instance, for the program in Figure 2, we have the DNF formula
y = −x∨y = x. The rows of the data matrix A are satisfying assignments of this
DNF formula. Hence, each row satisfies some disjunct: each row of A satisfies
y = −x or y = x. If we create partitions of our data such that the states in each
partition satisfy the same disjunct, then all the states of a single partition will
lie on a subspace: they will satisfy some conjunction of linear equalities. The aim
is to find the subspaces in which the states lie. Since a subspace represents a
conjunction of linear equalities, a disjunction of all such subspaces can represent
an invariant that is a boolean combination of linear equalities.

The problem of obtaining boolean combinations of linear equalities that a
given data matrix satisfies is called subspace segmentation in the machine learn-
ing community. This problem arises in applications such as face clustering, video
segmentation, motion segmentation, and several algorithms have been proposed
over the years. In this section we will apply the algorithm of Vidal, Ma, and
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Sastry [26] to obtain linear invariants from algebraic invariants. The main in-
sight is that the derivative of the polynomials constituting the algebraic invariant
evaluated at a program state characterizes the subspace in which the state lies.

The derivative of the polynomial corresponding to the algebraic invariant for
Figure 2, that is, x2 − y2 is [2x,−2y]: the first entry is partial derivative w.r.t.
x and the second entry is the partial derivative w.r.t. y. Running the program
with test input x ∈ {−1, 1} for say 4 iterations each will results in a data matrix
A with 10 rows. The first and last rows are shown:

A =
1 x y y2 x2 xy
1 −1 1 1 1 −1
1 5 5 25 25 25

(11)

Evaluating the derivative at first state of A gives us [−2,−2]. This shows that
the first state belongs to −2x− 2y = 0 i.e. x = −y. Evaluating at the last state
gives us [10,−10], which shows that the last state belongs to 10x − 10y = 0 or
x = y. The other 8 states of A (not shown in Equation 11) also belong to x = y
or x = −y and we return the disjunction of these two predicates as the candidate
invariant. The relationship between the boolean structure of a linear invariant
and its equivalent algebraic invariant can be described as follows: the number of
conjunctions in the linear invariant (in CNF form) corresponds to the number
of conjunctions in the algebraic invariant, and the number of disjunctions in
the linear invariant (in DNF form) corresponds to the degree of the algebraic
invariant.

Now we explain why this approach works. We sketch the proof from [26] for
the case when there is a single algebraic equation f(~x) = 0, that is, the invariant
is a disjunction of linear equalities. The case of multiple algebraic equations is
similar. Say the invariant is ∨iwT

i ~x = 0 ⇔
(∏

i w
T
i ~x
)

= 0 ≡ f(~x) = 0. The
derivative of f(~x), denoted by ∇f(~x), is a vector of |~x| elements where the lth

element of the vector is a partial derivative with respect to the lth variable:

(∇f(~x))l =
∂f(~x)

∂xl
.

Now using,
∇ (f(~x)g(~x)) = (∇f(~x)) g(~x) + f(~x) (∇g(~x))

and

∇wT~x =

[
∂w1x1
∂x1

, . . . ,
∂wnxn
∂xn

]T
= w where |~x| = n

we obtain:

∇f(~x) = ∇

(∏
i

wT
i ~x

)
=
∑
i

wi

∏
j 6=i

(wT
j ~x)

Say a program state a satisfies wT
k a = 0. Then (∇f)(a) is a scalar multiple of wk

because
∏

j 6=i w
T
j a = 0 for i 6= k. Hence evaluating the derivative at a program

state provides the subspace in which the state lies. For more details see [26].
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Next we remove from A the states that lie in the same subspace. Next, if A still
contains a program state then we can repeat by finding the derivative at that
state. In the end we get a collection of subspaces that contain every state of the
original data-matrix. A union of these subspaces gives us a boolean combination
of linear equalities.

Theorem 4. Given an algebraic invariant I = NullSpace(A) equivalent to a
linear invariant, the procedure of [26] finds a linear invariant equivalent to I.

Note that this conversion is unsound if no equivalent linear invariant exists.
Hence the linear predicate should be checked for equivalence with the algebraic
invariant; this check can be performed using a decision procedure. Note that we
are able to easily incorporate the technique of [26] with Guess-and-Check as
our technique is data driven. Also, this conversion just requires differentiating
polynomials symbolically, that can be performed linearly in the size of the in-
variant, and evaluating the derivative at all points in the data matrix. The latter
operation is just a matrix multiplication. Hence this algorithm is quite efficient.

5.2 Richer Theories

An interesting question is whether the algorithm Guess-and-Check general-
izes to richer theories beyond polynomial arithmetic. It is indeed possible and
requires careful design of the representation of data. For instance, if we want to
infer invariants in the theory of linear arithmetic and arrays, we can have an
additional column in the data matrix for values obtained from arrays. Similarly,
we can have a variable that stores the value returned from an uninterpreted
function and assign it a column in the data matrix. Hence it is possible to use
our technique to infer conjunctions of equalities in richer theories too if we know
the constituents of the invariants, analogous to invariant generation techniques
based on templates.

In order to illustrate how the Guess-and-Check technique would work for
programs with arrays, consider the example program shown in Figure 4. We want
to prove that the assertion in line 6 holds for all inputs to the program. Assume
that we log the values of a[i] and i after every iteration and that the degree
bound is d = 1. The data matrix that Guess-and-Check constructs has three
columns and let us assume that we run a single test with input n = 1 resulting
in rows corresponding to program states induced by this input at the loop head.
The data matrix A is shown in Figure 5. The null space of A is defined by the
basis vector B = [0, 1,−1]T , and therefore we obtain the invariant a[i] = i that
is sufficient to prove that the assertion holds.

Our approach of using a dynamic analysis technique to generate data in the
form of concrete program states and augmenting it with a decision procedure
to obtain a sound technique is a general one. Similar ideas have been used for
computing interpolants [25]. We can also take the method for discovering array
invariants or polynomial inequalities of [18] and extend it to a sound procedure
in a similar fashion.
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1: (i,a[0]) = (0,0);

2: assume (n > 0);

3: while (i != n) do

4: i := i+1;

5: a[i] := a[i-1]+1;

6: done

7: assert(a[n] == n);

Fig. 4: Example with arrays.

A =
1 i a[i]

1 0 0
1 1 1

Fig. 5: Data for n=1.

Name #vars deg Data #and Guess (s) Check (s) Total (s)

Mul2 [23] 4 2 75 1 0.0007 0.010 0.0107
LCM/GCD [23] 6 2 329 1 0.004 0.012 0.016
Div [23] 6 2 343 3 0.454 0.134 0.588
Bezout [21] 8 2 362 5 0.765 0.149 0.914
Factor [21] 5 3 100 1 0.002 0.010 0.012
Prod [22] 5 2 84 1 0.0007 0.011 0.0117
Petter [22] 2 6 10 1 0.0003 0.012 0.0123
Dijkstra [22] 6 2 362 1 0.003 0.015 0.018
Cubes [20]. 4 3 31 10 0.014 0.062 0.076
geoReihe1 [20] 3 2 25 1 0.0003 0.010 0.0103
geoReihe2 [20] 3 2 25 1 0.0004 0.017 0.0174
geoReihe3 [20] 4 3 125 1 0.001 0.010 0.011
potSumm1 [20] 2 1 10 1 0.0002 0.011 0.0112
potSumm2 [20] 2 2 10 1 0.0002 0.009 0.0092
potSumm3 [20] 2 3 10 1 0.0002 0.012 0.0122
potSumm4 [20] 2 4 10 1 0.0002 0.010 0.0102

Table 1: Name is the name of the benchmark; #vars is the number of variables in
the benchmark; deg is the user specified maximum possible degree of the discovered
invariant; Data is the number of times the loop under consideration is executed over all
tests; #and is the number of algebraic equalities in the discovered invariant; Guess is
the time taken by the guess phase of Guess-and-Check in seconds. Check is the time
in seconds taken by the check phase of Guess-and-Check to verify that the candidate
invariant is actually an invariant. The last column represents the total time.

6 Experimental Evaluation

We evaluate the Guess-and-Check algorithm on a number of benchmarks from
the literature. All experiments were performed on a 2.5GHz Intel i5 processor
system with 4 GB RAM running Ubuntu 10.04 LTS.

Benchmarks The benchmarks over which we evaluated the Guess-and-Check
algorithm are from a number of recent research papers on inferring algebraic in-
variants [21–23]. These are shown in the first column of Table 1. These programs
were implemented in C for data generation.

Evaluation We now describe our implementation and our experimental results
of Table 1. For a detailed description of the implementation please see [24]. The
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second column of Table 1 shows the number of variables in each benchmark
program. The third column shows the given upper bound for the degree of the
polynomials in the inferred invariant.

The fourth column shows the number of rows of the data matrix. The data
or tests are generated naively; each input variable is allowed to take values from
1 to N where N is between 5 and 20 for the experiments. Hence if there are
two input variables we have N2 tests. These tests are executed till termination
to generate data. While it is possible to generate tests more intelligently, using
inputs from a very small bounding box demonstrates the generality of our tech-
nique by not tying it to any symbolic execution engine. Note that including all
the states reaching the loop head, over all tests, can include redundant states
that do not affect the output. Since the algorithms for null space computation
are quite efficient, we do not attempt to identify and remove redundant states.
If needed, heuristics like considering a random subset of the states [18] can be
employed to keep the size of data matrices small. The fifth column shows the
number of algebraic equations in the discovered loop invariant. For most of the
programs, a single algebraic equation was sufficient. The null space and the ba-
sis computations were performed using off-the-shelf linear algebra algorithms in
MATLAB. Guess-and-Check finds invariants equivalent to those reported in
the earlier papers [20–23]. The time (in seconds) taken by the guess phase of
Guess-and-Check is reported in the sixth column of Table 1.

We use Z3 [16] for checking that the proposed invariants are actually invari-
ants (implementation of Check procedure in the Guess-and-Check algorithm).
Theorem prover Z3 was able to easily handle the simple queries made by Guess-
and-Check, because once an invariant has been obtained, the constraint en-
coding that the invariant is inductive is quite a simple constraint to solve and
our naively generated tests were sufficient to generate an actual invariant. For all
programs, except Div, we declare the variables as integers. So even though these
queries are in Peano arithmetic, and can contain integer division and modulo
operators, the decision procedure is able to discharge them. For Div the invariant
that [23] finds is inductive only if the variables are over reals. When we execute
Guess-and-Check on Div, where the queries are in Peano arithmetic, we ob-
tain the trivial invariant true after three guess-and-check iterations. Next, we lift
the variables to reals when querying Z3. Now, we discover the invariant found
by [23] in one guess-and-check iteration and this is the result shown in Table 1.
By the soundness of our approach, we conclude that an approach producing a
non-trivial algebraic invariant for this benchmark can be unsound for integer
manipulating programs containing division or modulo operators.

Finally, the time taken by Guess-and-Check on these benchmarks is com-
parable to the state-of-the-art correct-by-construction invariant generation tech-
niques [4]. Since these benchmarks are small and the time taken by both our
technique and [4] is less than a second on these programs, a comparison of run
times may not be indicative of performance of either approach on larger loops.
For these benchmarks, our algorithm is significantly faster than any algorithm
using Gröbner bases. For instance, on the benchmark factor, [22] takes 55.4
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seconds, while [21] takes 2.61 seconds. We discover the same invariant in 0.012
seconds. However, the exact timings must be taken with a grain of salt (we are
running on a newer generation of hardware). See Section 7 for a more detailed
comparison with the previous work. We leave the collection of a hard benchmark
suite for algebraic invariant generation tools as future work.

7 Related Work

We now place the Guess-and-Check algorithm in the context of existing work
on discovering algebraic loop invariants. Major benefits of our data driven ap-
proach include finding sound invariants for integer manipulating programs, con-
suming a rich syntax (depends only on the decision procedure), and extracting
linear invariants from algebraic invariants in time linear in the data, that in-
creases the applicability of our algorithm. Sankaranarayanan et al. [23] describe
a constraint based technique that uses user-defined templates for computing al-
gebraic invariants. Their objective is to find an instantiation of these templates
that satisfies the constraints and results in an invariant. The constraints they
use contain quantifiers and therefore the cost of solving them is quite high.

Abstract interpretation based techniques either ignore [15, 22] or restrict con-
ditions on branches to equalities or dis-equalities [17, 6, 21, 4]. The techniques
of [6, 21, 22, 15] use Gröbner bases computations and [17] has no upper complex-
ity bound. Cachera et al. [4] provide an algorithm that does not use Gröbner
bases but interprets variables as taking values over the real numbers. In contrast,
we handle programs with division and modulo operations soundly. Bagnara et
al. [3] introduce new variables for monomials and generate linear invariants over
them by abstract interpretation. Amato et al. [2] analyze data from program
executions to tune their abstract interpretation.

Nguyen et al. [18] have proposed a dynamic analysis for inference of candidate
invariants. They do not provide any formal characterization of the output of
their algorithm and do not prove any soundness and completeness theorems.
The Daikon tool [9] generates likely invariants from tests and templates. Our
approach is similar in that it is also based on analyzing data from tests. Daikon
does not provide any formal guarantees such as soundness and completeness
over the invariants it generates. In the context of Daikon, it is interesting to
note from [19] that very few test cases suffice for invariant generation. Indeed,
this has been our experience with Guess-and-Check as well.

8 Conclusion

We have presented a sound data driven algorithm for discovering algebraic equa-
tion invariants. We use linear algebra techniques to guess an invariant from the
data generated from program runs, and use decision procedures for non-linear
arithmetic to validate these candidate invariants.
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We are able to formally prove that the guessed invariant under-approximates
the actual invariant, as well as bound the number of iterations of Guess-and-
Check. Thus, the key novelty of the Guess-and-Check approach is the data
driven analysis together with formal guarantees of soundness and termination.
Our guarantees are stronger than some of the previous techniques, since we
do not lift integral variables of programs to reals. Moreover, the data driven
approach facilitates transformation of algebraic invariants to linear invariants.
We have also informally shown how our approach can be extended to more
expressive theories such as arrays.

We have implemented the Guess-and-Check algorithm and evaluated it
on a number of benchmarks from recent papers on invariant generation and our
results are encouraging. Future work includes incorporating the Guess-and-
Check algorithm into a mainstream program verification engine [10] that can
consume the candidate invariants as relevant predicates for proofs and a bug-
finding engine [1] that can use the candidate invariants to abstract loops by
their sound under-approximations and obtain better coverage. Since these tools
generally work over linear arithmetic, the transformation from algebraic to linear
invariants will play a critical role.
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