Robot Learning by
Understanding Egocentric Videos
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Learning in Computer Vision / NLP Policy Learning in Robotics
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10x real time

All the text on the Internet

How do we scale up learning for robotics?



Scaling up Learning in Robotics

Many Answers

RGB-D
Camera

Intel compute Servo motor

One button control
open/close

Self- supervision o Arm farms | Robot n homes SImplifying data
Pinto et al.] [Levine et al.] |Gupta et al.] collection [Song et al.]

But today, scaling up robot learning through
observation of other agents solving tasks.

* We do It as adults
Critical part of child development [ | ]:

SIm2Rea  Early imitation in children, as young as a few hours / days
[Hwangbo et al.|

[ I'] Andrew Meltzoff and Alison Gopnik. The role of imitation in understanding persons and developing a theory of mind.



In particular, we will focus on egocentric videos
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Why would such videos be useful for robot learning,
and how can we use them?



Motivation

Policy Learning from Interaction

Model trained on 10M frames: Go to Sofa
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10x real time %

Challenging to specify reward functions

Impractically large sample complexity

_earning signal derived sole

Poor generalization due to

y from Interaction
ack of visual

diversity In training, sim2real transfer

iteration 1

How can egocentric videos aid?
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_arge diversity may provide good generalization.

Demonstrations may directly show how to solve
ong horizon tasks.

Depict what the world is like, and how It works.



Motivation

How can egocentric videos aid?
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* [arge diversity may provide good generalization.

* Demonstrations may directly show how to solve
ong horizon tasks.

* Depict what the world Is like, and how It works.

However,

Videos don't come with action labels
Goals and intents are not known
Depicted trajectories may be sub-optimal

-mbodiment gap (sensors / actions /
capabillities)

Only showcase positive data



Learning at different abstraction levels

Interlingua
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knowledge needed

The Vauquois triangle for
machine translation

Figure from Jurafsky and Martin



Learning at different abstraction levels

Interlingua

Target Text: % 8,
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Structure > %

source
text

The Vauquois triangle for
machine translation

Direct Translation >

ooals

sub goals

world common sense

Task ™,
definitions ™.

Depending on the amount of gap between:
® ooals,

®* embodiment,

® what we can observe In videos

| we may benefit from transfer at different levels.
about objects

and scenes

In this talk, using video to learn,

skills

Dense
rewards

® how to Iinteract with objects
® COMMON sense about scenes

Subroutines and
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Human Hands as Probes for
Interactive Object Understanding

Mohit Goyal Sahil Modi Rishabh Goyal Saurabh Gupta
CVPR 2022

I ILLINOIS

AAAAAAAAAAAAAAA

Mohit Goyal Sahil Modi Rishabh Goyal



Interactive Object Understanding
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A) Which sites can we interact at?
(cupboard handles)

B) How to interact with those sites?
(using adducted thumb grasp)

C) What happens when we do?
(cupboard undergoes state transition)
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Learn through egocentric observation of human

hands interacting with the World

T I T

1) State Sensitive Features (C)
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2) Object Affordance Prediction (A,B)



Human Hands in Egocentric Videos are Informative
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1. In-the-wild egocentric videos focus upon natural ways of hand-object interaction.
2. Attending to hands localizes and stabilizes active objects.

3. Hands show where all we can interact in the scene.



Data Preparation using Off-the-shelf models
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Prismatic 3 || Prismatic 4 || Prismatic3 | Grasp Label
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Hand
Track
Shan et al. CVPR 2020. Object-of-
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rac

Contact at Internet Scale.



Interactive Object Understanding

,. 4 ~ | A)Which sites can we interact at?
' (cupboard handles)

B) How to interact with those sites?
(using adducted thumb grasp)

C) What happens when we do?
(cupboard undergoes state transition)




Object Tracks

Task 1. Learning State Sensitive Features: Approach
Temporal SImMCLR with Object-Hand Consistency (TSC + OHC)

1. Leverage Temporal Consistency in States

L,
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e Object Model
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Attraction Repulsion



Task 1. Learning State Sensitive Features: Approach
Temporal SImMCLR with Object-Hand Consistency (TSC + OHC)

2. Using Object-Hand Consistency: Similarity in

1. Leverage Temporal Consistency in States states through similarity in interaction

L,

. Object Model emporal

Hand Model
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Task 1. Learning State Sensitive Features: Results

Evaluation on EPIC-STATES Dataset
EPIC-STATES Evaluation (mAP)

Methods Ob?e"cts
ImageNet Pre-trained 83.0 TSC improves over ImageNet features
SIMCLR [3] 79.9 SIMCLR features perform worse
EPIC Action Classification 77.9
MIT States [4] (Internet Images) ~ 81.5 }
TSC (Ours) 836 \/ Object-hand consistency further helps
TSC+OHC (Ours) 84.9 )

[3] Chen et al. ICML 2020. A simple framework for contrastive learning of visual representations.
[4] Isola et al. CVPR 2015. Discovering states and transformations in image collections.



Task 1. Learning State Sensitive Features: Results

Evaluation on EPIC-STATES Dataset
EPIC-STATES Evaluation (mAP)

All Novel
Methods Objects Objects
ImageNet Pre-trained 83.0 74.5 TSC improves over ImageNet features
SIMCLR [3] 799 4.4 SIMCLR features perform worse
EPIC Action Classification 77.9 77.0
MIT States [4] (Internet Images) 81.5 73.9
Object-hand consistency further helps
TSC (Ours) 83.6 +1.0 % 80.2 +7.3 %
v v
TSC+OHC (Ours) 84.9 81.8

[3] Chen et al. ICML 2020. A simple framework for contrastive learning of visual representations.
[4] Isola et al. CVPR 2015. Discovering states and transformations in image collections.



Interactive Object Understanding
/
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A) Which sites can we interact at?
(cupboard handles)

B) How to interact with those sites?
(using adducted thumb grasp)

C) What happens when we do?
(the cupboard opens)

2) Object Affordance Prediction (A,B)



Task 2. Learning Object Affordances: Approach

Affordances via Context Prediction (ACP)

Segmentation Loss

» Encoder » Decoder —>“

Region

Masked Context

Grasp Loss

Sampled Patch




Task 2a. Learning Learning Object Affordances: Results
Evaluating Region-of-Interaction Prediction




Task 2a. Learning Learning Object Affordances: Results
Evaluation on EPIC-ROI Dataset

Rol-prediction Quantitative Comparison

Methods Supervision AP
Supervised MaskRCNN does better

MaskRCNN MSCOCO 64.0 than ACP

IHOTSPOT [5] Action and Object Labels 43.8
DEEPGAZEZ [6] Recorded Eye Fixations  55.7 ACP Improves over action-classification
and objectness methods
ACP (Ours) Hand-Object detections 57.0
MaskRCNN + DEEPGAZE2 Adding the predictions 66.6 ACP combined with MaskRCNN

performs the best
MaskRCNN + ACP (Ours) Adding the predictions 68.6 €

[5] Nagarajan et al. CVPR 2019. Grounded human-object interaction hotspots from video.
[6] Kummerer et al. ICCV 2017, Understanding low- and high-level contributions to fixation prediction



Task 2a. Learning Learning Object Affordances: Results
Evaluation on EPIC-ROI Dataset (Non-COCO Objects)

Rol Quantitative Comparison

Methods Supervision AP |
MaskRCNN performance is low

On Non-COCO Categories
MaskRCNN MSCOCO 22.8

MaskRCNN+ACP improves by 7.7%
MaskRCNN + DEEPGAZE2 Recorded Eye-fixations 26.2

ACP better than Deepgaze?2

MaskRCNN + ACP (Ours) Hand-Object Detections 30.5



Task 2b. Learning Learning Object Affordances: Results
Grasps Afforded by Objects (GAO) Task

. Large Diameter
. Sphere 4 Finger

. Medium Wrap

. Power Sphere

. Sphere 4 Finger
. Sphere 3 Finger

1. Precision Disk

[7] Corona et al. CVPR 2020. Ganhand: Predicting human grasp affordances in multi-object-scenes



Task 2b. Learning Learning Object Affordances: Results
Grasps Afforded by Objects (GAO) Task

Chance - 30 % mAP ACP (Ours) - 38 7 mAP Supervised - 50 % mAP

Top Ranking Objects predicted by ACP
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Human Hands as Probes for Interactive Object Understanding

7
_/ A) Which sites can we interact at?
| ' (cupboard handles)

- .o

B) How to interact with those sites?
(using adducted thumb grasp)
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Learn through egocentric observation of human
hands Interactlng W/th the World
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1) State Sensitive Features (C) 2) Object Affordance Prediction (A,B)

C) What happens when we do?
(the cupboard opens)
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Hands were useful, but they are also a nuisance...

1) State-sensitive features 2) Affordances
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Agent-tnvironment Factorization
of Egocentric Videos

Matthew Chang Aditya Prakash Saurabh Gupta
arXiv 2023

Find Aditya
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f poster
e . T ILLINOIS




Agent-Environment Factored Representations

agent
It

Segmentation
Model 4
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Video Inpainting Diffusion Model | "




Applications of Factorization

a) Reward Functions b) Affordances c) Visual Perception




Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video

Input Image



Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video

vVQ Concat Noisy
Encoder Image and
Mask

Input Image



Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video
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Encoder Image and Features Features Concat Block Spatial Sample

Mask
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Input Image

Block x8



Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video
VQ Concat Noisy Spatial Convolution  Spatial Flatten and Attention Reshape To Down/Up Predicted
Inputimage - der Image and Features Features Concat Block Spatial Sample Noise

Mask

Block x8



Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video

HEEiDiE-

Predicted
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Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video

Rk RIAEES

Predicted
Noise

Concat Noisy
Image and
Mask

Input | vVQ
Images Encoder



Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video

i“

VO Concat Noisy Spatial Convolution  Spatial Flatten and Attention Reshape To Down/Up

Image and Features Features Concat Block Spatial Sample
Mask

Images Encoder

Multi-Frame Attention Block x8



Video Inpainting Diffusion Model (VIDM)

1. Leverage priors on how object are 2. Leverage past information in the video

> S C
3D Predicted
i_m- Convolution Noise

Spatial Convolution  Spatial Flatten and Attention Reshape To Down/Up
Features Features Concat Block Spatial Sample

—>

—>

Concat Noisy
Image and
Mask

VQ
Images Encoder

Multi-Frame Attention Block x8



Reconstruction Evaluation Effectively

leverages
prior frames

... While also
using priors

learned on large
scale image
datasets

Inpainting Method PSNRT SSIM{T FID| Runtime |

a) Original Image




VlsuallzatK)nS Frame-by-frame results, no temporal smoothing

. .




Visualizations




Visualizations




Visualizations
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Results

Reward Functions  Affordances Detection

Human-Robot Domain Gap Data Mismatch Occlusion

P: 0.56—0.61 Acc:0.35—0.47 mAR: 0.26— 0.38



Faster Real-world Robot Learning

1.0 1
—o— (/" and g(I79¢™")) (Ours)
0.8 Raw Imges (i.e. ;)
"~ | —o— Inpainted only (i.e. I7"V as proposed in [1])

3
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D
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CEM lterations

[1] Bahl et al. RSS 2022, Human-to-Robot Imitation in the Wild



Aside: Precise Motion Plans to Articulate Articulated Objects

Talk to me
at the

poster
sSession

Arjun Gupta, Max Shpeherd, Saurabh Gupta. In ICRA 2023.
Predicting Motion Plans for Articulating Everyday Objects



Learning at different abstraction levels
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Semantic Visual Navigation
oy VWatching You lube Videos

Matthew Chang Arjun Gupta Saurabh Gupta

University of lllinois at Urbana-Champaign

X ILLINOIS

NeurlPS 2020




Problem Statement
Output: Semantic cues to efficiently find objects In

Input: Cgocentric videos | | |
(real estate tours from YouTube) novel indoor environments, e.g. finding a restroom
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Some Intuition
Mine for spatial co-occurrences

Video time

e.g. cues for finding a couch



Value Learning from Videos (VLV)

a) Action
Grounding ]

random actions on

Real Estate
Tour from

You Tube

b) Goal
Labeling
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Quadruple
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c) Q-Learning
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iccues (I, ¢) = max Q*(1, a, c)

for seeking objects in novel iIndoor enviro

nments
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Learned Value Function

f(I, c) = nearness to goal

Value function predicts a proxy for nearness to a goal object for a given image




Learned Value Function

f(I, c) =~ nearness to goal

Value function predicts a proxy for nearness to a goal object for a given image
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Using Learned Values for Semantic Navigation

Hierarchical Policy

~
High-Level Policy (Low-LeveI Policy A

* Decides where to go next and emits short-term goal * Executes actions to achieve short-

* Builds a topological map [1]that stores values predicted term goal

oy f(I, ¢) at different locations in different directions * Incrementally builds occupancy map
from depth camera

* Samples most promising direction, and passes APose | Forward
to Low-Level Policy » Uses Fast-Marching Method for path
® Short-term blanning to get actions to execute I eft
Goal | —{ * Return control on success or failure
Right
__________é_Pose
BN Stop
®
N
Value Predictions _.‘ ‘@ «|  Occupancy Map FMM Cost Map
kviaf([ ,C). ) K\ _— Y

[ 1] D. Chaplot, R. Salakhutdinov, A. Gupta, S. Gupta. Neural topological slam for visual navigation. In CVPR, 2020,



Results (ObjectGoal Task)

Find object of interest (bed, chair; couches, tables, toilets) in novel indoor environments.

0.6
2 0.5

h
- 0.4-
o
n 0.31 4

G 0.2 N >~

©0.1-
0.0 — - - - - - - -
0 5M 10M 15M 20M 25M 30M 35M
Frames of direct interaction for training
A [0.30] Topological Exploration * [0.53] Ours (YouTube)
[0.46] Detection Seeker —— [0.28] RL

= [0.24] Behavior Cloning (YouTube) [0.23] BC (YouTube) + RL



Transferring at appropriate level is important

Oracle Stop SPL

Method (Valdiation Set)
Our (hierarchical) 0.40
No Hierarchy 0.15
In this talk:

® high-level value functions
® how to interact with objects

. No hierarchy ,
human actions —0H0-0 o0nrn o ———o» robot actions

Control Hierarchy



Summary

ransfer at the right level of abstract

Chair

Couch

D. Table

Bed

Toilet

amazon (37:[:{)

0.87

0.97

0.92 0.88 0.82 0.84 0.85 0.85 0.84 0.83

0.78

0.78

0.62

0.63

Mohit Goyal Sahil Modi Rishabh Goyal

Aditya Prakash




