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Policy Learning in Robotics Learning in Computer Vision / NLP

How do we scale up learning for robotics? 

All the text on the Internet



But today, scaling up robot learning through 
observation of other agents solving tasks.

Scaling up Learning in Robotics
Many Answers SONG et al.: GRASPING IN THE WILD 3
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Fig. 2. Hardware setup. Our low-cost handheld device (left) consists of a plastic grabber tool equipped with an RGB-D camera and a servo that controls the
binary opening of the grabber fingers. This device was designed to be analogous to the real robot’s end effector setup (right), while providing a low-user-friction
interface that enables untrained people to collect grasping data in almost any environment.

process for gathering human grasping demonstrations from a
diverse set of tasks and environments (i.e., in-the-wild). Sec. V
describes our 6DoF closed-loop grasping model and how it is
trained with this data.

IV. GRASPING DEMONSTRATIONS IN-THE-WILD

To collect grasping data from human demonstrations, we
built a low-cost portable handheld grabber tool equipped with
a wrist-mounted RGB-D camera (illustrated in Fig. 2). We then
asked willing participants to use the tool in place of their hands
for everyday pick-and-place tasks, e.g., picking items from
shelves, bins, refrigerators, sorting dishes in a dishwasher, or
picking trash on the floor, etc. Our data collection system is
driven by 3 key motivations:
· Accessibility for diversity. Our handheld tool is a low-

user-friction interface that allows untrained people to
collect manipulation data in almost any environment
(e.g., various homes, offices, warehouses, grocery stores),
many of which would otherwise be difficult for robots to
acquire physical access to. This substantially improves
the diversity of the data that we can acquire.

· Data for challenging tasks. For challenging manipula-
tion tasks like searching for dishes in a dishwasher, data
collection through robot trial and error can be expensive
– robot failures may lead to negative irreversible con-
sequences (e.g., broken dishes). In contrast, our setup
enables skilled humans to easily collect manipulation data
for these tasks with negligible failure rates.

· Minimized domain gap. Our gripper tool is designed to
be as similar as possible to a real robot’s end effector:
binary actuated parallel-jaw fingers with a wrist-mounted
RGB-D camera. This similarity narrows the domain gap
between the data collected from human demonstrations
and the data that the robot encounters.

A. Hardware Setup
Our handheld data collection device (Fig. 2) consists of:

1) a Royal Medical Solutions (RMS) plastic grabber reacher
tool forearm, 2) a Dynamixel servo that twists the grabber’s
internal cable to control the opening of the fingers, 3) a 3D
printed grip that attaches to the back end of the grabber, 4)
a binary push button on the grip that connects to an Arduino

to trigger the Dynamixel servo, 5) an Intel RealSense D415
camera mounted 25cm from the gripper fingertips, streaming
640⇥480 RGB-D images to 6) an Intel compute stick running
Linux OS with data capturing software, 7) a portable 12V
battery to power the tool for 5 hours on a single charge, and
8) an optional touch screen monitor. All components are either
purchased off-the-shelf or 3D printed with PLA. The cost of
the entire unit sums to around $600.

We designed the handheld gripper to be analogous to the
end effector of the real robot setup (shown in Fig. 2 Right),
which consists of a 6DoF UR5 robot arm with an binary RG2
gripper, and an wrist-mounted Intel RealSense D415 camera.
The handheld gripper uses binary control (triggered by the
push button) to mimic the RG2’s binary open/close behavior.

B. Data Collection and Processing

We distributed data collection among 8 participants, who
were tasked with collecting grasping data while performing
various pick-and-place tasks (e.g., picking from shelves, pick-
ing from bins, rearranging objects, picking up trash, etc.)
in different environments (e.g., apartments, kitchens, offices,
warehouses). The varying tasks and environments naturally
encourage human demonstrators to perform different grasping
strategies, which subsequently lead to more diverse demonstra-
tion data. Our dataset in total contains 12 hours of recorded
gripper-centric RGB-D videos, labeled with the binary signal
of when the user pushed the button to close the gripper.

To recover 6DoF grasping trajectories from the RGB-D
videos of demonstrations, we use classic frame-to-frame visual
tracking [29] to estimate the camera pose and trajectory over
time. Since the camera is fixed on the gripper and the rigid
transform between the camera and gripper is calibrated and
known beforehand, this tracking process also enables us to
recover the gripper pose and trajectory over time. Specifically,
to estimate the relative pose transform between two RGB-D
frames, we detect SIFT keypoints [30] on both frames and use
random sample consensus (RANSAC) on correspondences,
with singular value decomposition (SVD) to compute a rigid
transform. We then refine that estimate by using iterative
closest point (ICP) [31] on the 3D point clouds projected
from the frames. This algorithm makes the assumption that
the environment is static – hence to reduce noisy estimates,

Arm farms 
[Levine et al.]

Robot in homes 
[Gupta et al.]

Simplifying data 
collection [Song et al.]

Self-supervision 
[Pinto et al.]

• We do it as adults
• Critical part of child development [1]:

• Early imitation in children, as young as a few hours / days

[1] Andrew Meltzoff and Alison Gopnik. The role of imitation in understanding persons and developing a theory of mind.

Sim2Real
[Hwangbo et al.]



In particular, we will focus on egocentric videos

Why would such videos be useful for robot learning, 
and how can we use them?



Motivation
Policy Learning from Interaction

• Challenging to specify reward functions
• Impractically large sample complexity
• Learning signal derived solely from interaction
• Poor generalization due to lack of visual 

diversity in training, sim2real transfer

• Large diversity may provide good generalization.
• Demonstrations may directly show how to solve 

long horizon tasks. 
• Depict what the world is like, and how it works.

How can egocentric videos aid?



Motivation

• Large diversity may provide good generalization.
• Demonstrations may directly show how to solve 

long horizon tasks. 
• Depict what the world is like, and how it works.

How can egocentric videos aid? However,

• Videos don’t come with action labels
• Goals and intents are not known
• Depicted trajectories may be sub-optimal
• Embodiment gap (sensors / actions / 

capabilities)
• Only showcase positive data



Learning at different abstraction levels

The Vauquois triangle for 
machine translation

BIBLIOGRAPHICAL AND HISTORICAL NOTES 229

source
text

target 
text

Direct Translation

Transfer

Interlingua

Source Text:
Semantic/Syntactic

Structure

Target Text:
Semantic/Syntactic

Structureso
ur

ce
 la

ng
ua

ge

an
aly

sis

so
ur

ce
 la

ng
ua

ge

an
aly

sis

target language

 generation

Figure 11.20 The Vauquois (1968) triangle.

The algorithms (except for the decoder) were published in full detail— encouraged
by the US government which had partially funded the work— which gave them a
huge impact on the research community (Brown et al. 1990, Brown et al. 1993).
By the turn of the century, most academic research on machine translation used the
statistical noisy channel model. Progress was made hugely easier by the develop-
ment of publicly available toolkits, like the GIZA toolkit (Och and Ney, 2003) which
implements IBM models 1–5 as well as the HMM alignment model.

Around the turn of the century, an extended approach, called phrase-based
translation was developed, which was based on inducing translations for phrase-phrase-based

translation
pairs (Och 1998, Marcu and Wong 2002, Koehn et al. (2003), Och and Ney 2004,
Deng and Byrne 2005, inter alia). A log linear formulation (Och and Ney, 2004)
was trained to directly optimize evaluation metrics like BLEU in a method known
as Minimum Error Rate Training, or MERT (Och, 2003), also drawing fromMERT
speech recognition models (Chou et al., 1993). Popular toolkits were developed like
Moses (Koehn et al. 2006, Zens and Ney 2007).Moses

There were also approaches around the turn of the century that were based on
syntactic structure (Chapter 12). Models based on transduction grammars (alsotransduction

grammar
called synchronous grammars assign a parallel syntactic tree structure to a pair of
sentences in different languages, with the goal of translating the sentences by ap-
plying reordering operations on the trees. From a generative perspective, we can
view a transduction grammar as generating pairs of aligned sentences in two lan-
guages. Some of the most widely used models included the inversion transduction
grammar (Wu, 1996) and synchronous context-free grammars (Chiang, 2005),

inversion
transduction

grammar
MODERN HISTORY OF encoder-decoder approach HERE; (Kalchbren-

ner and Blunsom, 2013), (Cho et al., 2014), (Sutskever et al., 2014), etc
Beam-search has an interesting relationship with human language processing;

(Meister et al., 2020) show that beam search enforces the cognitive property of uni-
form information density in text. Uniform information density is the hypothe-
sis that human language processors tend to prefer to distribute information equally
across the sentence (Jaeger and Levy, 2007).

Research on evaluation of machine translation began quite early. Miller and
Beebe-Center (1958) proposed a number of methods drawing on work in psycholin-
guistics. These included the use of cloze and Shannon tasks to measure intelligibil-
ity as well as a metric of edit distance from a human translation, the intuition that
underlies all modern automatic evaluation metrics like BLEU. The ALPAC report
included an early evaluation study conducted by John Carroll that was extremely in-
fluential (Pierce et al., 1966, Appendix 10). Carroll proposed distinct measures for
fidelity and intelligibility, and had raters score them subjectively on 9-point scales.

Figure from Jurafsky and Martin 

• Interlingua (text to abstract 
meaning space, back to text)

• Transfer (text to parse tree, 
transform tree, generate text)

• Direct Translation (translate word-
by-word or phrase-by-phrase)

• Increasing depth of 
understanding for 
analysis and 
generation

• Decreasing amount 
of transfer 
knowledge needed
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The algorithms (except for the decoder) were published in full detail— encouraged
by the US government which had partially funded the work— which gave them a
huge impact on the research community (Brown et al. 1990, Brown et al. 1993).
By the turn of the century, most academic research on machine translation used the
statistical noisy channel model. Progress was made hugely easier by the develop-
ment of publicly available toolkits, like the GIZA toolkit (Och and Ney, 2003) which
implements IBM models 1–5 as well as the HMM alignment model.

Around the turn of the century, an extended approach, called phrase-based
translation was developed, which was based on inducing translations for phrase-phrase-based

translation
pairs (Och 1998, Marcu and Wong 2002, Koehn et al. (2003), Och and Ney 2004,
Deng and Byrne 2005, inter alia). A log linear formulation (Och and Ney, 2004)
was trained to directly optimize evaluation metrics like BLEU in a method known
as Minimum Error Rate Training, or MERT (Och, 2003), also drawing fromMERT
speech recognition models (Chou et al., 1993). Popular toolkits were developed like
Moses (Koehn et al. 2006, Zens and Ney 2007).Moses

There were also approaches around the turn of the century that were based on
syntactic structure (Chapter 12). Models based on transduction grammars (alsotransduction

grammar
called synchronous grammars assign a parallel syntactic tree structure to a pair of
sentences in different languages, with the goal of translating the sentences by ap-
plying reordering operations on the trees. From a generative perspective, we can
view a transduction grammar as generating pairs of aligned sentences in two lan-
guages. Some of the most widely used models included the inversion transduction
grammar (Wu, 1996) and synchronous context-free grammars (Chiang, 2005),

inversion
transduction

grammar
MODERN HISTORY OF encoder-decoder approach HERE; (Kalchbren-

ner and Blunsom, 2013), (Cho et al., 2014), (Sutskever et al., 2014), etc
Beam-search has an interesting relationship with human language processing;

(Meister et al., 2020) show that beam search enforces the cognitive property of uni-
form information density in text. Uniform information density is the hypothe-
sis that human language processors tend to prefer to distribute information equally
across the sentence (Jaeger and Levy, 2007).

Research on evaluation of machine translation began quite early. Miller and
Beebe-Center (1958) proposed a number of methods drawing on work in psycholin-
guistics. These included the use of cloze and Shannon tasks to measure intelligibil-
ity as well as a metric of edit distance from a human translation, the intuition that
underlies all modern automatic evaluation metrics like BLEU. The ALPAC report
included an early evaluation study conducted by John Carroll that was extremely in-
fluential (Pierce et al., 1966, Appendix 10). Carroll proposed distinct measures for
fidelity and intelligibility, and had raters score them subjectively on 9-point scales.

Depending on the amount of gap between:
• goals,
• embodiment, 
• what we can observe in videos
we may benefit from transfer at different levels.

In this talk, using video to learn,
• how to interact with objects
• common sense about scenes
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Human Hands as Probes for 
Interactive Object Understanding
Mohit Goyal       Sahil Modi       Rishabh Goyal       Saurabh Gupta  

CVPR 2022

Mohit Goyal Sahil Modi Rishabh Goyal



Interactive Object Understanding
A) Which sites can we interact at? 

(cupboard handles)
B) How to interact with those sites?  

(using adducted thumb grasp)
C) What happens when we do? 

(cupboard undergoes state transition)

2) Object Affordance Prediction (A,B)1) State Sensitive Features (C)
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0.43
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Learn through egocentric observation of human  
hands interacting with the world.



Human Hands in Egocentric Videos are Informative

1. In-the-wild egocentric videos focus upon natural ways of hand-object interaction. 

2. Attending to hands localizes and stabilizes active objects. 

3. Hands show where all we can interact in the scene. 

4. Analyzing hands reveals information about objects: their state and how to interact with them.

Close

Adducted Thumb 
 Grasp

Open



Object-of- 
Interaction 

Track

ot

Hand  
Track

ha
t

hm
t Hand Motion

Prismatic 3Prismatic 4Prismatic 3 Grasp Label
In ContactIn ContactIn Contact Contact State

Normalize Normalize Normalize

Data Preparation using Off-the-shelf models

Shan et al. CVPR 2020. 
Understanding Human Hands in 
Contact at Internet Scale.



Interactive Object Understanding

1) State Sensitive Features (C) 2) Object Affordance Prediction (A,B)
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A) Which sites can we interact at? 
(cupboard handles)

B) How to interact with those sites?  
(using adducted thumb grasp)

C) What happens when we do? 
(cupboard undergoes state transition)



Task 1. Learning State Sensitive Features: Approach
Temporal SimCLR with Object-Hand Consistency (TSC + OHC)
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1. Leverage Temporal Consistency in States



Task 1. Learning State Sensitive Features: Approach
Temporal SimCLR with Object-Hand Consistency (TSC + OHC)

2. Using Object-Hand Consistency: Similarity in 
states through similarity in interaction
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Task 1. Learning State Sensitive Features: Results

Methods All 
Objects

ImageNet Pre-trained 83.0

SimCLR [3] 79.9

EPIC Action Classification 77.9

MIT States [4] (Internet Images) 81.5

TSC (Ours) 83.6

TSC+OHC (Ours) 84.9

EPIC-STATES Evaluation (mAP)

TSC improves over ImageNet features

SimCLR features perform worse

Object-hand consistency further helps

[3] Chen et al. ICML 2020. A simple framework for contrastive learning of visual representations. 
[4] Isola et al. CVPR 2015. Discovering states and transformations in image collections.

Evaluation on EPIC-STATES Dataset

TSC improves over semantic supervision



Task 1. Learning State Sensitive Features: Results

Methods All 
Objects

Novel 
Objects

ImageNet Pre-trained 83.0 74.5

SimCLR [3] 79.9 74.4

EPIC Action Classification 77.9 77.0

MIT States [4] (Internet Images) 81.5 73.9

TSC (Ours) 83.6 80.2

TSC+OHC (Ours) 84.9 81.8

Evaluation on EPIC-STATES Dataset

TSC improves over ImageNet features

SimCLR features perform worse

Object-hand consistency further helps

TSC improves over semantic supervision

+1.9 % +7.3 %

EPIC-STATES Evaluation (mAP)

[3] Chen et al. ICML 2020. A simple framework for contrastive learning of visual representations. 
[4] Isola et al. CVPR 2015. Discovering states and transformations in image collections.



Interactive Object Understanding
A) Which sites can we interact at? 

(cupboard handles)
B) How to interact with those sites?  

(using adducted thumb grasp)
C) What happens when we do? 

(the cupboard opens)

1) State Sensitive Features (C) 2) Object Affordance Prediction (A,B)
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Task 2. Learning Object Affordances: Approach

Encoder Decoder

MLP

Segmentation Loss

Grasp Loss

Grasp Label  
(Medium Wrap)

Masking

Affordances via Context Prediction (ACP)
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Task 2a. Learning Learning Object Affordances: Results
Evaluating Region-of-Interaction Prediction



Methods Supervision AP 

MaskRCNN MSCOCO 64.0

IHOTSPOT [5] Action and Object Labels 43.8

DEEPGAZE2 [6] Recorded Eye Fixations 55.7

ACP (Ours) Hand-Object detections 57.0

MaskRCNN + DEEPGAZE2 Adding the predictions 66.6

MaskRCNN + ACP (Ours) Adding the predictions 68.6

RoI-prediction Quantitative Comparison

Supervised MaskRCNN does better 
than ACP

[5] Nagarajan et al. CVPR 2019. Grounded human-object interaction hotspots from video. 
[6] Kummerer et al. ICCV 2017, Understanding low- and high-level contributions to fixation prediction

Task 2a. Learning Learning Object Affordances: Results
Evaluation on EPIC-ROI Dataset

ACP improves over action-classification  
and objectness methods

ACP combined with MaskRCNN 
performs the best



Methods Supervision AP 

MaskRCNN MSCOCO 22.8

MaskRCNN + DEEPGAZE2 Recorded Eye-fixations 26.2

MaskRCNN + ACP (Ours) Hand-Object Detections 30.5

RoI Quantitative Comparison

MaskRCNN+ACP improves by 7.7%

ACP better than Deepgaze2

Task 2a. Learning Learning Object Affordances: Results
Evaluation on EPIC-ROI Dataset (Non-COCO Objects)

MaskRCNN performance is low
On Non-COCO Categories



Task 2b. Learning Learning Object Affordances: Results
Grasps Afforded by Objects (GAO) Task

1. Precision Disk

1. Medium Wrap 
2. Power Sphere 
3. Sphere 4 Finger 
4. Sphere 3 Finger

1. Large Diameter 
2. Sphere 4 Finger

YCBAffordance Dataset [7]

[7] Corona et al. CVPR 2020. Ganhand: Predicting human grasp affordances in multi-object-scenes



Task 2b. Learning Learning Object Affordances: Results
Grasps Afforded by Objects (GAO) Task

Chance - 30 % mAP ACP (Ours) - 38 % mAP Supervised - 50 % mAP

Top Ranking Objects predicted by ACP

Large Diameter Medium Wrap Power Sphere Parallel ExtensionPrecision Disk Sphere 4 Finger Sphere 3 Finger



Human Hands as Probes for Interactive Object Understanding

A) Which sites can we interact at? 
(cupboard handles)

B) How to interact with those sites?  
(using adducted thumb grasp)

C) What happens when we do? 
(the cupboard opens)

2) Object Affordance Prediction (A,B)1) State Sensitive Features (C)

0.31
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0.22

0.50

0.43
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0.27

Learn through egocentric observation of human  
hands interacting with the world.



2) Affordances1) State-sensitive features

Hands were useful, but they are also a nuisance… 
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arXiv 2023

Look Ma, No Hands!  
Agent-Environment Factorization 

of Egocentric Videos

Find Aditya 
at the 
poster 
session
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Video Inpainting Diffusion Model (VIDM)
1. Leverage priors on how object are 2. Leverage past information in the video
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Table 1: In-painting evaluation on held-out clips from Epic-Kitchens [10]. Use of strong generative
priors and past frames allows our model to outperform past works that use only one or the other.

Inpainting Method PSNR" SSIM" FID# Runtime #
Latent Diffusion [57] 28.29 0.931 27.29 12.5s / image
Latent Diffusion (fine-tuned) 28.27 0.931 27.50 12.5s / image
DLFormer [56] 26.98 0.922 51.74 106.4s / image
VIDM (Ours) 32.26 0.956 10.37 13.6s / image

a) Original Image b) LatentDiffusion FT [57] c) DLFormer [56] d) VIDM (Ours)

Figure 4: Our approach (VIDM) is able to correctly steal background information from past frames
(top row, oranges on the bottom right) and also correctly reconstructs the wok handle using strong
object appearance priors (bottom row).

from VISOR [11] as the pool of hand-shaped masks. In addition, we also generate synthetic masks144

using the scheme from [57, 91]. We use a 3-frame history (i.e. h = 3). Context images are drawn to145

be approximately 0.75s apart. We found it important to not have actual human hands as prediction146

targets for the diffusion model. Thus, we omit frames containing hands from Ego4D (using hand147

detector from [62]) and do not back-propagate loss on patches that overlap a hand in Epic-Kitchens148

(we use ground truth hand annotations on Epic-Kitchens frames from VISOR). We end up with 1.5149

million training frames in total.150

Model Training. We initialize our networks using pre-trained models. Specifically, we use the pre-151

trained VQ encoder-decoder from [57] which is kept fixed. The latent diffusion model is pre-trained152

for single-frame inpainting on the Places [92] dataset and is finetuned for our multi-frame inpainting153

task. We train with a batch size of 48 for 600k iterations on 8 A40 GPUs for 12 days. At inference154

time we use 200 denoising steps to generate images.155

Our overall model realizes the two desiderata in the design of a video inpainting model. First,156

conditioning on previous frames allows occluded regions to be filled using the appearance from157

earlier frames directly (if available). Second, the use of a strong data-driven generative prior (by158

virtue of starting off from a diffusion model pre-trained on a large dataset) allows speculation of the159

content of the masked regions from the surrounding context.160

5 Experiments161

We design experiments to test the inpainting abilities of VIDM (Sec. 5.1), and the utility of our factor-162

ized representation towards different visual perception and robot learning tasks (Sec. 5.2 to Sec. 5.6).163

For the former, we assess the contribution of using a rich generative prior and conditioning on past164

frames. For the latter, we explore 5 benchmark tasks: object detection, 3D object reconstruction,165

affordance prediction, learning reward functions, and learning policies using learned reward functions.166

We compare against alternate representations, specifically ones used in past papers for the respective167

tasks.168

5

Table 1: In-painting evaluation on held-out clips from Epic-Kitchens [10]. Use of strong generative
priors and past frames allows our model to outperform past works that use only one or the other.

Inpainting Method PSNR" SSIM" FID# Runtime #
Latent Diffusion [57] 28.29 0.931 27.29 12.5s / image
Latent Diffusion (fine-tuned) 28.27 0.931 27.50 12.5s / image
DLFormer [56] 26.98 0.922 51.74 106.4s / image
VIDM (Ours) 32.26 0.956 10.37 13.6s / image

a) Original Image b) LatentDiffusion FT [57] c) DLFormer [56] d) VIDM (Ours)
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object appearance priors (bottom row).
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Reconstruction Evaluation Effectively 
leverages 

prior frames

… while also 
using priors 

learned on large 
scale image 

datasets



Visualizations Frame-by-frame results, no temporal smoothing
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Affordances
Data Mismatch

Results

Acc: 0.35     0.41

Reward Functions
Human-Robot Domain Gap

ρ: 0.56     0.61

Occlusion
Detection

mAR: 0.26     0.38



Faster Real-world Robot Learning

[1] Bahl et al. RSS 2022, Human-to-Robot Imitation in the Wild



Aside: Precise Motion Plans to Articulate Articulated Objects

Arjun Gupta, Max Shpeherd, Saurabh Gupta. In ICRA 2023.
Predicting Motion Plans for Articulating Everyday Objects

Talk to me 
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session



Learning at different abstraction levels

The Vauquois triangle for 
machine translation
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Figure 11.20 The Vauquois (1968) triangle.

The algorithms (except for the decoder) were published in full detail— encouraged
by the US government which had partially funded the work— which gave them a
huge impact on the research community (Brown et al. 1990, Brown et al. 1993).
By the turn of the century, most academic research on machine translation used the
statistical noisy channel model. Progress was made hugely easier by the develop-
ment of publicly available toolkits, like the GIZA toolkit (Och and Ney, 2003) which
implements IBM models 1–5 as well as the HMM alignment model.

Around the turn of the century, an extended approach, called phrase-based
translation was developed, which was based on inducing translations for phrase-phrase-based

translation
pairs (Och 1998, Marcu and Wong 2002, Koehn et al. (2003), Och and Ney 2004,
Deng and Byrne 2005, inter alia). A log linear formulation (Och and Ney, 2004)
was trained to directly optimize evaluation metrics like BLEU in a method known
as Minimum Error Rate Training, or MERT (Och, 2003), also drawing fromMERT
speech recognition models (Chou et al., 1993). Popular toolkits were developed like
Moses (Koehn et al. 2006, Zens and Ney 2007).Moses

There were also approaches around the turn of the century that were based on
syntactic structure (Chapter 12). Models based on transduction grammars (alsotransduction

grammar
called synchronous grammars assign a parallel syntactic tree structure to a pair of
sentences in different languages, with the goal of translating the sentences by ap-
plying reordering operations on the trees. From a generative perspective, we can
view a transduction grammar as generating pairs of aligned sentences in two lan-
guages. Some of the most widely used models included the inversion transduction
grammar (Wu, 1996) and synchronous context-free grammars (Chiang, 2005),

inversion
transduction

grammar
MODERN HISTORY OF encoder-decoder approach HERE; (Kalchbren-

ner and Blunsom, 2013), (Cho et al., 2014), (Sutskever et al., 2014), etc
Beam-search has an interesting relationship with human language processing;

(Meister et al., 2020) show that beam search enforces the cognitive property of uni-
form information density in text. Uniform information density is the hypothe-
sis that human language processors tend to prefer to distribute information equally
across the sentence (Jaeger and Levy, 2007).

Research on evaluation of machine translation began quite early. Miller and
Beebe-Center (1958) proposed a number of methods drawing on work in psycholin-
guistics. These included the use of cloze and Shannon tasks to measure intelligibil-
ity as well as a metric of edit distance from a human translation, the intuition that
underlies all modern automatic evaluation metrics like BLEU. The ALPAC report
included an early evaluation study conducted by John Carroll that was extremely in-
fluential (Pierce et al., 1966, Appendix 10). Carroll proposed distinct measures for
fidelity and intelligibility, and had raters score them subjectively on 9-point scales.

Depending on the amount of gap between:
• goals,
• embodiment, 
• what we can observe in videos
we may benefit from transfer at different levels.
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Task 
definitions In this talk, using video to learn,

• how to interact with objects
• common sense about scenes
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Semantic Visual Navigation 
by Watching YouTube Videos

University of Illinois at Urbana-Champaign

NeurIPS 2020



Problem Statement
Output: Semantic cues to efficiently find objects in 
novel indoor environments, e.g. finding a restroom

Input: Egocentric videos
(real estate tours from YouTube)



Some Intuition
Mine for spatial co-occurrences

timeVideo

e.g. cues for finding a couch



a) Action 
Grounding

b) Goal 
Labeling
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Value Learning from Videos (VLV)
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c) Q-Learning

built by executing 
random actions on 

robot

Inverse 
Model

Value function that uses implicitly learns semantic cues 
for seeking objects in novel indoor environments

trained on COCO
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f(I, c) = max
a′ 

Q*(I, a′ , c)

Learned Value Function

f(I, c) ≈
Value function predicts a proxy for nearness to a goal object for a given image

nearness to goal



f(I, c) = max
a′ 

Q*(I, a′ , c)

Learned Value Function

Dining Table

f(I, c) ≈ nearness to goal

Value function predicts a proxy for nearness to a goal object for a given image



High-Level Policy

Value Predictions
via .f(I, c)

Short-term 
Goal

ΔPose

Low-Level Policy

Occupancy Map

Forward

Left

Right

Stop

Current 
Node

FMM Cost Map

Using Learned Values for Semantic Navigation
Hierarchical Policy

• Decides where to go next and emits short-term goal
• Builds a topological map [1] that stores values predicted 

by  at different locations in different directions
• Samples most promising direction, and passes  

to Low-Level Policy

f(I, c)
ΔPose

• Executes actions to achieve short-
term goal

• Incrementally builds occupancy map 
from depth camera

• Uses Fast-Marching Method for path 
planning to get actions to execute

• Return control on success or failure

[1] D. Chaplot, R. Salakhutdinov, A. Gupta, S. Gupta. Neural topological slam for visual navigation. In CVPR, 2020. 
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Results (ObjectGoal Task)
Find object of interest (bed, chair, couches, tables, toilets) in novel indoor environments.



Transferring at appropriate level is important

Method Oracle Stop SPL 
(Valdiation Set)

Our (hierarchical) 0.40

No Hierarchy 0.15
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H
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In this talk:
• high-level value functions
• how to interact with objects



Summary

Matthew Chang Arjun Gupta

Mohit Goyal
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Transfer at the right level of abstraction

0.31

0.20

0.20

0.47

0.21

0.38

0.55

0.22

0.50

0.43

0.20

0.27
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Thank You!


