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Overview

a) Action Grounding
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c) Q-Learning

Inverse model built by executing 
random actions on robot

Value function that predicts nearness to goal:

trained on COCO
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Predictions for nearness to goal

•Stronger than behavior cloning on videos and BC + RL
•Stronger than even RL methods trained with dense rewards with 250x more 
interaction samples and 6x more environments with direct interaction access

•Better than strong exploration baselines
•Improves performance when combined with strongly supervised model
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The Vauquois triangle for 
machine translation
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Figure 11.20 The Vauquois (1968) triangle.

The algorithms (except for the decoder) were published in full detail— encouraged
by the US government which had partially funded the work— which gave them a
huge impact on the research community (Brown et al. 1990, Brown et al. 1993).
By the turn of the century, most academic research on machine translation used the
statistical noisy channel model. Progress was made hugely easier by the develop-
ment of publicly available toolkits, like the GIZA toolkit (Och and Ney, 2003) which
implements IBM models 1–5 as well as the HMM alignment model.

Around the turn of the century, an extended approach, called phrase-based
translation was developed, which was based on inducing translations for phrase-phrase-based

translation
pairs (Och 1998, Marcu and Wong 2002, Koehn et al. (2003), Och and Ney 2004,
Deng and Byrne 2005, inter alia). A log linear formulation (Och and Ney, 2004)
was trained to directly optimize evaluation metrics like BLEU in a method known
as Minimum Error Rate Training, or MERT (Och, 2003), also drawing fromMERT
speech recognition models (Chou et al., 1993). Popular toolkits were developed like
Moses (Koehn et al. 2006, Zens and Ney 2007).Moses

There were also approaches around the turn of the century that were based on
syntactic structure (Chapter 12). Models based on transduction grammars (alsotransduction

grammar
called synchronous grammars assign a parallel syntactic tree structure to a pair of
sentences in different languages, with the goal of translating the sentences by ap-
plying reordering operations on the trees. From a generative perspective, we can
view a transduction grammar as generating pairs of aligned sentences in two lan-
guages. Some of the most widely used models included the inversion transduction
grammar (Wu, 1996) and synchronous context-free grammars (Chiang, 2005),

inversion
transduction

grammar
MODERN HISTORY OF encoder-decoder approach HERE; (Kalchbren-

ner and Blunsom, 2013), (Cho et al., 2014), (Sutskever et al., 2014), etc
Beam-search has an interesting relationship with human language processing;

(Meister et al., 2020) show that beam search enforces the cognitive property of uni-
form information density in text. Uniform information density is the hypothe-
sis that human language processors tend to prefer to distribute information equally
across the sentence (Jaeger and Levy, 2007).

Research on evaluation of machine translation began quite early. Miller and
Beebe-Center (1958) proposed a number of methods drawing on work in psycholin-
guistics. These included the use of cloze and Shannon tasks to measure intelligibil-
ity as well as a metric of edit distance from a human translation, the intuition that
underlies all modern automatic evaluation metrics like BLEU. The ALPAC report
included an early evaluation study conducted by John Carroll that was extremely in-
fluential (Pierce et al., 1966, Appendix 10). Carroll proposed distinct measures for
fidelity and intelligibility, and had raters score them subjectively on 9-point scales.

Policy learning from interaction is challenging

• Challenging to specify reward functions
• Impractically large sample complexity
• Learning signal derived solely from interaction
• Poor generalization due to lack of visual 

diversity in training, sim2real transfer

• Large diversity may provide good generalization.
• Demonstrations may directly show how to solve long horizon tasks. 
• Depict what the world is like, and how it works.

Videos can aid

However,

• Videos don’t come with action labels
• Goals and intents are not known
• Depicted trajectories may be sub-optimal
• Embodiment gap (sensors / actions / capabilities)
• Only showcase positive data
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C. Look Ma, No Hands! Agent-Environment Factorization of Egocentric Videos 

Drawer opening policy trained in the in the real world.We find that using the agent-
environment factored representation improves learning speed.

A. Value Learning from Videos

B. Human Hands as Probes for Interactive Object Understanding
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Human hands provide cues for interactive object understanding

• Attending to hands localizes and stabilizes active objects.
• Hands show where all we can interact in the scene.
• Analyzing hands reveals information about objects: state and how to interact.
• Hand pose may provide hints for object pose.
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Also: Hand pose as a 
proxy for object pose
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Learning features using:  
Temporal Smoothness (TSC) + Object-Hand Consistency (OHC)

Affordances via Context Prediction (ACP):
    Predicting Region of Interaction (ROI) and Grasps afforded by Objects (GAO)

 

Learning State Sensitive Features (3)

Object Affordance Prediction (1, 2)
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We develop interactive object understanding from the natural ways in 
which people interact with objects in egocentric videos.

1.Which sites can we interact at? 
(cupboard handles)

2.How to interact with those sites?  
(using adducted thumb grasp)

3.What happens when we do? 
(the cupboard opens)
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Learning at different abstraction levels

Matthew Chang Arjun Gupta Mohit GoyalAditya Prakash Sahil Modi Rishabh Goyal

mAR : 0.26 → 0.38 Acc : 0.35 → 0.41 ρ : 0.56 → 0.61

Hands cause occlusion and differ in appearance from 
robotic end-effectors. But, they also provide useful signal.

We extract a factored representation of the scene that 
separates the agent (human hand) and the environment.


