Vision Architectures
Since AlexNet
ImageNet Classification Challenge

![Bar chart showing error rates for different years and models.]

- 2010: Lin et al
- 2011: Sanchez & Perronnin
- 2012: Krizhevsky et al (AlexNet)
- 2013: Zeiler & Fergus

- Shallow models (8 layers): 28.2% (2010), 25.8% (2011), 16.4% (2012), 11.7% (2013)

Other models:
- Lin et al: 19 layers
- Sanchez & Perronnin: 22 layers
- Krizhevsky et al (AlexNet): 152 layers
- Zeiler & Fergus: 152 layers

- AlexNet: Szegedy et al (GoogLeNet)
- ResNet: He et al
- SENet: Russakovsky et al
- SENet: Shao et al
- Hu et al (SENet)
ImageNet Classification Challenge

<table>
<thead>
<tr>
<th>Year</th>
<th>Error Rate</th>
<th>Authors and Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>28.2</td>
<td>Lin et al</td>
</tr>
<tr>
<td>2011</td>
<td>25.8</td>
<td>Sanchez & Perronnin</td>
</tr>
<tr>
<td>2012</td>
<td>16.4</td>
<td>Krizhevsky et al</td>
</tr>
<tr>
<td>2013</td>
<td>11.7</td>
<td>Zeiler & Fergus</td>
</tr>
<tr>
<td>2014</td>
<td>7.3</td>
<td>Simonyan & Zisserman (VGG)</td>
</tr>
</tbody>
</table>

- Shallow: 8 layers
- 19 layers

2010: Lin et al
2011: Sanchez & Perronnin
2012: Krizhevsky et al (AlexNet)
2013: Zeiler & Fergus
2014: Simonyan & Zisserman (VGG)
VGG: Deeper Networks, Regular Design

VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Slide from Justin Johnson
VGG: Deeper Networks, Regular Design

VGG Design rules:
- All conv are 3x3 stride 1 pad 1
- All max pool are 2x2 stride 2
- After pool, double #channels

Network has 5 convolutional stages:
- Stage 1: conv-conv-pool
- Stage 2: conv-conv-pool
- Stage 3: conv-conv-pool
- Stage 4: conv-conv-conv-[conv]-pool
- Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Slide from Justin Johnson
VGG: Deeper Networks, Regular Design

VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Option 1:
Conv(5x5, C -> C)

Params: $25C^2$
FLOPs: $25C^2HW$

Slide from Justin Johnson
VGG: Deeper Networks, Regular Design

VGG Design rules:
- All conv are 3x3 stride 1 pad 1
- All max pool are 2x2 stride 2
- After pool, double #channels

Option 1:
- Conv(5x5, C -> C)
- Conv(3x3, C -> C)
- Params: $25C^2$
- FLOPs: $25C^2HW$

Option 2:
- Conv(3x3, C -> C)
- Conv(3x3, C -> C)
- Params: $18C^2$
- FLOPs: $18C^2HW$

Slide from Justin Johnson
VGG: Deeper Networks, Regular Design

VGG Design rules:
- All conv are 3x3 stride 1 pad 1
- All max pool are 2x2 stride 2
- After pool, double #channels

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Option 1:
- Conv(5x5, C -> C)
- Conv(3x3, C -> C)
- Params: 25C^2
- FLOPs: 25C^2HW

Option 2:
- Conv(3x3, C -> C)
- Conv(3x3, C -> C)
- Params: 18C^2
- FLOPs: 18C^2HW

VGG: Deeper Networks, Regular Design

VGG Design rules:
- All conv are 3x3 stride 1 pad 1
- All max pool are 2x2 stride 2
- After pool, double #channels

Input: C x 2H x 2W
Layer: Conv(3x3, C->C)

Memory: 4HWC
Params: 9C²
FLOPs: 36HWC²

Slide from Justin Johnson
VGG: Deeper Networks, Regular Design

VGG Design rules:
- All conv are 3x3 stride 1 pad 1
- All max pool are 2x2 stride 2
- After pool, double #channels

<table>
<thead>
<tr>
<th>Input: C x 2H x 2W</th>
<th>Layer: Conv(3x3, C->C)</th>
<th>Memory: 4HWC</th>
<th>Params: 9C^2</th>
<th>FLOPs: 36HWC^2</th>
<th>AlexNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: 2C x H x W</td>
<td>Conv(3x3, 2C -> 2C)</td>
<td>Memory: 2HWC</td>
<td>Params: 36C^2</td>
<td>FLOPs: 36HWC^2</td>
<td>VGG16</td>
</tr>
</tbody>
</table>

Slide from Justin Johnson
VGG: Deeper Networks, Regular Design

VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

Input: C x 2H x 2W
Layer: Conv(3x3, C->C)
Memory: 4HWC
Params: 9C^2
FLOPs: 36HWC^2

Input: 2C x H x W
Layer: Conv(3x3, 2C -> 2C)
Memory: 2HWC
Params: 36C^2
FLOPs: 36HWC^2

AlexNet vs VGG-16: Much bigger network!

- **Memory (KB):**
 - AlexNet total: 1.9 MB
 - VGG-16 total: 48.6 MB (25x)

- **Params (M):**
 - AlexNet total: 61M
 - VGG-16 total: 138M (2.3x)

- **MFLOPs:**
 - AlexNet total: 0.7 GFLOP
 - VGG-16 total: 13.6 GFLOP (19.4x)

Slide from Justin Johnson
ImageNet Classification Challenge

Error Rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Error Rate</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>28.2</td>
<td>Shallow</td>
</tr>
<tr>
<td>2011</td>
<td>25.8</td>
<td>8 layers</td>
</tr>
<tr>
<td>2012</td>
<td>16.4</td>
<td>8 layers</td>
</tr>
<tr>
<td>2013</td>
<td>11.7</td>
<td>8 layers</td>
</tr>
<tr>
<td>2014</td>
<td>7.3</td>
<td>19 layers</td>
</tr>
</tbody>
</table>

Lin et al
Sanchez & Perronnin
Krizhevsky et al (AlexNet)
Zeiler & Fergus
Simonyan & Zisserman (VGG)

Russakovsky et al
Shao et al
Hu et al (SENet)
ImageNet Classification Challenge

- 2010: Lin et al
- 2011: Sanchez & Perronnin
- 2012: Krizhevsky et al (AlexNet)
- 2013: Simonyan & Zisserman (VGG)
- 2014: Szegedy et al (GoogLeNet)
- 2014: Lin et al

Error Rate Chart:
- 2010: 28.2
- 2011: 25.8
- 2012: 16.4
- 2013: 11.7
- 2014: 7.3
- 2014: 6.7

Layers:
- Shallow: 8 layers
- 8 layers
- 19 layers
- 22 layers
- 152 layers
- 152 layers
- 152 layers
GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

Szegedy et al, “Going deeper with convolutions”, CVPR 2015

Slide from Justin Johnson
GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input
(Recall in VGG-16: Most of the compute was at the start)

Szegedy et al, “Going deeper with convolutions”, CVPR 2015

Slide from Justin Johnson
GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Input size</th>
<th>Layer</th>
<th>Output size</th>
<th>memory (KB)</th>
<th>params (K)</th>
<th>flop (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C H/W</td>
<td>filters</td>
<td>kernel</td>
<td>stride</td>
<td>pad</td>
<td>C H/W</td>
</tr>
<tr>
<td>conv</td>
<td>3 224</td>
<td>64</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>64 112</td>
</tr>
<tr>
<td>max-pool</td>
<td>64 112</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>64 56</td>
</tr>
<tr>
<td>conv</td>
<td>64 56</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>64 56</td>
</tr>
<tr>
<td>conv</td>
<td>64 56</td>
<td>192</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>192 56</td>
</tr>
<tr>
<td>max-pool</td>
<td>192 56</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>192 28</td>
</tr>
</tbody>
</table>

Total from 224 to 28 spatial resolution:
Memory: 7.5 MB
Params: 124K
MFLOP: 418

Szegedy et al, “Going deeper with convolutions”, CVPR 2015
GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Input size</th>
<th>Layer</th>
<th>Output size</th>
<th>C</th>
<th>H/W</th>
<th>filters</th>
<th>kernel</th>
<th>stride</th>
<th>pad</th>
<th>memory (KB)</th>
<th>params (K)</th>
<th>flop (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv</td>
<td>3</td>
<td>224</td>
<td>64</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>64</td>
<td>112</td>
<td>3</td>
<td>3136</td>
<td>9</td>
<td>118</td>
</tr>
<tr>
<td>max-pool</td>
<td>64</td>
<td>112</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>64</td>
<td>56</td>
<td>0</td>
<td>784</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>conv</td>
<td>64</td>
<td>56</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>64</td>
<td>56</td>
<td>0</td>
<td>784</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>conv</td>
<td>64</td>
<td>56</td>
<td>192</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>192</td>
<td>56</td>
<td>0</td>
<td>2352</td>
<td>111</td>
<td>347</td>
</tr>
<tr>
<td>max-pool</td>
<td>192</td>
<td>56</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>192</td>
<td>28</td>
<td>0</td>
<td>588</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Total from 224 to 28 spatial resolution:
- Memory: 7.5 MB
- Params: 124K
- MFLOP: 418

Compare VGG-16:
- Memory: 42.9 MB (5.7x)
- Params: 1.1M (8.9x)
- MFLOP: 7485 (17.8x)

Szegedy et al, “Going deeper with convolutions”, CVPR 2015

Slide from Justin Johnson
GoogLeNet: Inception Module

Inception module
Local unit with parallel branches

Local structure repeated many times throughout the network

Szegedy et al, “Going deeper with convolutions”, CVPR 2015

Slide from Justin Johnson
GoogLeNet: Inception Module

Inception module
Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 “Bottleneck” layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

Szegedy et al, “Going deeper with convolutions”, CVPR 2015

Slide from Justin Johnson
GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Input size</th>
<th>Layer</th>
<th>Output size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>H/W</td>
<td>filters kernel stride pad</td>
</tr>
<tr>
<td>avg-pool</td>
<td>1024</td>
<td>7</td>
<td>7 1 0</td>
</tr>
<tr>
<td>fc</td>
<td>1024</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>
GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

<table>
<thead>
<tr>
<th></th>
<th>Input size</th>
<th>Layer</th>
<th>Output size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>C</td>
<td>H/W</td>
<td>filters</td>
</tr>
<tr>
<td>avg-pool</td>
<td>1024</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>fc</td>
<td>1024</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Compare with VGG-16:

<table>
<thead>
<tr>
<th></th>
<th>Input size</th>
<th>Layer</th>
<th>Output size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>C</td>
<td>H/W</td>
<td>filters</td>
</tr>
<tr>
<td>flatten</td>
<td>512</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>fc6</td>
<td>25088</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>fc7</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>fc8</td>
<td>4096</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Slide from Justin Johnson
GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn’t work well: Network is too deep, gradients don’t propagate cleanly

As a hack, attach “auxiliary classifiers” at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick
ImageNet Classification Challenge

<table>
<thead>
<tr>
<th>Year</th>
<th>Error Rate</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>28.2</td>
<td>8 layers</td>
</tr>
<tr>
<td>2011</td>
<td>25.8</td>
<td>8 layers</td>
</tr>
<tr>
<td>2012</td>
<td>16.4</td>
<td>8 layers</td>
</tr>
<tr>
<td>2013</td>
<td>11.7</td>
<td>19 layers</td>
</tr>
<tr>
<td>2014</td>
<td>7.3</td>
<td>22 layers</td>
</tr>
<tr>
<td>2014</td>
<td>6.7</td>
<td>152 layers</td>
</tr>
</tbody>
</table>

- Lin et al
- Sanchez & Perronnin
- Krizhevsky et al (AlexNet)
- Simonyan & Zisserman (VGG)
- He et al (ResNet)
- Russakovsky et al
- Hu et al (SENet)
ImageNet Classification Challenge

28.2 25.8 16.4 11.7 7.3 6.7 3.6

0 5 10 15 20 25 30

Error Rate

8 layers 8 layers 19 layers 22 layers

152 layers

Shallow
Residual Networks

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?
Residual Networks

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model.
Residual Networks

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

In fact the deep model seems to be underfitting since it also performs worse than the shallow model on the training set! It is actually underfitting.

Residual Networks

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don’t learn identity functions to emulate shallow models

Slide from Justin Johnson
Residual Networks

A deeper model can emulate a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an optimization problem. Deeper models are harder to optimize, and in particular don’t learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!
Residual Networks

Solution: Change the network so learning identity functions with extra layers is easy!

Slide from Justin Johnson
Residual Networks

Solution: Change the network so learning identity functions with extra layers is easy!

If you set these to 0, the whole block will compute the identity function!

Slide from Justin Johnson
Residual Networks

A residual network is a stack of many residual blocks.

Regular design, like VGG: each residual block has two 3x3 conv.

Network is divided into stages: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels.

Slide from Justin Johnson
Residual Networks

Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Input size</th>
<th>Layer</th>
<th>Output size</th>
<th>params (k)</th>
<th>flop (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv</td>
<td>3 224 64</td>
<td></td>
<td>3 64 112</td>
<td>3136</td>
<td>9 118</td>
</tr>
<tr>
<td>max-pool</td>
<td>64 112</td>
<td></td>
<td>1 64 56</td>
<td>784</td>
<td>0 2</td>
</tr>
</tbody>
</table>
Residual Networks

Like GoogLeNet, no big fully-connected-layers: instead use global average pooling and a single linear layer at the end
Residual Networks

ResNet-18:
- Stem: 1 conv layer
- Stage 1 (C=64): 2 res. block = 4 conv
- Stage 2 (C=128): 2 res. block = 4 conv
- Stage 3 (C=256): 2 res. block = 4 conv
- Stage 4 (C=512): 2 res. block = 4 conv
- Linear

ImageNet top-5 error: 10.92
GFLOP: 1.8

Error rates are 224x224 single-crop testing, reported by torchvision
Residual Networks

ResNet-18:
- Stem: 1 conv layer
- Stage 1 (C=64): 2 res. block = 4 conv
- Stage 2 (C=128): 2 res. block = 4 conv
- Stage 3 (C=256): 2 res. block = 4 conv
- Stage 4 (C=512): 2 res. block = 4 conv
- Linear

ImageNet top-5 error: 10.92
GFLOP: 1.8

ResNet-34:
- Stem: 1 conv layer
- Stage 1: 3 res. block = 6 conv
- Stage 2: 4 res. block = 8 conv
- Stage 3: 6 res. block = 12 conv
- Stage 4: 3 res. block = 6 conv
- Linear

ImageNet top-5 error: 8.58
GFLOP: 3.6

Error rates are 224x224 single-crop testing, reported by torchvision
Residual Networks

<table>
<thead>
<tr>
<th>ResNet-18:</th>
<th>ResNet-34:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem: 1 conv layer</td>
<td>Stem: 1 conv layer</td>
</tr>
<tr>
<td>Stage 1 (C=64): 2 res. block = 4 conv</td>
<td>Stage 1: 3 res. block = 6 conv</td>
</tr>
<tr>
<td>Stage 2 (C=128): 2 res. block = 4 conv</td>
<td>Stage 2: 4 res. block = 8 conv</td>
</tr>
<tr>
<td>Stage 3 (C=256): 2 res. block = 4 conv</td>
<td>Stage 3: 6 res. block = 12 conv</td>
</tr>
<tr>
<td>Stage 4 (C=512): 2 res. block = 4 conv</td>
<td>Stage 4: 3 res. block = 6 conv</td>
</tr>
<tr>
<td>Linear</td>
<td>Linear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ImageNet top-5 error: 10.92</th>
<th>ImageNet top-5 error: 8.58</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLOP: 1.8</td>
<td>GFLOP: 3.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VGG-16:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet top-5 error: 9.62</td>
</tr>
<tr>
<td>GFLOP: 13.6</td>
</tr>
</tbody>
</table>

Error rates are 224x224 single-crop testing, reported by torchvision

Slide from Justin Johnson
Residual Networks: Basic Block

Slide from Justin Johnson
Residual Networks: Basic Block

Slide from Justin Johnson
Residual Networks: Bottleneck Block

Slide from Justin Johnson
Residual Networks: Bottleneck Block

More layers, less computational cost!

"Basic" Residual block

Conv(3x3, C->C) FLOPs: 9HWC^2
Conv(3x3, C->C) FLOPs: 9HWC^2

Total FLOPs: 18HWC^2

"Bottleneck" Residual block

Conv(3x1, C->4C) FLOPs: 4HWC^2
Conv(3x3, C->C) FLOPs: 9HWC^2
Conv(1x1, 4C->C) FLOPs: 4HWC^2

Total FLOPs: 17HWC^2

Slide from Justin Johnson
Residual Networks

Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-18
- Basic
- Block type: Stem
- Layers: 1
- Blocks: 2
- Stage 1: 4
- Stage 2: 2
- Stage 3: 4
- Stage 4: 2
- Layers: 1
- Blocks: 4
- Blocks: 4
- Blocks: 2
- Blocks: 4
- Blocks: 1
- Layers: 1
- Layers: 8
- Layers: 12
- Layers: 6
- Layers: 6
- Layers: 1
- Layers: 1
- GFLOP: 1.8
- ImageNet top-5 error: 10.92

ResNet-34
- Basic
- Block type: Stem
- Layers: 1
- Blocks: 3
- Stage 1: 6
- Stage 2: 4
- Stage 3: 8
- Stage 4: 6
- Blocks: 4
- Blocks: 6
- Blocks: 8
- Blocks: 6
- Blocks: 1
- Blocks: 1
- Layers: 3.6
- Layers: 6
- Layers: 12
- Layers: 3
- Layers: 6
- Layers: 1
- Layers: 1
- GFLOP: 3.6
- ImageNet top-5 error: 8.58

Slides from Justin Johnson
Residual Networks

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

<table>
<thead>
<tr>
<th>Block type</th>
<th>Stem layers</th>
<th>Stage 1 Blocks</th>
<th>Stage 1 Layers</th>
<th>Stage 2 Blocks</th>
<th>Stage 2 Layers</th>
<th>Stage 3 Blocks</th>
<th>Stage 3 Layers</th>
<th>Stage 4 Blocks</th>
<th>Stage 4 Layers</th>
<th>FC layers</th>
<th>GFLOP</th>
<th>ImageNet top-5 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>Basic</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1.8</td>
<td></td>
<td>10.92</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>Basic</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>3.6</td>
<td>8.58</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>Bottle</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>3.8</td>
</tr>
</tbody>
</table>

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

Error rates are 224x224 single-crop testing, reported by torchvision

Slide from Justin Johnson
Residual Networks

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy.

<table>
<thead>
<tr>
<th>Block type</th>
<th>Stem layers</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>FC layers</th>
<th>ImageNet top-5 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>Basic</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>Basic</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>Bottle</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ResNet-101</td>
<td>Bottle</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>ResNet-152</td>
<td>Bottle</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>24</td>
<td>36</td>
</tr>
</tbody>
</table>

Error rates are 224x224 single-crop testing, reported by torchvision
Residual Networks

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today!

MSRA @ ILSVRC & COCO 2015 Competitions

- **1st places in all five main tracks**
 - ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

Slide from Justin Johnson
Improving Residual Networks: Block Design

Original ResNet block

```
+-----------------+     +-----------------+
| ReLU            |     | ReLU            |
|                 |     |                 |
| Batch Norm      |     | Batch Norm      |
|                 |     |                 |
| Conv            |     | Conv            |
|                 |     |                 |
| ReLU            |     | ReLU            |
|                 |     |                 |
| Batch Norm      |     | Batch Norm      |
|                 |     |                 |
| Conv            |     | Conv            |
```

"Pre-Activation" ResNet Block

```
+-----------------+     +-----------------+
| Conv            |     | Conv            |
|                 |     |                 |
| ReLU            |     | ReLU            |
| Batch Norm      |     | Batch Norm      |
```

Note ReLU after residual:
Cannot actually learn identity function since outputs are nonnegative!

Note ReLU inside residual:
Can learn true identity function by setting Conv weights to zero!

Slide from Justin Johnson
Improving Residual Networks: Block Design

Original ResNet block

- ReLU
- Batch Norm
- Conv
- ReLU
- Batch Norm
- Conv

“Pre-Activation” ResNet Block

- Conv
- ReLU
- Batch Norm
- Conv
- ReLU
- Batch Norm

Slight improvement in accuracy (ImageNet top-1 error)

- ResNet-152: 21.3 vs \textbf{21.1}
- ResNet-200: 21.8 vs \textbf{20.7}

Not actually used that much in practice

He et al., “Identity mappings in deep residual networks”, ECCV 2016
Comparing Complexity

Comparing Complexity

Inception-v4: Resnet + Inception!

Slide from Justin Johnson
Comparing Complexity

VGG: Highest memory, most operations

Slide from Justin Johnson
Comparing Complexity

GoogLeNet: Very efficient!

Slide from Justin Johnson
Comparing Complexity

Slide from Justin Johnson
Comparing Complexity

ResNet: Simple design, moderate efficiency, high accuracy

Slide from Justin Johnson
ImageNet Classification Challenge

2010: Lin et al
2011: Sanchez & Perronnin
2012: Krizhevsky et al (AlexNet)
2013: Zeiler & Fergus
2014: Simonyan & Zisserman (VGG)
2014: Szegedy et al (GoogLeNet)
2015: He et al (ResNet)

Error Rate

Year

2010: 28.2
2011: 25.8
2012: 16.4
2013: 11.7
2014: 7.3
2014: 6.7
2015: 3.6

Layers:
- Shallow: 8 layers
- 8 layers
- 19 layers
- 22 layers
- 152 layers

Lin et al
Sanchez & Perronnin
Krizhevsky et al (AlexNet)
Zeiler & Fergus
Simonyan & Zisserman (VGG)
Szegedy et al (GoogLeNet)
He et al (ResNet)
ImageNet Classification Challenge

<table>
<thead>
<tr>
<th>Year</th>
<th>Error Rate</th>
<th>Model</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>28.2</td>
<td>Lin et al</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>25.8</td>
<td>Sanchez & Perronnin</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>16.4</td>
<td>Krizhevsky et al (AlexNet)</td>
<td>8</td>
</tr>
<tr>
<td>2013</td>
<td>11.7</td>
<td>Zeiler & Fergus</td>
<td>8</td>
</tr>
<tr>
<td>2014</td>
<td>7.3</td>
<td>Simonyan & Zisserman (VGG)</td>
<td>19</td>
</tr>
<tr>
<td>2014</td>
<td>6.7</td>
<td>Szegedy et al (GoogLeNet)</td>
<td>22</td>
</tr>
<tr>
<td>2015</td>
<td>3.6</td>
<td>He et al (ResNet)</td>
<td>152</td>
</tr>
</tbody>
</table>

- Shallow: 8 layers
- 152 layers

Krizhevsky et al (AlexNet)
Zeiler & Fergus
Simonyan & Zisserman (VGG)
Szegedy et al (GoogLeNet)
He et al (ResNet)
Lin et al
Sanchez & Perronnin

Slide from Justin Johnson
Attention (Vision Transformers)

A. Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
Attention

Source: http://peterbloem.nl/blog/transformers
See also: Attention is all you need
Attention (with key, query and value)

Source: http://peterbloem.nl/blog/transformers
See also: [Attention is all you need](http://peterbloem.nl/blog/transformers)
Representing Positions

• Positional Embeddings
 • Learn embeddings for different positions

• Positional Encodings
 • Explicitly encode positions using sin, cos terms

See also: Attention is all you need
Attention (Vision Transformers)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Ours-JFT (ViT-H/14)</th>
<th>Ours-JFT (ViT-L/16)</th>
<th>Ours-I21K (ViT-L/16)</th>
<th>BiT-L (ResNet152x4)</th>
<th>Noisy Student (EfficientNet-L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet</td>
<td>88.55 ± 0.04</td>
<td>87.76 ± 0.03</td>
<td>85.30 ± 0.02</td>
<td>87.54 ± 0.02</td>
<td>88.4/88.5*</td>
</tr>
<tr>
<td>ImageNet ReaL</td>
<td>90.72 ± 0.05</td>
<td>90.54 ± 0.03</td>
<td>88.62 ± 0.05</td>
<td>90.54</td>
<td>90.55</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>99.50 ± 0.06</td>
<td>99.42 ± 0.03</td>
<td>99.15 ± 0.03</td>
<td>99.37 ± 0.06</td>
<td>−</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>94.55 ± 0.04</td>
<td>93.90 ± 0.05</td>
<td>93.25 ± 0.05</td>
<td>93.51 ± 0.08</td>
<td>−</td>
</tr>
<tr>
<td>Oxford-IIIT Pets</td>
<td>97.56 ± 0.03</td>
<td>97.32 ± 0.11</td>
<td>94.67 ± 0.15</td>
<td>96.62 ± 0.23</td>
<td>−</td>
</tr>
<tr>
<td>Oxford Flowers-102</td>
<td>99.68 ± 0.02</td>
<td>99.74 ± 0.00</td>
<td>99.61 ± 0.02</td>
<td>99.63 ± 0.03</td>
<td>−</td>
</tr>
<tr>
<td>VTAB (19 tasks)</td>
<td>77.63 ± 0.23</td>
<td>76.28 ± 0.46</td>
<td>72.72 ± 0.21</td>
<td>76.29 ± 1.70</td>
<td>−</td>
</tr>
<tr>
<td>TPUv3-core-days</td>
<td>2.5k</td>
<td>0.68k</td>
<td>0.23k</td>
<td>9.9k</td>
<td>12.3k</td>
</tr>
</tbody>
</table>

Table 2: Comparison with state of the art on popular image classification benchmarks. We report mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported in Touvron et al. (2020).

A. Dosovitskiy et al., *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.*