Perspective Projection

CS 543 / ECE 549 - Saurabh Gupta Spring 2020, UIUC

http://saurabhg.web.illinois.edu/teaching/ece549/sp2020/

Overview of next two lectures

- The pinhole projection model
- Geometric properties
- Perspective projection matrix
- Cameras with lenses
- Depth of focus
- Field of view
- Lens aberrations
- Digital sensors

Let's design a camera

Idea 1: put a piece of film in front of an object Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

Pinhole camera

- Captures pencil of rays - all rays through a single point: aperture, center of projection, optical center, focal point, camera center
- The image is formed on the image plane

Pinhole cameras are everywhere

Tree shadow during a solar eclipse
photo credit: Nils van der Burg
http://www.physicstogo.org/index.cfm

Camera obscura

- Basic principle known to Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Turning a room into a camera obscura

After scouting rooms and reserving one for at least a day, Morell masks the windows except for the aperture. He controls three elements: the size of the hole, with a smaller one yielding a sharper but dimmer image; the length of the exposure, usually eight hours; and the distance from the hole to the surface on which the outside image falls and which he will photograph. He used 4×5 and 8×10 view cameras and lenses ranging from 75 to 150 mm .

After he's done inside, it gets harder. "I leave the room and I am constantly checking the weather, I'm hoping the maid reads my note not to come in, I'm worrying that the sun will hit the plastic masking and it will fall down, or that I didn't trigger the lens."

From Grand Images Through a Tiny Opening, Photo District News, February 2005

Camera Obscura: View of Central Park Looking West in Bedroom. Summer, 2018 http://www.abelardomorell.net/project/camera-obscura/

Turning a room into a camera obscura

My hotel room, contrast enhanced.

The view from my window

Accidental pinholes produce images that are unnoticed or misinterpreted as shadows

A. Torralba and W. Freeman, Accidental Pinhole and Pinspeck Cameras, CVPR 2012

Pinhole projection model

- To compute the projection p of a scene point P, form the visual ray connecting P to the camera center O and find where it intersects the image plane

Pinhole projection model

- The coordinate system
- The optical center (O) is at the origin
- The image plane is parallel to $x y$-plane or perpendicular to the z-axis, which is the optical axis

Pinhole projection model

Projection equations

- Derived using similar triangles $(X, Y, Z) \rightarrow\left(\frac{f X}{Z}, \frac{f Y}{Z}\right)=(x, y)$

Note: instead of dealing with an image that is upside down, most of the time we will pretend that the image plane is in front of the camera center.

Dimensionality reduction: from 3D to 2D

3D world
2D image

Point of observation

What properties of the world are preserved?

- Straight lines, incidence

What properties are not preserved?

- Angles, lengths

Properties of projection

Properties of projection

Parallel lines converge at a point

$$
L_{1}(\lambda)=A+\lambda D
$$

$$
\begin{array}{ll}
\left.\qquad \begin{array}{ll}
A=\left(A_{X}, A_{Y}, A_{Z}\right) & \\
B=\left(B_{X}, B_{Y}, B_{Z}\right) & \\
D=\left(D_{X}, D_{Y}, D_{Z}\right) & l_{1}(\lambda)
\end{array}\right)=\left(f \frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, f \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right)
\end{array}
$$

Parallel lines converge at a point

$$
\begin{aligned}
L_{1}(\lambda) & =A+\lambda D \\
& =\left(A_{X}+\lambda D_{X}, A_{Y}+\lambda D_{Y}, A_{Z}+\lambda D_{Z}\right) \\
l_{1}(\lambda) & =\left(f \frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}, f \frac{A_{Y}+\lambda D_{Y}}{A_{Z}+\lambda D_{Z}}\right) .
\end{aligned}
$$

Study, behavior of $l_{1}(\lambda)$ as $A_{Z}+\lambda D_{Z} \rightarrow \infty$,
which is same as $\lambda \rightarrow \infty$.

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} f \frac{A_{X}+\lambda D_{X}}{A_{Z}+\lambda D_{Z}}=\lim _{\lambda \rightarrow \infty} f \frac{A_{X} / \lambda+D_{X}}{A_{Z} / \lambda+D_{Z}}=\frac{f D_{X}}{D_{Z}} . \\
& \lim _{\lambda \rightarrow \infty} l_{1}(\lambda)=\left(f \frac{D_{X}}{D_{Z}}, f \frac{D_{Y}}{D_{Z}}\right) . \quad \text { But, what happens if } D_{Z}=0 ?
\end{aligned}
$$

Parallel lines converge at a point

$$
D_{Z}=0 \text { lines? }
$$

Farther away objects are smaller

Image of foot: $\left(\frac{f X}{z}, \frac{f Y}{Z}\right)$
Image of head: $\left(\frac{f X}{Z}, \frac{f(Y+h)}{Z}\right)$

What about planes?

$$
\begin{array}{lr}
N_{X} X+N_{y} Y+N_{Z} Z=d & \text { As } Z \rightarrow \infty, \\
\frac{N_{X} f X}{Z}+\frac{N_{y} f Y}{Z}+f N_{Z}=\frac{f d}{Z} & N_{X} x+N_{Y} y+f N_{Z}=0 \\
\begin{array}{c}
N_{X} x+N_{Y} y+f N_{Z}=\frac{f d}{Z} \\
\text { Adaped from B. Hariharan. }
\end{array} & \text { Planes vanish into a line. }
\end{array}
$$

Except?

$N_{X}=0$ and $N_{Y}=0$.
Fronto-parallel plane.

Fronto-parallel planes

- What happens to the projection of a pattern on a plane parallel to the image plane?
- All points on that plane are at a fixed depth z
- The pattern gets scaled by a factor of f / z, but angles and ratios of lengths/areas are preserved

$$
(X, Y, Z) \rightarrow\left(\frac{f X}{Z}, \frac{f Y}{Z}\right)
$$

Horizon: Vanishing line of ground plane

$$
N_{X} x+N_{Y} y+f N_{Z}=0
$$

Ground plane

Vanishing lines of planes

Is the parachutist above or below the camera?

Comparing heights

Measuring height

Horizon: Vanishing line of ground plane

- Horizon: vanishing line of the ground plane
- All points at the same height as the camera project to the horizon
- Points higher (resp. lower) than the camera project above (resp. below) the horizon
- Provides way of comparing height of objects

Ground plane

Fun with Projective Geometry

Perspective cues in art

Masaccio, Trinity, Santa Maria Novella, Florence, 1425-28

One of the first consistent uses of perspective in Western art

Perspective distortion

- What is the shape of the projection of a sphere?

Perspective distortion

- Are the widths of the projected columns equal?
- The exterior columns are wider
- This is not an optical illusion, and is not due to lens flaws
- Phenomenon pointed out by Da Vinci

Perspective distortion: People

Modeling projection

Projection equation: $\quad(X, Y, Z) \rightarrow\left(\frac{f X}{Z}, \frac{f Y}{Z}\right)=(X, Y)$

Note: instead of dealing with an image that is upside down, most of the time we will pretend that the image plane is in front of the camera center.

Homogeneous coordinates

$(X, Y, Z) \rightarrow\left(\frac{f X}{Z}, \frac{f Y}{Z}\right)$
Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

$$
\Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

In practice: lots of coordinate transformations...

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

In practice: lots of coordinate transformations...

Orthographic Projection

Special case of perspective projection

- Distance from center of projection to image plane is infinite
- Also called "parallel projection"

Orthographic Projection

Special case of perspective projection

- Distance from center of projection to image plane is infinite
- Also called "parallel projection"

Orthographic Projection

Special case of perspective projection

- Distance from center of projection to image plane is infinite
- Also called "parallel projection"

- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Recap

Cartoon. (Drawing by S. Harris; © 1975 The New Yorker Magazine, Inc.)

