Light, Camera and Shading

CS 543 / ECE 549 - Saurabh Gupta Spring 2020, UIUC

http://saurabhg.web.illinois.edu/teaching/ece549/sp2020/

Recap

Recap

Recap

Distribution and properties of light sources

Sensor properties

$$
E=\left[\frac{\pi}{4}\left(\frac{d}{f}\right)^{2} \cos ^{4} \alpha\right] L
$$

Surface reflectance properties

Surface shape and orientation

Recap

Overview

- Cameras with lenses
- Depth of field
- Field of view
- Lens aberrations
- Brightness of a pixel
- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Lambertian reflection model
- Shape from shading
- Color

Most surfaces have both

Specularity = spot where specular reflection dominates (typically reflects light source)

Typically, specular component is small

Specular reflection

Picture source
Slide from L. Lazebnik

When light hits a typical surface

- Some light is absorbed
- Some light is reflected diffusely
- Independent of viewing direction
- Some light is reflected specularly
- Light bounces off (like a mirror), depends on viewing direction
specular
reflection
Θ

Bidirectional Reflectance Distribution Function (BRDF)

- How bright a surface appears when viewed from one direction when light falls on it from another
- Definition: ratio of the radiance in the emitted direction to irradiance in the incident direction

Lambertian reflectance model

Some light is absorbed (function of albedo ρ)
Remaining light is scattered, equally in all directions.
Examples: soft cloth, concrete, matte paints

Intensity and Surface Orientation

Intensity depends on illumination angle because less light comes in at oblique angles.
$\rho=$ albedo
$\boldsymbol{S}=$ directional source
$N=$ surface normal
$\mathrm{I}=$ reflected intensity
$I(x)=\rho(x)(\boldsymbol{S} \cdot \boldsymbol{N}(x))$

Photometric stereo (shape from shading)

- Can we reconstruct the shape of an object based on shading cues?

Photometric stereo

Assume:

- A Lambertian object
- A local shading model (each point on a surface receives light only from sources visible at that point)
- A set of known light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection

Goal: reconstruct object shape and albedo

Example 1

 Recovered albedo

Recovered normal field

Recovered surface model

Slide from L. Lazebnik

Example 2

Input

Slide from L. Lazebnik

Image model

- Known: source vectors \mathbf{S}_{j} and pixel values $I_{j}(x, y)$
- Unknown: surface normal $\mathbf{N}(x, y)$ and albedo $\rho(x, y)$

Image model

- Known: source vectors \mathbf{S}_{j} and pixel values $I_{j}(x, y)$
- Unknown: surface normal $\mathbf{N}(x, y)$ and albedo $\rho(x, y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$
\begin{aligned}
I_{j}(x, y) & =k \rho(x, y)\left(\mathbf{N}(x, y) \cdot \mathbf{S}_{j}\right) \\
& =(\rho(x, y) \mathbf{N}(x, y)) \cdot\left(k \mathbf{S}_{j}\right) \\
& =\mathbf{g}(x, y) \cdot \mathbf{V}_{j}
\end{aligned}
$$

Least squares problem

- For each pixel, set up a linear system:
- Obtain least-squares solution for $\mathbf{g}(x, y)$ (which we defined as $\mathbf{N}(x, y) \rho(x, y)$)
- Since $\mathbf{N}(x, y)$ is the unit normal, $\rho(x, y)$ is given by the magnitude of $\mathbf{g}(x, y)$
- Finally, $\mathbf{N}(x, y)=\mathbf{g}(x, y) / \rho(x, y)$

Synthetic example

Slide from L. Lazebnik
Recovered normal field

Recovering a surface from normals

Recall the surface is written as

$$
(x, y, f(x, y))
$$

This means the normal has the form:
$\mathbf{N}(x, y)=\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}\left(\begin{array}{c}f_{x} \\ f_{y} \\ 1\end{array}\right)$

$$
\begin{aligned}
& f_{x}(x, y)=g_{1}(x, y) / g_{3}(x, y) \\
& f_{y}(x, y)=g_{2}(x, y) / g_{3}(x, y)
\end{aligned}
$$

Recovering a surface from normals

We can now recover the surface height at any point by integration along some path, e.g.

$$
\begin{aligned}
f(x, y)= & \int_{0}^{x} f_{x}(s, 0) d s+ \\
& \int_{0}^{y} f_{y}(x, t) d t+C
\end{aligned}
$$

(for robustness, should take integrals over many different paths and average the results)

Integrability: for the surface f to exist, the mixed second partial derivatives must be equal:

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(g_{1}(x, y) / g_{3}(x, y)\right)= \\
& \frac{\partial}{\partial x}\left(g_{2}(x, y) / g_{3}(x, y)\right)
\end{aligned}
$$

(in practice, they should at least be similar)

Surface recovered by integration

Limitations

- Orthographic camera model
- Simplistic reflectance and lighting model
- No shadows
- No interreflections
- No missing data
- Integration is tricky

Finding the direction of the light source

$$
I(x, y)=\mathbf{N}(x, y) \cdot \mathbf{S}(x, y)
$$

Full 3D case:

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

Consider points on the occluding contour:

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

$$
I(x, y)=\mathbf{N}(x, y) \cdot \mathbf{S}(x, y)
$$

Full 3D case:

For points on the occluding contour, $N_{z}=0$:

$$
\left(\begin{array}{cc}
N_{x}\left(x_{1}, y_{1}\right) & N_{y}\left(x_{1}, y_{1}\right) \\
N_{x}\left(x_{2}, y_{2}\right) & N_{y}\left(x_{2}, y_{2}\right) \\
\vdots & \vdots \\
N_{x}\left(x_{n}, y_{n}\right) & N_{y}\left(x_{n}, y_{n}\right)
\end{array}\right)\binom{S_{x}}{S_{y}}=\left(\begin{array}{c}
I\left(x_{1}, y_{1}\right) \\
I\left(x_{2}, y_{2}\right) \\
\vdots \\
I\left(x_{n}, y_{n}\right)
\end{array}\right)
$$

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Application: Detecting composite photos

Real photo

Fake photo

M. K. Johnson and H. Farid, Exposing Digital Forgeries by Detecting Inconsistencies in Lighting, ACM Multimedia and Security Workshop, 2005.

Overview

- Cameras with lenses
- Depth of field
- Field of view
- Lens aberrations
- Brightness of a pixel
- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Lambertian reflection model
- Shape from shading
- Color

