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Many slides from Derek Hoiem.
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Convolution

Source: F. Durand, D. Lowe
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Recap

Separable Filters for Efficiency

Gaussian Filtering  Median Filtering



Today’s Class

Fourier transforms

Filtering in frequency domain
Sampling

Image Pyramids



Why does the Gaussian give a nice
smooth image, but the square filter give
edgy artifacts?

Gaussian Box filter




Thinking in terms of frequency



Jean Baptiste Joseph Fourier (1768-1830)

-

. . ...the manner in which the author arrives at these
had cra Zy idea ( 1807) ) equations is not exempt of difficulties and...his

Any univariate function can | analysis to integrate them still leaves something to be

rewritten as a weighted sum|  desired on the score of generality and even rigour.
sines and cosines of differen
frequencies.

e Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

e Butit’s (mostly) true!
— called Fourier Series

~

J

— there are some subtle
restrictions

Slides: Efros



A sum of sines

Our building block:
Asin(ax + @)

Add enough of them to get
any signal f(x) you want!

f(target)=

f] + f2+ f3...+ fn+...




Frequency Spectra

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-0.75 —-0.50 -0.25 0.00 0.25 0.50

Square Wave:
1,

Fourier Transform:
4(sin(2n.1.x) sin(2m.3.x) sin(2m.5.x)

if frac(x) < 0.5
, otherwise

+ + + ..

T 1 3 5

0.75




1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

1 Term

0.0 0.5

(\2/\Terms

0.0 0.5

1.5

1.07

0.5

0.0

-0.5

—1.0

-1.5

1.5

1.0

0.5

0.01

-0.5

—1.0

-1.5

2nd Term

0.5

3d Term

0.5

1.5

1.0

0.5]

0.0

-0.5

—1.0

-1.5

1.5

1.0

0.5]

0.0

-0.5

—1.0

-1.5

2 Terms

0.0 0.5

3 Jerms
\A/

0.0 0.5



1.5

0.5

0.0

-0.5

-1.0

-1.5

1.5

1.0

0.5

0.0

-1.0

-1.5

1.0W\MN\&

15 |Ierms

oot

-

—-0.5 0.

0 0.5

-0.75 -0.50 -0.25

0.00 0.25 0.50 0.75

1.5
1.0H
0.5
0.0

-0.5

-1.5

a0 e

31 Ierms

—-0.5

0.0 0.5

:)——J Fﬂjerms
0.5
0.0

-0.5

-1.0 H r——

-1.5

—-0.5

0.0

0.5




Fourier Transform

* Fourier transform stores the magnitude and phase at
each frequency

— Magnitude encodes how much signal there is at a
particular frequency

— Phase encodes spatial information (indirectly)

— For mathematical convenience, this is often notated in
terms of real and complex numbers

* Amplitude: 4 = \/R(a))2 + [ (w)?

. o 1 I(w)
Phase: ¢ = tan R (@)



Computing the Fourier Transform

* H(w) = Flh(x)]

» Continuous:
e H(w) = ffoooh(x)e_ijdx

* Discrete:
+ H(k) = + ZNZ3 h(x)e/2mhx/N

» Euler’'s Formula:
o e/ = cos(nx) + j sin(nx)



Properties of Fourier Transforms

* Linearity:
— Flax(t) + by(t)] = aF[x(¢)] + bF[y(t)]

* Fourier transform of a real signal is symmetric
about the origin

* The energy of the signal is the same as the
energy of its Fourier transform

See Szeliski Book (3.4)



The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

—Flg = h] = FlglF[h]

* The inverse Fourier transform of the product of
two Fourier transforms is the convolution of the
two inverse Fourier transforms

—F~tghl = F~ gl * F'[A]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!



Other signals

* We can also think of all kinds of other signals
the same way

H De. EFE zabeth ¢
Yeak vh... L aco dcnh\lj TeoK
the FEuner transform of @y cat ...

Qﬁ Meaw

xkcd.com
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Fourier analysis in images

Intensity Image

N
N

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Filtering in spatial domain 10| 1
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Filtering in frequency domain ‘

FFT l

Original Filter FFT Magnitude

FFT Log Magnitude

_Image FFT .* Filter FFT

. o |

Inverse FFT




Why does the Gaussian give a nice
smooth image, but the square filter give
edgy artifacts?

Gaussian Box filter




Filtering in frequency domain
(Box) .
FFT l

Original Filter FFT Magnitude

x-

Image FFT .* Filter FFT

FFT Log Magnitude

Inverse FFT




Filtering in frequency domain n
(Gaussian)

FFT

Original

Filter FFT Magnitude

x-

Image FFT .* Filter FFT

FFT Log Magnitude

- FFT

Inverse FFT




Filtering in frequency domain (Gaussian)

Gaussian Filter FFT Magnitude Gaussian Gaussian Filter FFT Magnitude Gaussian
(c=1) (c=1) (o =5) (o =5)

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Gaussian Filter FFT Magnitude Gaussian Gaussian Filter FFT Magnitude Gaussian
(o =3) (o =3) (c=7) (c=7)




Filtering in frequency domain (Gaussian)

o=1 o=5




Filtering in frequency domain (Gaussian)




Sampling

Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/

Subsampling by a factor of 2
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Throw away every other row and
column to create a 1/2 size image



Aliasing problem
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Source: S. Marschner




Aliasing problem

1D example (sinewave):

SVrZVAlyRY Y

Source: S. Marschner



Aliasing problem

e Sub-sampling may be dangerous....

* Characteristic errors may appear:

— “Wagon wheels rolling the wrong way in
movies” See

— “Checkerboards disintegrate in ray tracing”

— “Striped shirts look funny on color television”

Source: D. Forsyth


https://en.wikipedia.org/wiki/Wagon-wheel_effect

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[t camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDRPB

frame 0O frame 1 frame 2 frame 3 frame 4
Il I I I -
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz



Aliasing in graphics

Disintegrating textures

Source: A. Efros



Sampling and aliasing

256x256 [28x128 64x64 32x32 [6x16
RN R R W R s SRR

Slide from Derek Hoiem.



Aliasing in Frequency Domain

Ittty
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Source: Forsyth and
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Nyquist-Shannon Sampling Theorem

* When sampling a signal at discrete intervals, the
sampling frequency mustbe > 2 xf__,

* f .. =maxfrequency of the input signal

* This will allows to reconstruct the original
perfectly from the sampled version

Po 40 [ % /% &
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Slide from Derek Hoiem.




Anti-aliasing

Solutions:
 Sample more often

* Getrid of all frequencies that are greater
than half the new sampling frequency
— Will lose information
— But it’s better than aliasing

— Apply a smoothing filter

Slide from Derek Hoiem.



Algorithm for downsampling by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter
3. Sample every other pixel

Slide from Derek Hoiem.



Anti-aliasing
256x256 128x128 64x64 32x32 16x16
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Subsampling without pre-filtering
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Slide by Steve Seitz



Subsampling with Gaussian pre-filtering

Gaussian 1/2

Slide by Steve Seitz



Using Filtering for Template matching

 Goal: find @ inimage

 Main challenge: What is a
good similarity or distance =
measure between two i
patches?

— Correlation
— Zero-mean correlation
— Sum Square Difference

— Normalized Cross
Correlation

Slide from Derek Hoiem.



Matching with filters

* Goal: find B in image

 Method O: filter the image with eye patch
hm,n]=> glk,l] flm+k,n+]
I Y

Al f = image
—mg B g = filter

What went wrong?

Input Filtered Image

Slide from Derek Hoiem.



Matching with filters

* Goal: find B in image
* Method 1: filter the image with zero-mean eye

h[m n]= Z(g[k 11-8) (fIm+k,n+1])

mean of template g

Inpt Filtered Image (scaled) Thresholded Image

Slide from Derek Hoiem.



Matching with filters

* Goal: find B in image
 Method 2:SSD
him,n)=) (glk,]1— flm+k,n+I])’
k,l
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Input 1- sqrt(SSD) Thresholded Image

Slide from Derek Hoiem.



Matching with filters

Can SSD be implemented with linear filters?

hm,n]=> (glk,l]- flm+k,n+1])’

Slide from Derek Hoiem.



Matching with filters

. - . . What'’s the potential
 Goal: find in image downside of SSD?

e Method 2: SSD
h{m,n]= Z(g[k,l]— flm+k,n+11)°
¥ - 5 k,l

Input 1- sqrt(SSD)

Slide from Derek Hoiem.



Matching with filters

* Goal: find ® inimage
e Method 3: Normalized cross-correlation

mean template mean image patch

l ]
> (glk,]1-2)(fTm+k,n+11- 1)

h[m,n]= X
(Z(g[k,l]—g)ZZ(f[mﬂLk,n+l]—fm,n)2]

Slide from Derek Hoiem.



Matching with filters

* Goal: find ® inimage
e Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

Slide from Derek Hoiem.




Matching with filters

* Goal: find ® inimage
e Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

Slide from Derek Hoiem.



Q: What is the best method to use?

A: Depends

e Zero-mean filter: fastest but not a great
matcher

* SSD: next fastest, sensitive to overall intensity

* Normalized cross-correlation: slowest,
invariant to local average intensity and
contrast

Slide from Derek Hoiem.



Q: What if we want to find larger or
smaller eyes?

A: Image Pyramid

Slide from Derek Hoiem.



Review of Sampling

Gaussian

Sample

[ mage ];er}[ Low-Pass ]-[ Low-Res ]

Filtered Image Image

Slide from Derek Hoiem.



Gaussian pyramid
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Source: Forsyth



Template Matching with Image Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
— |In practice, scale stepof 1.1 to 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps
with non-maxima suppression

Slide from Derek Hoiem.



Laplacian pyramid

Source: Forsyth



Creating the Difference of Gaussian Pyramid

Smooth, then

downsample
Image = G; l

Downsample
(Smooth(G,)

L

Downsample
(Smooth(G,))

Gs

G Smooth
3 " (Upsample(G,))

Use same filter for smoothing in each step
(e.g., Gaussian with o = 2)
» Downsample/upsample with “nearest”

interpolation
Leopard, Elephant image from Olivia and Torralba



Creating the Difference of Gaussian Pyramid

Smooth, then /]\ /¥\Spatia| Response
|

downsample

Downsample Downsample

(Smooth(G;)) {(SMOoth(G) g G,

L

Smooth

Use same filter for smoothing in each step
(e.g., Gaussian with o = 2)

» Downsample/upsample with “nearest”
interpolation



Creating the Difference of Gaussian Pyramid

n

1\

Smooth, then i\
downsample S =
| G,

Downsample
(Smooth(G,))

Frequency Response

Image = G;

Downsample
(Smooth(G,)

L

G Smooth
3 " (Upsample(G,))

i | Use same filter for smoothing in each step
(e.g., Gaussian with o = 2)

Downsample/upsample with “nearest”
interpolation




Creating the Difference of Gaussian Pyramid

Smooth, then

downsample
Image = G; |

G Downsample
" Downsample

G Smooth
3 T (Upsample(G,))

» Can also use Smooth(G,), but then reverse

=7 S isn’t the exact same.

» Technically, this is a Difference of Gaussian
pyramid and not a Laplacian pyramid.




Images in a Difference of Gaussian Pyramid




Dali: “Gala Contemplati



Images in a Difference of Gaussian Pyramid

Dali: “Gala Contemplating the Mediterranean Sea” (1976)



Reconstructing from Diff of Gauss Pyramid

G1 = L1 +
Smooth(Upsample(G,)) Gy=L,+ Gs=L,+
Image = G; Smooth(Upsample(G;))  Smooth(Upsample(G,))

Gs

Use same filter for smoothing as in deconstruction
Upsample with “nearest” interpolation
Reconstruction will be nearly lossless



Application: Image Blending

(d (e)

(d)

€9) (b

Laplacian pyramid blending (Burt and Adelson 1983b)



Major uses of image pyramids

* Compression

Object detection
— Scale search
— Features

* Detecting stable interest points

Registration
— Course-to-fine



Recap

 Sometimes it makes sense
to think of filtering in the
frequency domain

— Fourier analysis

e Sampling and Aliasing

* I[mage Pyramids




