Corner Detection

CS 543 / ECE 549 – Saurabh Gupta Spring 2020, UIUC

http://saurabhg.web.illinois.edu/teaching/ece549/sp2020/

Why extract keypoints?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract keypoints?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract keypoints

Step 2: match keypoint features

Why extract keypoints?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract keypoints

Step 2: match keypoint features

Step 3: align images

Characteristics of good keypoints

- Compactness and efficiency
 - Many fewer keypoints than image pixels
- Saliency
 - Each keypoint is distinctive
- Locality
 - A keypoint occupies a relatively small area of the image; robust to clutter and occlusion
- Repeatability
 - The same keypoint can be found in several images despite geometric and photometric transformations

Applications

Keypoints are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Database indexing and retrieval
- Object recognition

Corner detection: Basic idea

Corner detection: Basic idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge":
no change
along the edge
direction

"corner":
significant
change in all
directions

Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

We want to find out how this function behaves for small shifts

First-order Taylor approximation for small motions [u, v]:

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

Let's plug this into E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

E(u,v) can be locally approximated by a quadratic surface:

$$E(u,v) \approx u^2 \sum_{x,y} I_x^2 + 2uv \sum_{x,y} I_x I_y + v^2 \sum_{x,y} I_y^2$$

In which directions does this surface have the fastest/slowest change?

E(u,v) can be locally approximated by a quadratic surface:

$$E(u,v) \approx u^{2} \sum_{x,y} I_{x}^{2} + 2uv \sum_{x,y} I_{x}I_{y} + v^{2} \sum_{x,y} I_{y}^{2}$$

$$= \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum_{x,y} I_{x}^{2} & \sum_{x,y} I_{x}I_{y} \\ \sum_{x,y} I_{x}I_{y} & \sum_{x,y} I_{y}^{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Second moment matrix M

A horizontal "slice" of E(u, v) is given by the equation of an ellipse:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

Consider the axis-aligned case (gradients are either horizontal or vertical):

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

$$\begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = 1$$

Consider the axis-aligned case (gradients are either horizontal or vertical):

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

If either a or b is close to 0, then this is **not** a corner, so we want locations where both are large

In the general case, need to diagonalize M:

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by *R*:

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:

 λ_1

Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel:

$$M = \begin{bmatrix} \sum_{x,y} w(x,y)I_x^2 & \sum_{x,y} w(x,y)I_xI_y \\ \sum_{x,y} w(x,y)I_xI_y & \sum_{x,y} w(x,y)I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens, <u>A Combined Corner and Edge Detector</u>, *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*

Compute corner response R

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold R
- 5. Find local maxima of response function (nonmaximum suppression)

Find points with large corner response: R >threshold

Take only the points of local maxima of R

Robustness of corner features

 What happens to corner features when the image undergoes geometric or photometric transformations?

Affine intensity change

$$I \rightarrow a I + b$$

- Only derivatives are used, so invariant to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

Derivatives and window function are shift-invariant

Corner location is *covariant* w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

All points will be classified as edges

Corner location is not covariant w.r.t. scaling!