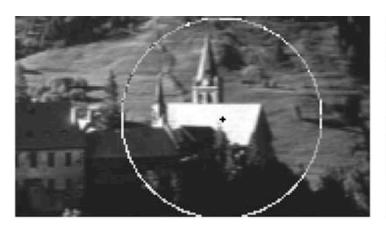
SIFT keypoint detection

D. Lowe, <u>Distinctive image features from scale-invariant keypoints</u>, *IJCV* 60 (2), pp. 91-110, 2004

Slides from S. Lazebnik.

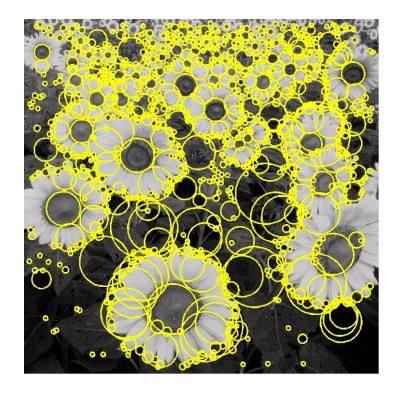
Keypoint detection with scale selection

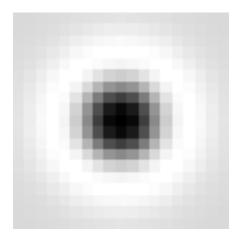
 We want to extract keypoints with characteristic scales that are covariant w.r.t. the image transformation



Basic idea

Convolve the image with a "blob filter"
 at multiple scales and look for extrema of
 filter response in the resulting scale space



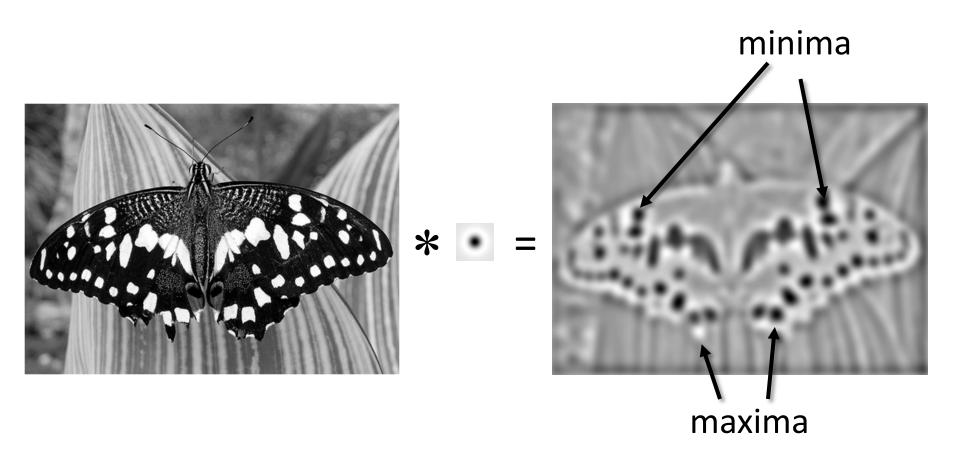


T. Lindeberg, Feature detection with automatic scale selection,

Source: L. Lazebnik

IJCV 30(2), pp 77-116, 1998

Blob detection

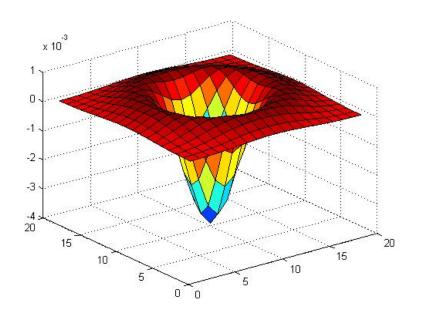


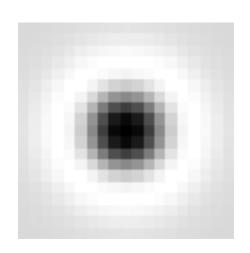
Find maxima and minima of blob filter response in space and scale

Source: L. Lazebnik Source: N. Snavely

Blob filter

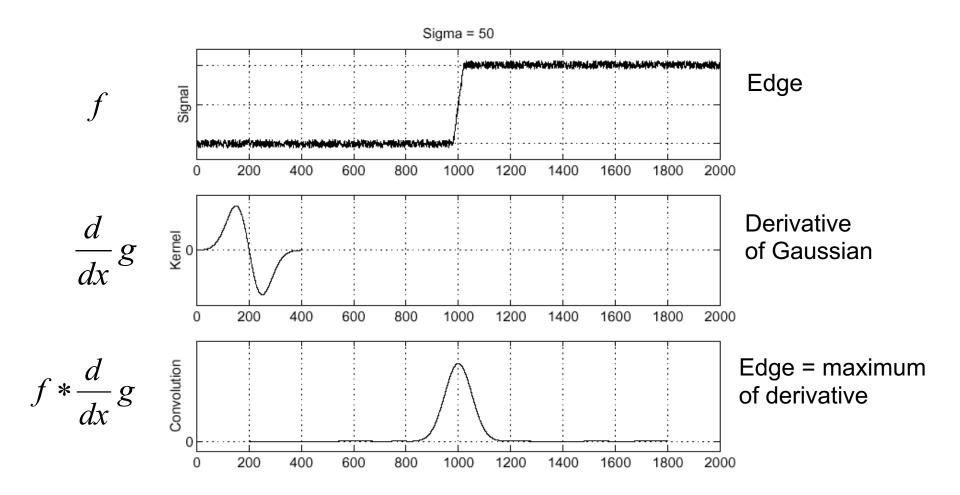
Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D





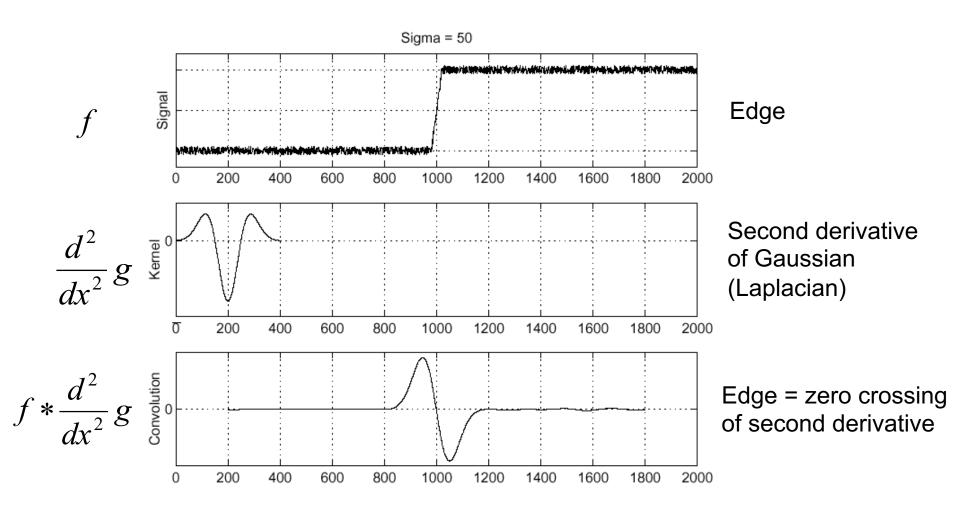
$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Recall: Edge detection



Source: S. Seitz

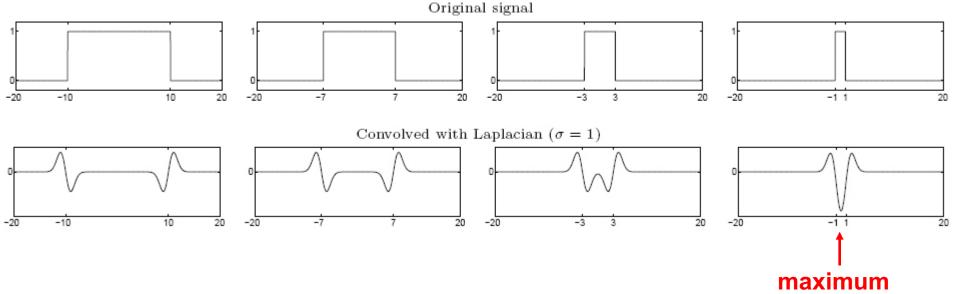
Edge detection, Take 2



Source: S. Seitz

From edges to blobs

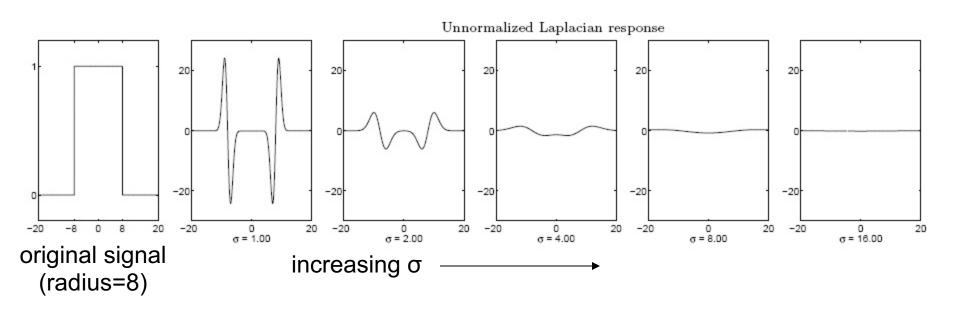
- Edge = ripple
- Blob = superposition of two ripples



Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

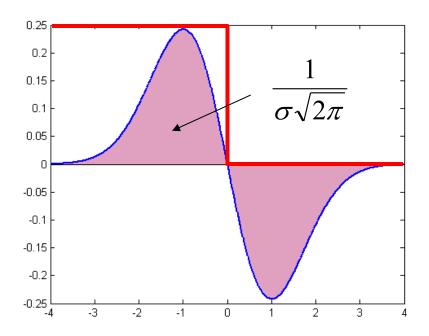
Scale selection

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:



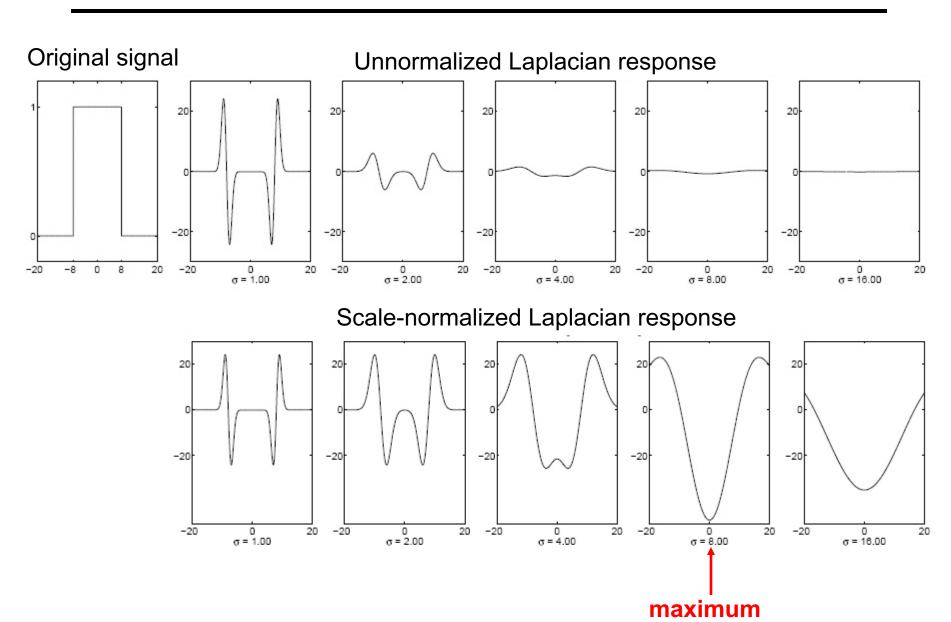
Scale normalization

 The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases:



- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

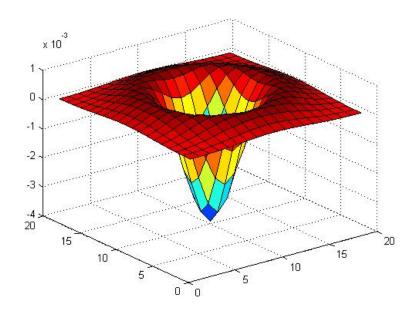
Effect of scale normalization

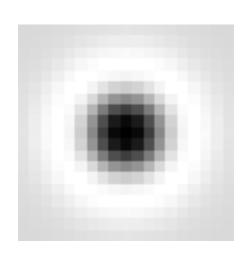


Blob detection in 2D

Scale-normalized Laplacian of Gaussian:

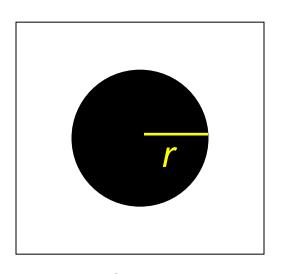
$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

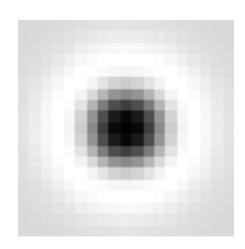


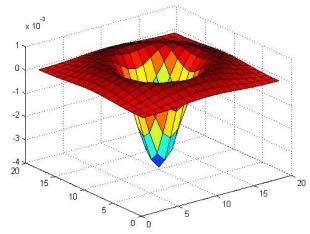


Blob detection in 2D

 At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?







image

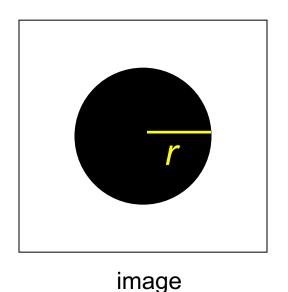
Laplacian

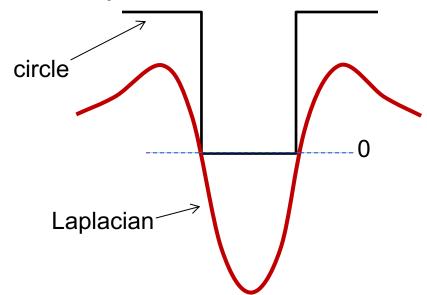
Blob detection in 2D

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by (up to scale):

$$(x^2 + y^2 - 2\sigma^2) e^{-(x^2 + y^2)/2\sigma^2}$$

• Therefore, the maximum response occurs at $\sigma = r/\sqrt{2}$.





Scale-space blob detector

 Convolve image with scale-normalized Laplacian at several scales

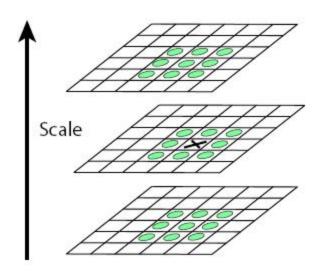
Scale-space blob detector: Example

Scale-space blob detector: Example

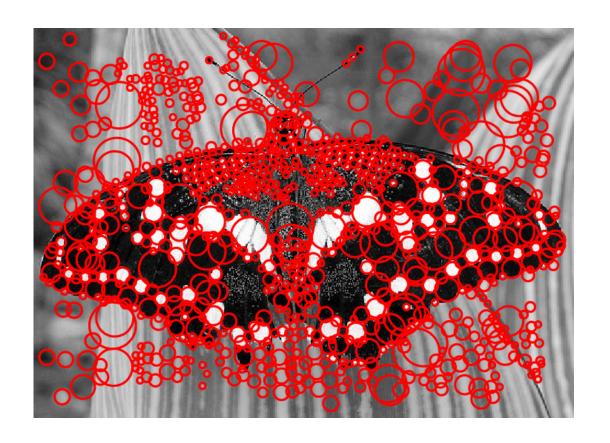
sigma = 11.9912

Scale-space blob detector

- Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space



Scale-space blob detector: Example

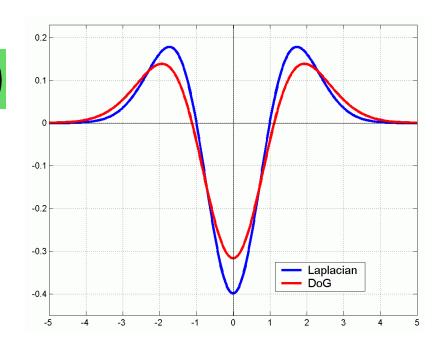


Efficient implementation

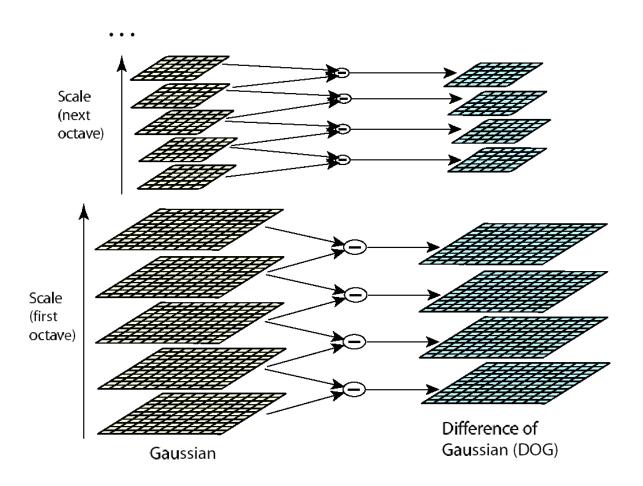
 Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)



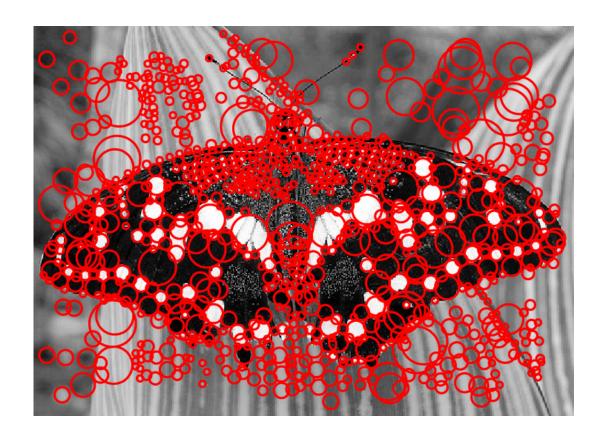
Efficient implementation



David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

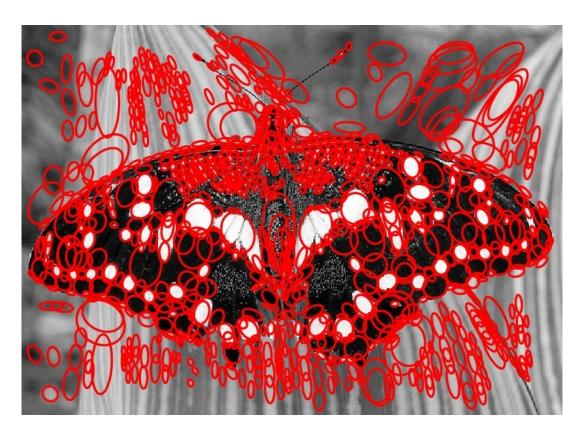
Eliminating edge responses

Laplacian has strong response along edges



Eliminating edge responses

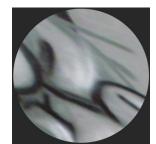
Laplacian has strong response along edges

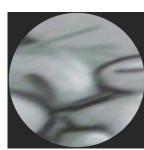


 Solution: filter based on Harris response function over neighborhoods containing the "blobs"

From feature detection to feature description

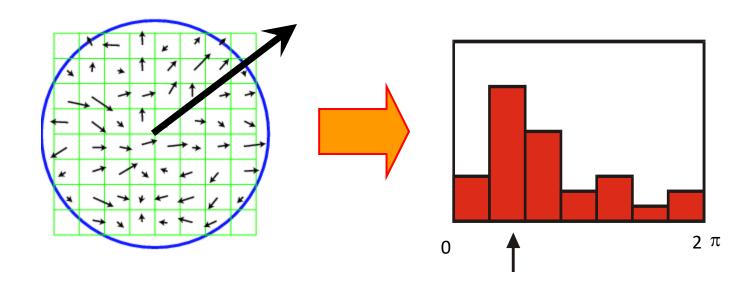
- To recognize the same pattern in multiple images, we need to match appearance "signatures" in the neighborhoods of extracted keypoints
 - But corresponding neighborhoods can be related by a scale change or rotation
 - We want to normalize neighborhoods to make signatures invariant to these transformations





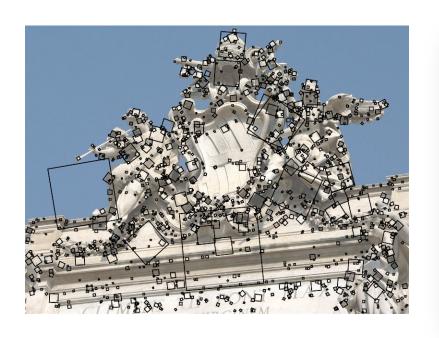
Finding a reference orientation

- Create histogram of local gradient directions in the patch
- Assign reference orientation at peak of smoothed histogram



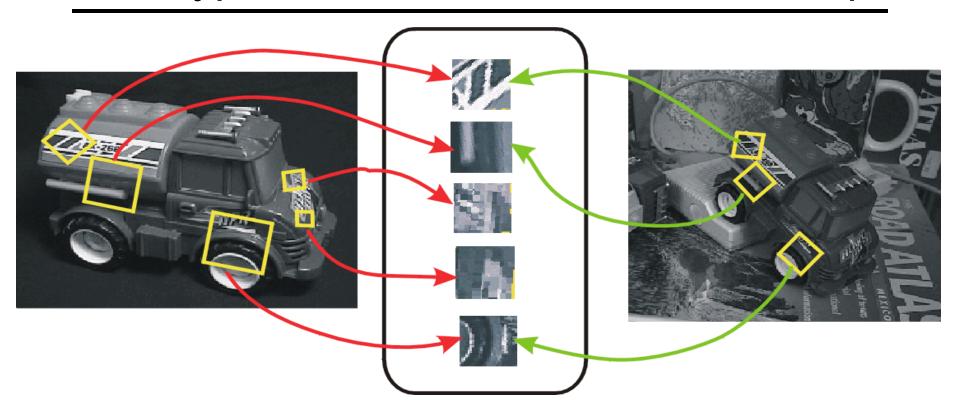
SIFT features

 Detected features with characteristic scales and orientations:



David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

From keypoint detection to feature description



Detection is *covariant*:

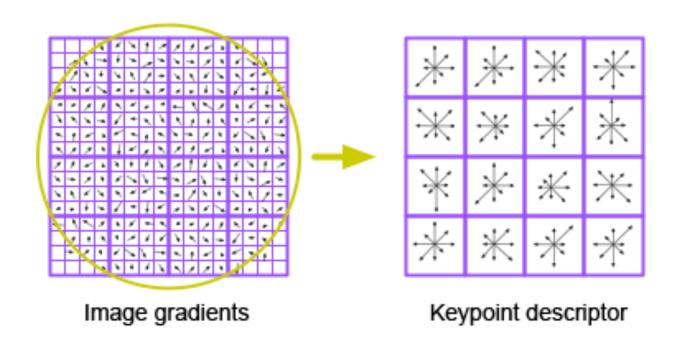
features(transform(image)) = transform(features(image))

Description is *invariant*:

features(transform(image)) = features(image)

SIFT descriptors

 Inspiration: complex neurons in the primary visual cortex



D. Lowe, <u>Distinctive image features from scale-invariant keypoints</u>, *IJCV* 60 (2), pp. 91-110, 2004

Properties of SIFT

Extraordinarily robust detection and description technique

- Can handle changes in viewpoint
 - Up to about 60 degree out-of-plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night
- Fast and efficient—can run in real time
- Lots of code available

