Fitting

Computer Vision
CS 543 / ECE 549
University of Illinois
Fitting

• We’ve learned how to detect edges, corners, blobs. Now what?
• We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Slide from L. Lazebnik
Fitting

- Choose a *parametric model* to represent a set of features

 simple model: lines

 simple model: circles

 complicated model: car
Fitting Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Simple example: Fitting a line
Least squares line fitting

- Data: \((x_1, y_1), \ldots, (x_n, y_n)\)
- Line equation: \(y_i = mx_i + b\)
- Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i \\ 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right)^2 = \left\| \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \|Ap - y\|^2
\]

\[
y = mx + b
\]

Matlab: \(p = A \setminus y\);
Problem with “vertical” least squares

- Not rotation-invariant
- Fails completely for vertical lines
Total least squares

If \(a^2 + b^2 = 1 \) then

Distance between point \((x_i, y_i)\) and line \(ax + by + c = 0\) is \(|ax_i + by_i + c|\)

proof:
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
Total least squares

If \((a^2 + b^2 = 1)\) then
Distance between point \((x_i, y_i)\) and line \(ax + by + c = 0\) is \(|ax_i + by_i + c|\)

Find \((a, b, c)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i + c)^2
\]
Total least squares

Find \((a, b, c)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i + c)^2
\]

\[
\frac{\partial E}{\partial c} = \sum_{i=1}^{n} 2(ax_i + by_i + c) = 0
\]

\[
E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \left\| \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \right\|^2 = \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}
\]

minimize \(\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}\) s.t. \(\mathbf{p}^T \mathbf{p} = 1\) \(\Rightarrow\) minimize \(\frac{\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}}{\mathbf{p}^T \mathbf{p}}\)

Solution is eigenvector corresponding to smallest eigenvalue of \(\mathbf{A}^T \mathbf{A}\)

Recap: Two Common Optimization Problems

<table>
<thead>
<tr>
<th>Problem statement</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $|Ax - b|^2$</td>
<td>$x = (A^T A)^{-1} A^T b$</td>
</tr>
<tr>
<td>least squares solution to $Ax = b$</td>
<td>$x = A \backslash b$ (matlab)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem statement</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $x^T A^T A x$ s.t. $x^T x = 1$</td>
<td>$[v, \lambda] = \text{eig}(A^T A)$</td>
</tr>
<tr>
<td>minimize $\frac{x^T A^T A x}{x^T x}$</td>
<td>$\lambda_1 < \lambda_{2..n} : x = v_1$</td>
</tr>
<tr>
<td>non-trivial lsq solution to $Ax = 0$</td>
<td></td>
</tr>
</tbody>
</table>
Least squares (global) optimization

Good
• Clearly specified objective
• Optimization is easy

Bad
• May not be what you want to optimize
• Sensitive to outliers
 – Bad matches, extra points
• Doesn’t allow you to get multiple good fits
 – Detecting multiple objects, lines, etc.
Least squares: Robustness to noise

• Least squares fit to the red points:
Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Robust least squares (to deal with outliers)

General approach:

$$\text{minimize} \quad \sum_{i} \rho(u_i(x_i, \theta); \sigma)$$

where

$$u^2 = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$u_i(x_i, \theta)$ – residual of i^{th} point w.r.t. model parameters θ

ρ – robust function with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Constant penalty for large residuals
Robust Estimator

1. Initialize: e.g., choose θ by least squares fit and $\sigma = 1.5 \cdot \text{median}(\text{error})$

2. Choose params to minimize: $\sum_i \frac{\text{error}(\theta, \text{data}_i)^2}{\sigma^2 + \text{error}(\theta, \text{data}_i)^2}$
 - E.g., numerical optimization

3. Compute new $\sigma = 1.5 \cdot \text{median}(\text{error})$

4. Repeat (2) and (3) until convergence
Choosing the scale: Just right

The effect of the outlier is minimized

Slide from L. Lazebnik
Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Slide from L. Lazebnik
Choosing the scale: Too large

Behaves much the same as least squares

Slide from L. Lazebnik
Other ways to search for parameters (for when no closed form solution exists)

• Line search
 1. For each parameter, step through values and choose value that gives best fit
 2. Repeat (1) until no parameter changes

• Grid search
 1. Propose several sets of parameters, evenly sampled in the joint set
 2. Choose best (or top few) and sample joint parameters around the current best; repeat

• Gradient descent
 1. Provide initial position (e.g., random)
 2. Locally search for better parameters by following gradient
Hypothesize and test

1. Propose parameters
 – Try all possible
 – Each point votes for all consistent parameters
 – Repeatedly sample enough points to solve for parameters

2. Score the given parameters
 – Number of consistent points, possibly weighted by distance

3. Choose from among the set of parameters
 – Global or local maximum of scores

4. Possibly refine parameters using inliers
Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid
Hough transform

Given a set of points, find the curve or line that explains the data points best

\[y = mx + b \]

Slide from S. Savarese
Hough transform

Slide from S. Savarese
Hough transform

Issue: parameter space \([m, b]\) is unbounded...

Use a polar representation for the parameter space

\[
x \cos \theta + y \sin \theta = \rho
\]
Hough transform - experiments

features

votes
Hough transform - experiments

Noisy data

Need to adjust grid size or smooth

Slide from S. Savarese
Issue: spurious peaks due to uniform noise
1. Image \rightarrow Canny

Slide from D. Hoiem
2. Canny \rightarrow Hough votes
3. Hough votes \rightarrow Edges

Find peaks and post-process
Hough transform example
Finding circles \((x_0, y_0, r)\) using Hough transform

- Fixed \(r\)
- Variable \(r\)
Hough transform for circles

image space

(x, y) + r\nabla I(x, y)

Hough parameter space

(x, y) - r\nabla I(x, y)

Slide from L. Lazebnik
Incorporating image gradients

- When we detect an edge point, we also know its gradient orientation.
- How does this constrain possible lines passing through the point?

- Modified Hough transform:

 - For each edge point \((x, y)\)
 \[
 \theta = \text{gradient orientation at } (x, y) \\
 \rho = x \cos \theta + y \sin \theta \\
 H(\theta, \rho) = H(\theta, \rho) + 1
 \]

end
Hough transform conclusions

Good
• Robust to outliers: each point votes separately
• Fairly efficient (much faster than trying all sets of parameters)
• Provides multiple good fits

Bad
• Some sensitivity to noise
• Bin size trades off between noise tolerance, precision, and speed/memory
 – Can be hard to find sweet spot
• Not suitable for more than a few parameters
 – Grid size grows exponentially

Common applications
• Line fitting (also circles, ellipses, etc.)
• Object instance recognition (parameters are position/scale/orientation)
• Object category recognition (parameters are position/scale)
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC

Algorithm:
1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide from D. Hoiem
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
How to choose parameters?

- **Number of samples** N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

- **Number of sampled points** s
 - Minimum number needed to fit the model

- **Distance threshold** δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ: $t^2=3.84\sigma^2$

$$N = \log(1-p)/\log(1-(1-e)^s)$$

<table>
<thead>
<tr>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

(modified from M. Pollefeys)

Slide from D. Hoiem
RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of objective function parameters than Hough transform
• Optimization parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly with fraction of outliers and number of parameters
• Not as good for getting multiple fits (though one solution is to remove inliers after each fit and repeat)

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)
Fitting Summary

• Least Squares Fit
 – closed form solution
 – robust to noise
 – not robust to outliers

• Robust Least Squares
 – improves robustness to noise
 – requires iterative optimization

• Hough transform
 – robust to noise and outliers
 – can fit multiple models
 – only works for a few parameters (1-4 typically)

• RANSAC
 – robust to noise and outliers
 – works with a moderate number of parameters (e.g., 1-8)