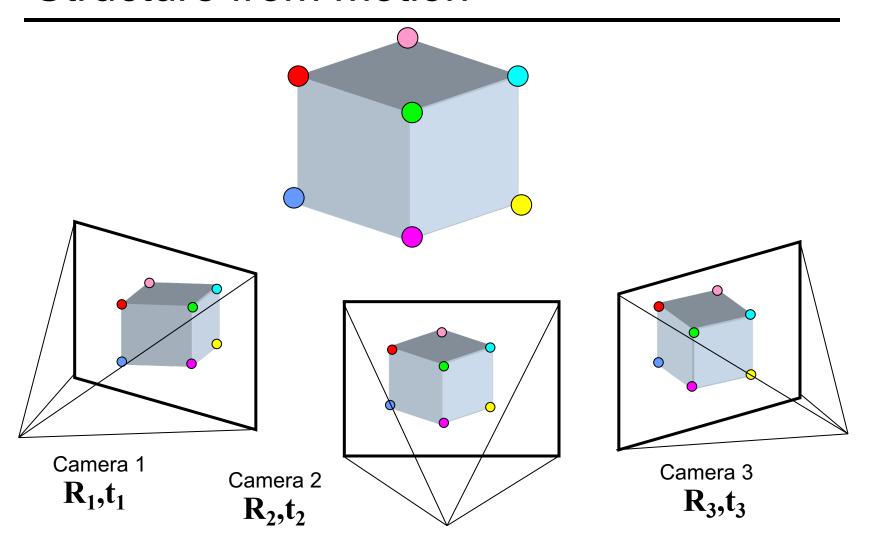
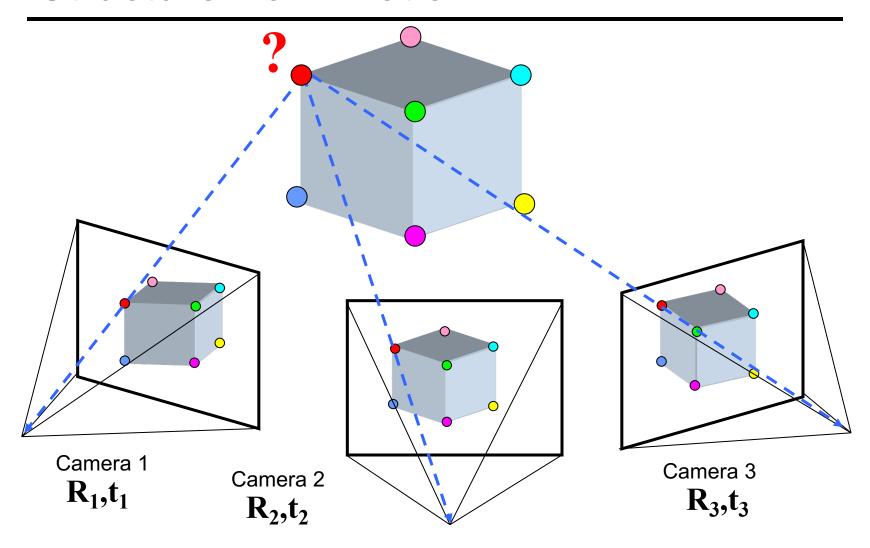
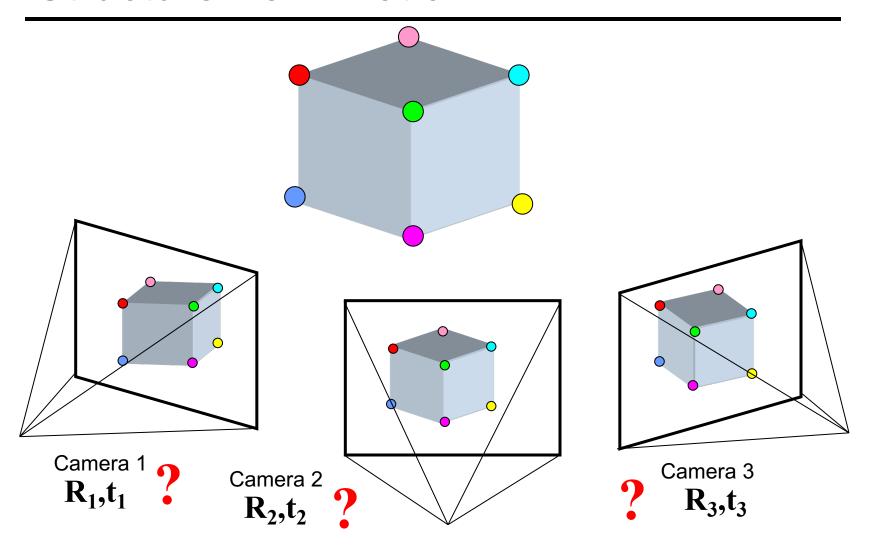
Multi-view geometry

Slides from L. Lazebnik

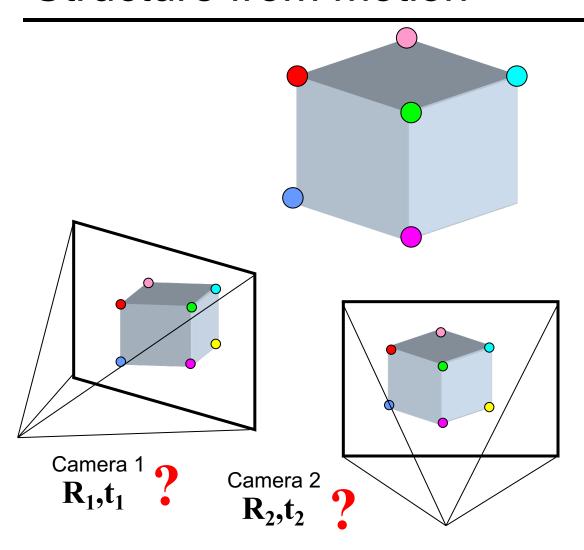




• **Structure:** Given *known cameras* and projections of the same 3D point in two or more images, compute the 3D coordinates of that point

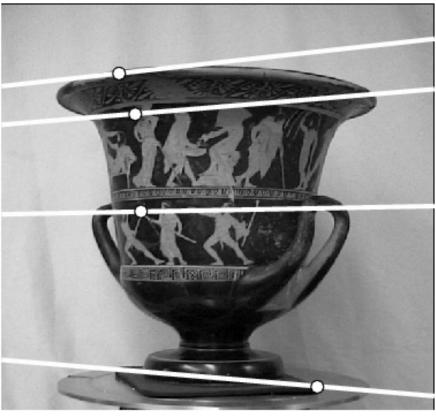


 Motion: Given a set of known 3D points seen by a camera, compute the camera parameters

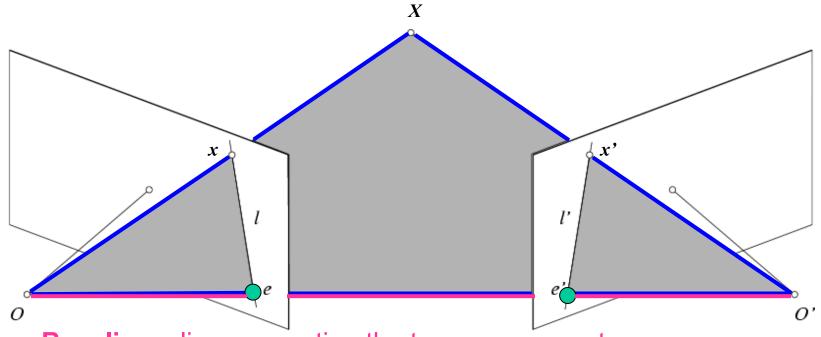


 Bootstrapping the process: Given a set of 2D point correspondences in two images, compute the camera parameters

Two-view geometry

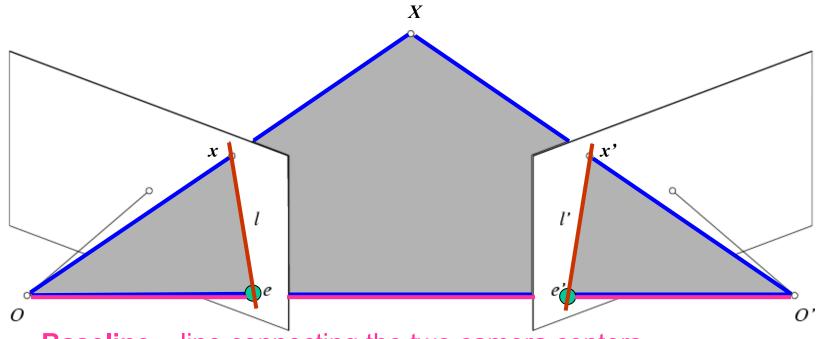


Epipolar geometry



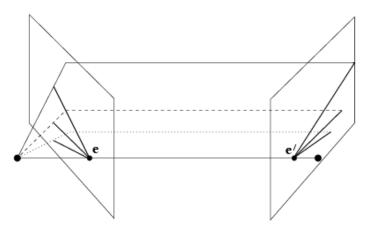
- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the motion direction

Epipolar geometry

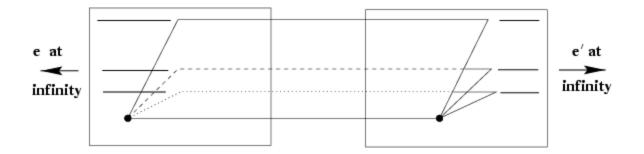


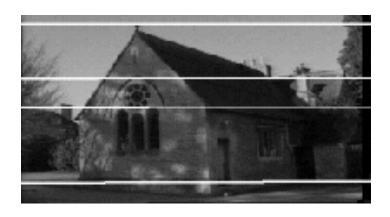
- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the motion direction
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

Converging cameras



Motion parallel to the image plane



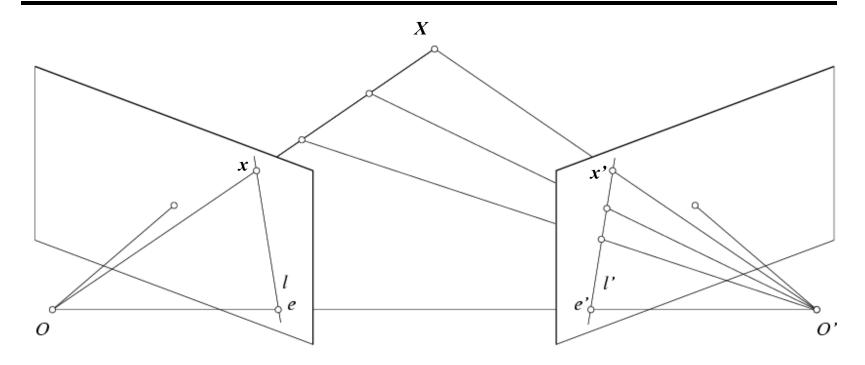


- Motion is perpendicular to the image plane
- Epipole is the "focus of expansion" and the principal point

Motion perpendicular to image plane

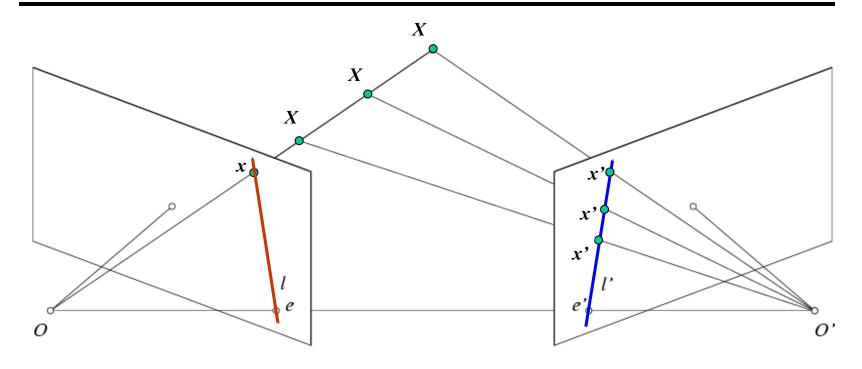
http://vimeo.com/48425421

Epipolar constraint



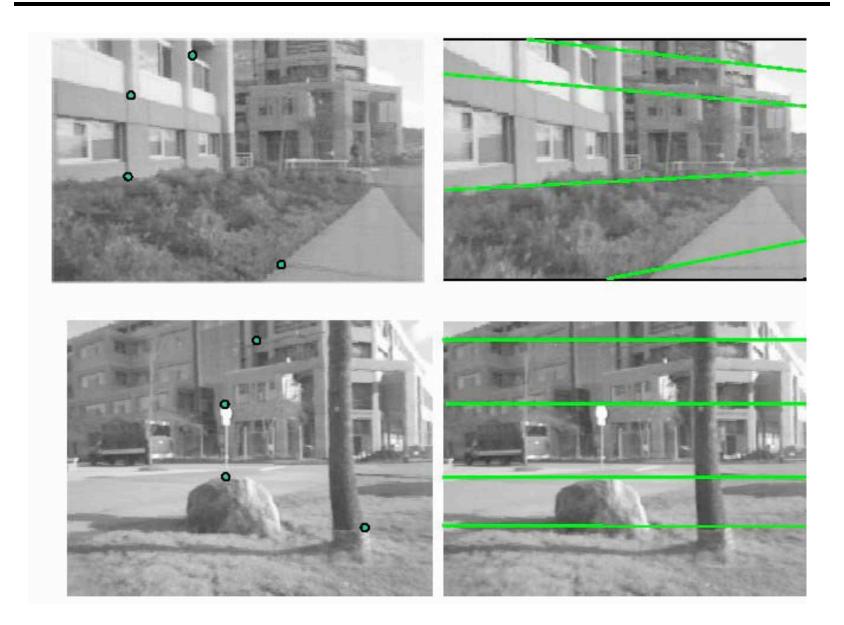
• If we observe a point **x** in one image, where can the corresponding point **x**' be in the other image?

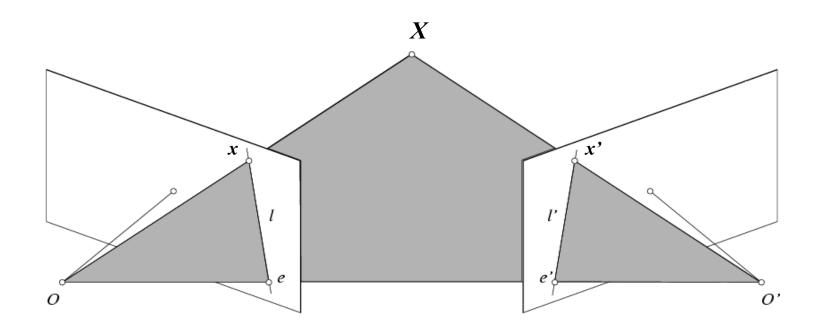
Epipolar constraint

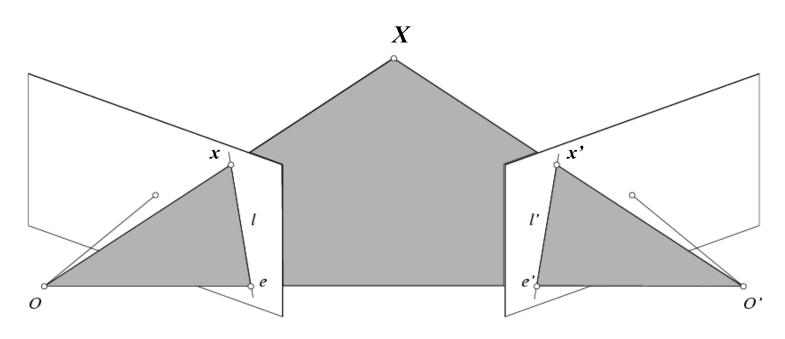


- Potential matches for **x** have to lie on the corresponding epipolar line **I**'.
- Potential matches for x' have to lie on the corresponding epipolar line I.

Epipolar constraint example

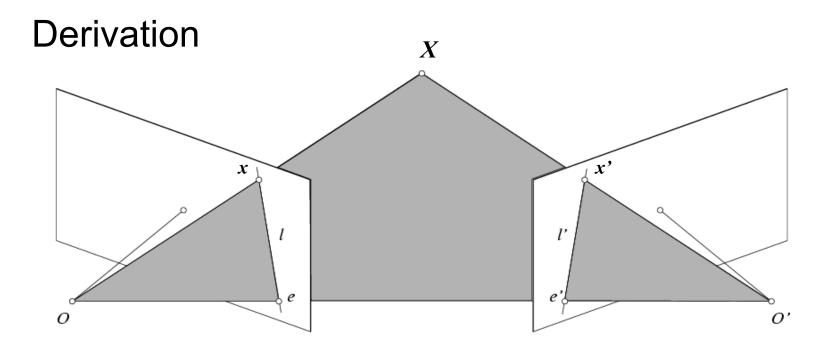


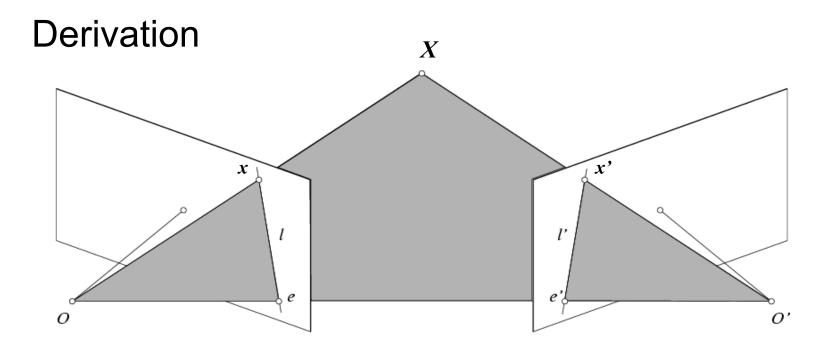


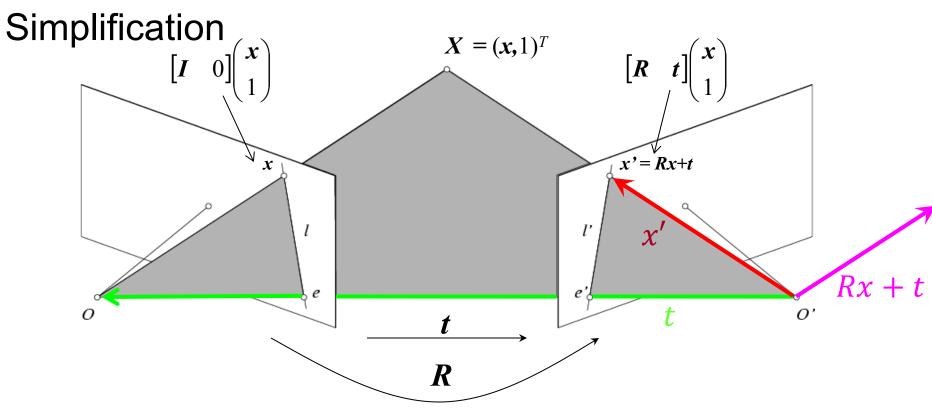


- Intrinsic and extrinsic parameters of the cameras are known, world coordinate system is set to that of the first camera
- Then the projection matrices are given by K[I | 0] and K'[R | t]
- We can multiply the projection matrices (and the image points) by the inverse of the calibration matrices to get *normalized* image coordinates:

$$x_{\text{norm}} = K^{-1}x_{\text{pixel}} = [I \ 0]X, \qquad x'_{\text{norm}} = K'^{-1}x'_{\text{pixel}} = [R \ t]X$$

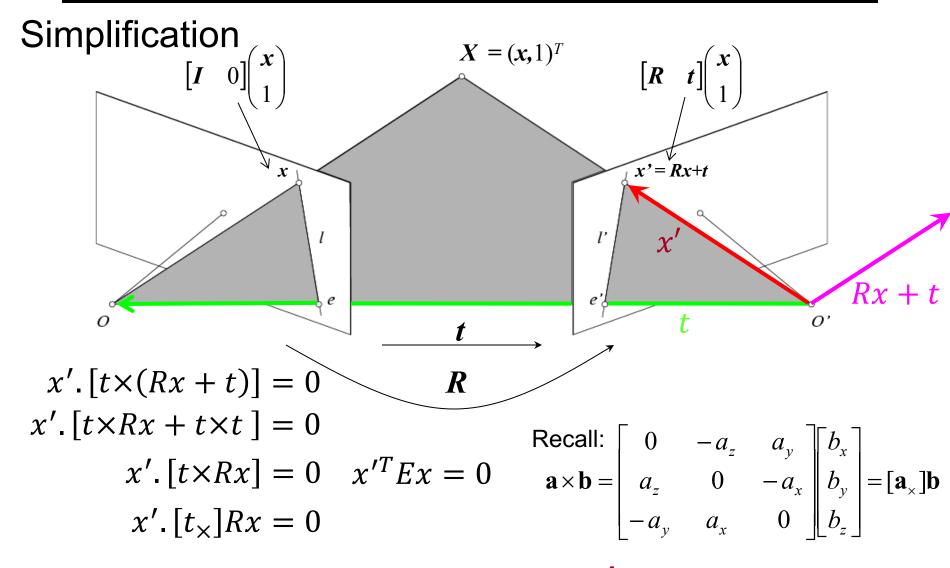




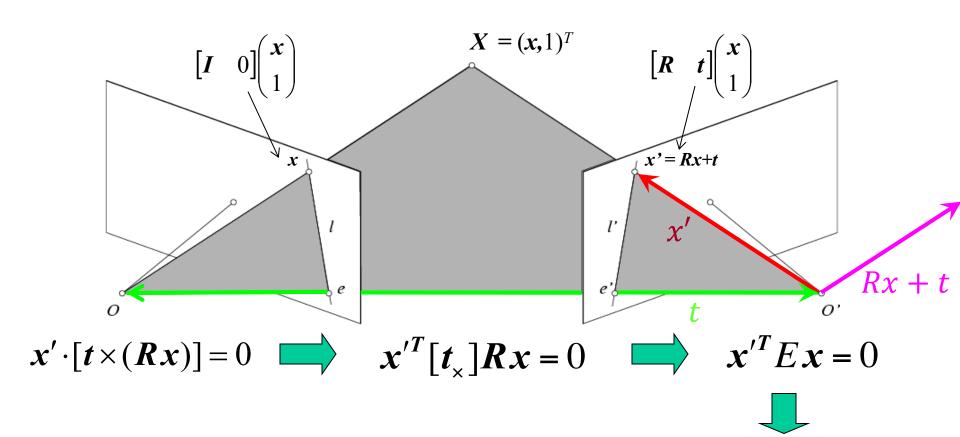


Recall:
$$\begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ -a_y & a_x & 0 \end{bmatrix} = [\mathbf{a}_{\times}] \mathbf{b}$$

The vectors Rx + t, t, and x' are coplanar



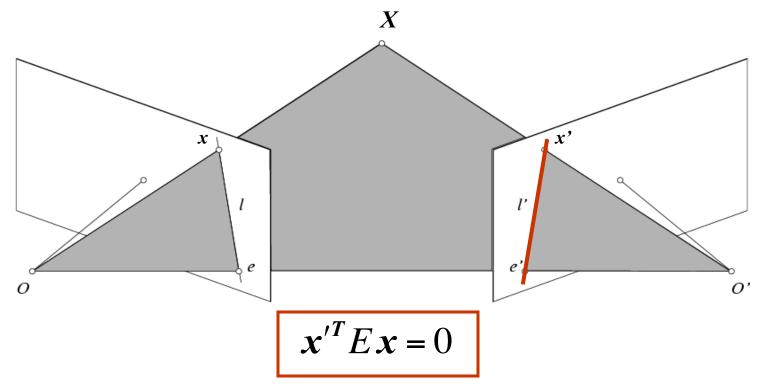
The vectors Rx + t, t, and x' are coplanar



Essential Matrix

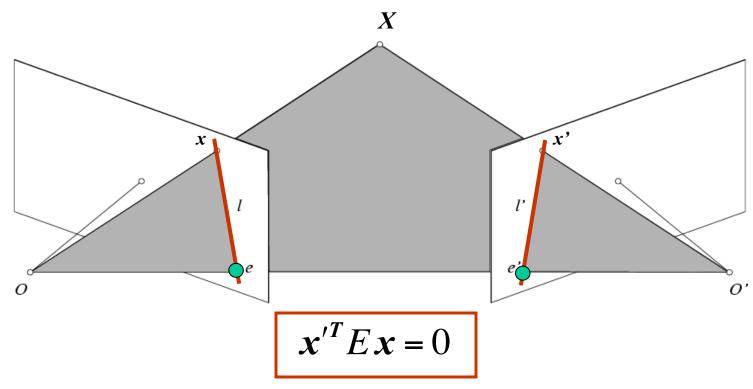
(Longuet-Higgins, 1981)

The vectors Rx + t, t, and x' are coplanar

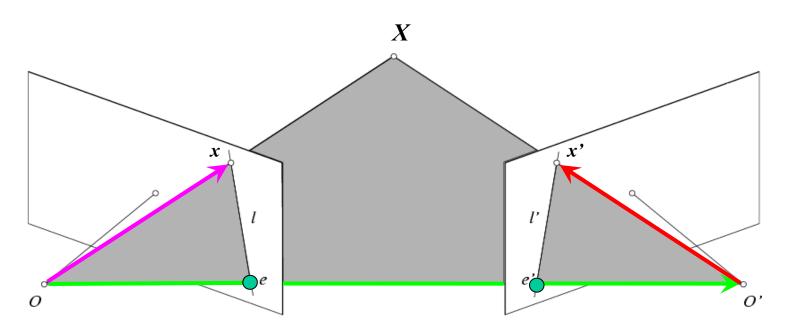


- Ex is the epipolar line associated with x (I' = Ex)
 - Recall: a line is given by ax + by + c = 0 or

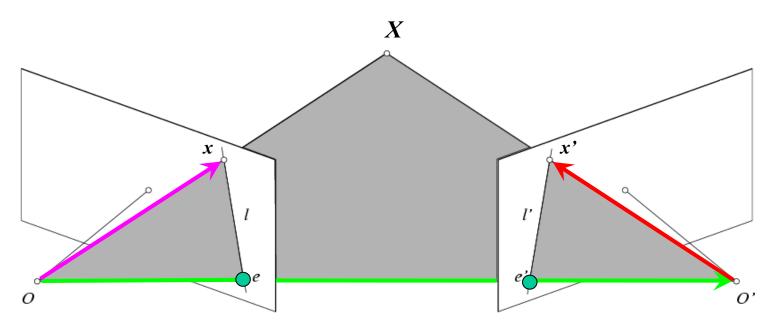
$$\mathbf{l}^T \mathbf{x} = 0$$
 where $\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$



- E x is the epipolar line associated with x (I' = E x)
- E^Tx' is the epipolar line associated with x' ($I = E^Tx'$)
- E e = 0 and $E^{T}e' = 0$
- **E** is singular (rank two)
- E has five degrees of freedom

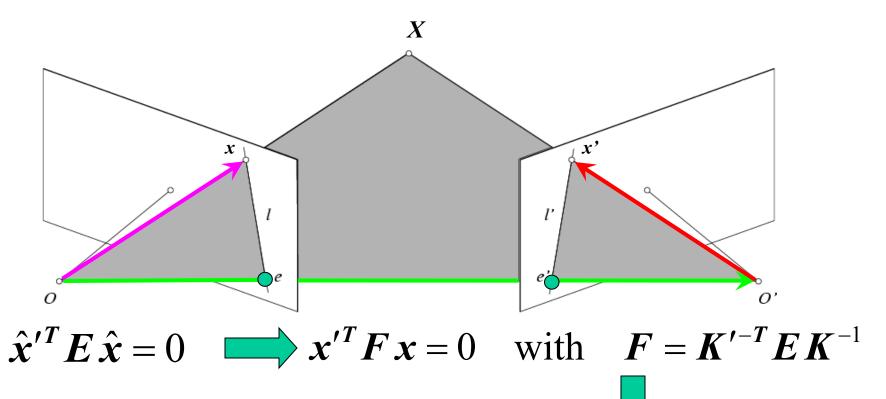


- The calibration matrices K and K' of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:



- The calibration matrices K and K' of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{\boldsymbol{x}}'^T \boldsymbol{E} \, \hat{\boldsymbol{x}} = 0 \qquad \hat{\boldsymbol{x}} = \boldsymbol{K}^{-1} \boldsymbol{x}, \quad \hat{\boldsymbol{x}}' = \boldsymbol{K}'^{-1} \boldsymbol{x}'$$

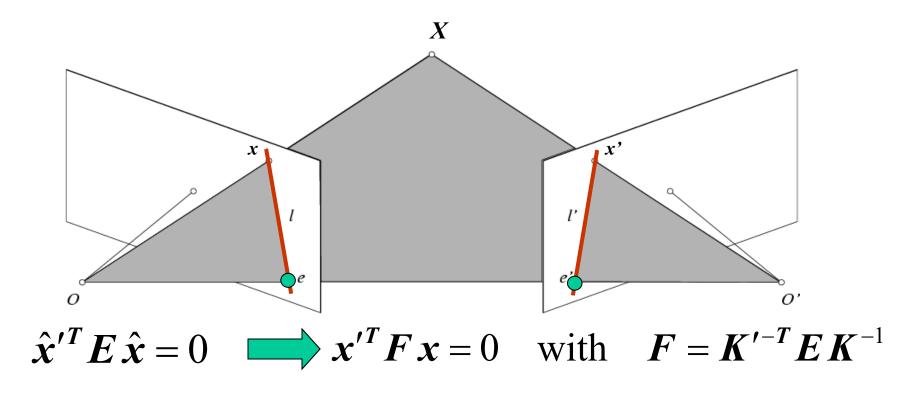


$$\hat{\boldsymbol{x}} = \boldsymbol{K}^{-1} \boldsymbol{x}$$

$$\hat{\boldsymbol{x}}' = \boldsymbol{K}'^{-1} \boldsymbol{x}'$$

Fundamental Matrix

(Faugeras and Luong, 1992)



- Fx is the epipolar line associated with x(I' = Fx)
- F^Tx' is the epipolar line associated with $x'(I = F^Tx')$
- Fe = 0 and $F^{T}e' = 0$
- **F** is singular (rank two)
- F has seven degrees of freedom

Estimating the fundamental matrix

The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^T, \quad \mathbf{x}' = (u', v', 1)$$

The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^{T}, \quad \mathbf{x}' = (u', v', 1)$$

$$\begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{22} \\ f_{23} \\ f_{21} \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{22} \\ f_{23} \\ f_{22} \end{bmatrix} = 0$$

$$\begin{bmatrix} f_{11} \\ f_{12} \\ f_{23} \\ f_{21} \end{bmatrix} \begin{bmatrix} f_{21} \\ f_{22} \\ f_{23} \\ f_{22} \end{bmatrix} = 0$$
Solve homogeneous

linear system using eight or more matches

Enforce rank-2 constraint (take SVD of **F** and throw out the smallest singular value)

Problem with eight-point algorithm

$$\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

$$\begin{bmatrix}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32}
\end{bmatrix} = -1$$

Poor numerical conditioning

Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units:
 if *T* and *T'* are the normalizing transformations in the
 two images, than the fundamental matrix in original
 coordinates is *T'^T F T*

Seven-point algorithm

- Set up least squares system with seven pairs of correspondences and solve for null space (two vectors) using SVD
- Solve for linear combination of null space vectors that satisfies det(F)=0

Source: D. Hoiem

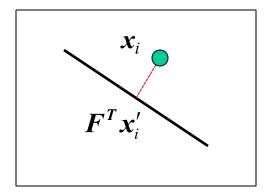
Nonlinear estimation

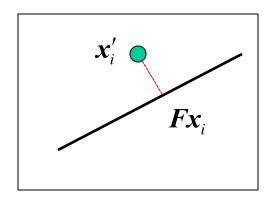
• Linear estimation minimizes the sum of squared algebraic distances between points \mathbf{x}'_i and epipolar lines $\mathbf{F} \mathbf{x}_i$ (or points \mathbf{x}_i and epipolar lines $\mathbf{F}^T \mathbf{x}'_i$):

$$\sum_{i=1}^{N} (\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i})^{2}$$

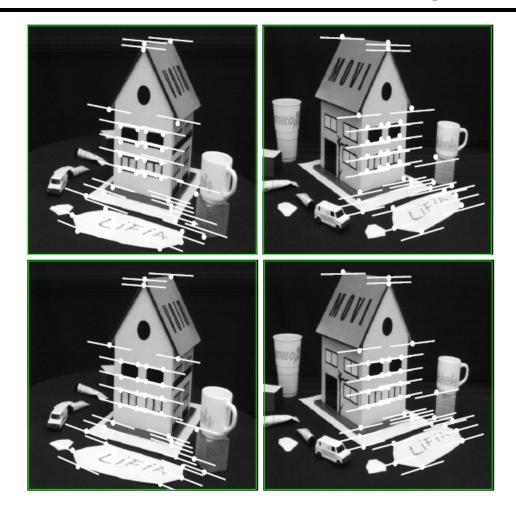
Nonlinear approach: minimize sum of squared geometric distances

$$\sum_{i=1}^{N} \left[d^{2}(\boldsymbol{x}_{i}', \boldsymbol{F} \boldsymbol{x}_{i}) + d^{2}(\boldsymbol{x}_{i}, \boldsymbol{F}^{T} \boldsymbol{x}_{i}') \right]$$



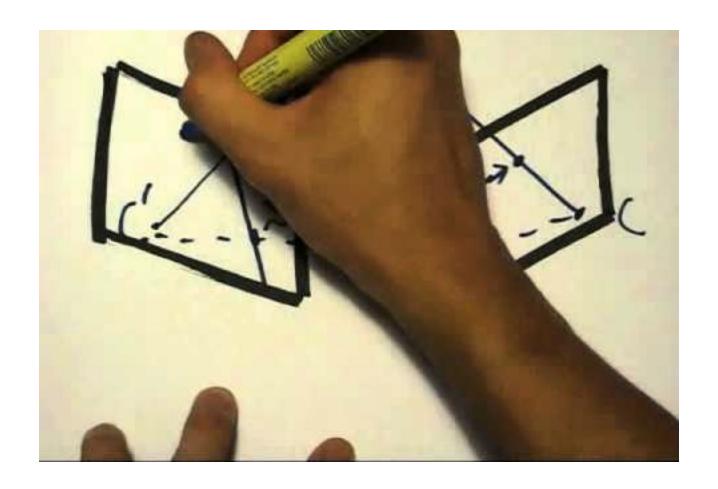


Comparison of estimation algorithms



	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

The Fundamental Matrix Song



http://danielwedge.com/fmatrix/

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: *E* = *K*^{'T}*FK*
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters
- Alternatively, if the calibration matrices are known, the <u>five-point algorithm</u> can be used to estimate relative camera pose