Multi-view geometry

Slides from L. Lazebnik

Structure from motion

Structure from motion

- Structure: Given known cameras and projections of the same 3D point in two or more images, compute the 3D coordinates of that point

Structure from motion

- Motion: Given a set of known 3D points seen by a camera, compute the camera parameters

Structure from motion

- Bootstrapping the process: Given a set of 2D point correspondences in two images, compute the camera parameters

Two-view geometry

Epipolar geometry

- Baseline - line connecting the two camera centers
- Epipolar Plane - plane containing baseline (1D family)
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of the motion direction

Epipolar geometry

- Baseline - line connecting the two camera centers
- Epipolar Plane - plane containing baseline (1D family)
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of the motion direction
- Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs)

Example 1

- Converging cameras

Example 2

- Motion parallel to the image plane

Example 3

Example 3

- Motion is perpendicular to the image plane
- Epipole is the "focus of expansion" and the principal point

Motion perpendicular to image plane

א Kubrick // One-Point Perspective
from kogonada PLUS 1 year ago NOT YET RATED
http://vimeo.com/48425421

Epipolar constraint

- If we observe a point \boldsymbol{x} in one image, where can the corresponding point \boldsymbol{x} ' be in the other image?

Epipolar constraint

- Potential matches for \boldsymbol{x} have to lie on the corresponding epipolar line I'.
- Potential matches for \boldsymbol{x} ' have to lie on the corresponding epipolar line I.

Epipolar constraint example

Epipolar constraint: Calibrated case

Epipolar constraint: Calibrated case

- Intrinsic and extrinsic parameters of the cameras are known, world coordinate system is set to that of the first camera
- Then the projection matrices are given by $\boldsymbol{K}[\boldsymbol{I} \mid \mathbf{0}]$ and $\boldsymbol{K}^{\prime}[\boldsymbol{R} \mid \boldsymbol{t}]$
- We can multiply the projection matrices (and the image points) by the inverse of the calibration matrices to get normalized image coordinates:

$$
\boldsymbol{x}_{\text {norm }}=\boldsymbol{K}^{-1} \boldsymbol{x}_{\text {pixel }}=\left[\begin{array}{ll}
\boldsymbol{I} & 0
\end{array}\right] \boldsymbol{X}, \quad \boldsymbol{x}_{\text {norm }}^{\prime}=\boldsymbol{K}^{\prime-1} \boldsymbol{x}_{\text {pixel }}^{\prime}=[\boldsymbol{R} \boldsymbol{t}] \boldsymbol{X}^{\prime} \boldsymbol{X}
$$

Epipolar constraint: Calibrated case

Derivation

Epipolar constraint: Calibrated case

Derivation

Epipolar constraint: Calibrated case

Simplification

The vectors $R x+t, t$, and x^{\prime} are coplanar

Epipolar constraint: Calibrated case

Simplification

The vectors $R x+t, t$, and x^{\prime} are coplanar

Epipolar constraint: Calibrated case

$$
x^{\prime} \cdot[t \times(R x)]=0 \quad \square \quad x^{\prime T}\left[t_{\times}\right] R x=0 \quad \square \quad x^{\prime T} E x=0
$$

$$
\longleftarrow
$$

Essential Matrix (Longuet-Higgins, 1981)
The vectors $R x+t, t$, and x^{\prime} are coplanar

Epipolar constraint: Calibrated case

- $E \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(I^{\prime}=\boldsymbol{E} \boldsymbol{x}\right)$
- Recall: a line is given by $a x+b y+c=0$ or

$$
\mathbf{I}^{T} \mathbf{x}=0 \quad \text { where } \mathbf{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Epipolar constraint: Calibrated case

- $\boldsymbol{E} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(I^{\prime}=\boldsymbol{E} \boldsymbol{x}\right)$
- $\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}=\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}\right)$
- $E e=0$ and $E^{\top} e^{\prime}=0$
- E is singular (rank two)
- E has five degrees of freedom

Epipolar constraint: Uncalibrated case

- The calibration matrices K and K^{\prime} of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

Epipolar constraint: Uncalibrated case

- The calibration matrices K and K^{\prime} of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$
\hat{\boldsymbol{x}}^{\prime \boldsymbol{T}} \boldsymbol{E} \hat{\boldsymbol{x}}=0 \quad \hat{\boldsymbol{x}}=\boldsymbol{K}^{-1} \boldsymbol{x}, \quad \hat{\boldsymbol{x}}^{\prime}=\boldsymbol{K}^{\prime-1} \boldsymbol{x}^{\prime}
$$

Epipolar constraint: Uncalibrated case

Epipolar constraint: Uncalibrated case

- $\boldsymbol{F} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(\boldsymbol{I}^{\prime}=\boldsymbol{F} \boldsymbol{x}\right)$
- $\boldsymbol{F}^{\top} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}=\boldsymbol{F}^{\top} \boldsymbol{X}\right)$
- $\boldsymbol{F e}=0$ and $\boldsymbol{F}^{\top} \mathbf{e}^{\prime}=0$
- F is singular (rank two)
- F has seven degrees of freedom

Estimating the fundamental matrix

The eight-point algorithm

$$
\boldsymbol{x}=(u, v, 1)^{T}, \quad \boldsymbol{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)
$$

The eight-point algorithm

$$
\begin{aligned}
& \boldsymbol{x}=(u, v, 1)^{T}, \quad \boldsymbol{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right) \\
& {\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0}
\end{aligned}
$$

Enforce rank-2
constraint (take SVD of F and throw out the smallest singular value)

Problem with eight-point algorithm

Problem with eight-point algorithm

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if \boldsymbol{T} and \boldsymbol{T}^{\prime} are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $\boldsymbol{T}^{\top} \boldsymbol{F} \boldsymbol{T}$

Seven-point algorithm

- Set up least squares system with seven pairs of correspondences and solve for null space (two vectors) using SVD
- Solve for linear combination of null space vectors that satisfies $\operatorname{det}(F)=0$

Nonlinear estimation

- Linear estimation minimizes the sum of squared algebraic distances between points $\boldsymbol{x}_{i}^{\prime}$ and epipolar lines $\boldsymbol{F} \boldsymbol{x}_{i}$ (or points \boldsymbol{x}_{i} and epipolar lines $\boldsymbol{F}^{\top} \boldsymbol{x}_{\boldsymbol{i}}^{\prime}$):

$$
\sum_{i=1}^{N}\left(\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2}
$$

- Nonlinear approach: minimize sum of squared geometric distances

$$
\sum_{i=1}^{N}\left[\mathrm{~d}^{2}\left(\boldsymbol{x}_{i}^{\prime}, \boldsymbol{F} \boldsymbol{x}_{i}\right)+\mathrm{d}^{2}\left(\boldsymbol{x}_{i}, \boldsymbol{F}^{T} \boldsymbol{x}_{i}^{\prime}\right)\right]
$$

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E=K^{\top}{ }^{\top} F K$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters
- Alternatively, if the calibration matrices are known, the five-point algorithm can be used to estimate relative camera pose

