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Structure from motion
• Given a set of corresponding points in two or more 

images, compute the camera parameters and the 3D point 
coordinates

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2 R3,t3? ? ? Slide credit: 
Noah Snavely

?



Representative SFM pipeline

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, 
SIGGRAPH 2006.

http://phototour.cs.washington.edu/Slide from L. Lazebnik.

http://phototour.cs.washington.edu/
http://phototour.cs.washington.edu/


Feature detection

Detect SIFT features

Source: N. Snavely



Feature detection

Detect SIFT features

Source: N. Snavely



Feature matching

Match features between each pair of images

Source: N. Snavely



Feature matching

Use RANSAC to estimate fundamental matrix between 
each pair

Source: N. Snavely



Feature matching

Use RANSAC to estimate fundamental matrix between 
each pair

Image sourceSlide from L. Lazebnik.

https://www.cc.gatech.edu/~hays/compvision/proj3/


Feature matching

Use RANSAC to estimate fundamental matrix between 
each pair

Source: N. Snavely



Image connectivity graph

(graph layout produced using  the Graphviz toolkit: http://www.graphviz.org/)

Source: N. Snavely

http://www.graphviz.org/


Structure from motion
• Given: m images of n fixed 3D points 

λijxij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slide from L. Lazebnik.



Projective structure from motion
• Given: m images of n fixed 3D points 

λijxij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slide from L. Lazebnik.



Projective structure from motion
• Given: m images of n fixed 3D points 

λijxij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij

• With no calibration info, cameras and points can only 
be recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1

• We can solve for structure and motion when 
2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed

Slide from L. Lazebnik.



Projective SFM: Two-camera case
• Compute fundamental matrix F between the two views
• First camera matrix: [I | 0]
• Second camera matrix: [A | b]
• Then b is the epipole (FTb = 0), A = –[b×]F

F&P sec. 8.3.2Slide from L. Lazebnik.



Incremental structure from motion
•Initialize motion from two images
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of

new camera using all the known
3D points that are visible in its
image – calibration ca

m
er

as

points

Slide from L. Lazebnik.



Incremental structure from motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of 

new camera using all the known 
3D points that are visible in its 
image – calibration

• Refine and extend structure: 
compute new 3D points, 
re-optimize existing points that 
are also seen by this camera –
triangulation 

ca
m

er
as

points

Slide from L. Lazebnik.



Incremental structure from motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of 

new camera using all the known 
3D points that are visible in its 
image – calibration

• Refine and extend structure: 
compute new 3D points, 
re-optimize existing points that 
are also seen by this camera –
triangulation 

•Refine structure and motion: 
bundle adjustment

ca
m

er
as

points

Slide from L. Lazebnik.



Bundle adjustment

• Non-linear method for 
refining structure and motion

• Minimize reprojection error

wij xij −
1
λij
PiX j

2

j=1

n

∑
i=1

m

∑

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj
P3Xj

visibility flag: 
is point j 
visible in 
view i?

Slide from L. Lazebnik.



Incremental SFM
• Pick a pair of images with lots of inliers 

(and preferably, good EXIF data)
• Initialize intrinsic parameters (focal length, principal point) 

from EXIF
• Estimate extrinsic parameters (R and t) using five-point 

algorithm
• Use triangulation to initialize model points

• While remaining images exist
• Find an image with many feature matches with images in the 

model
• Run RANSAC on feature matches to register new image to 

model
• Triangulate new points
• Perform bundle adjustment to re-optimize everything

Slide from L. Lazebnik.

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf


N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, 
SIGGRAPH 2006. http://phototour.cs.washington.edu/
See also: http://grail.cs.washington.edu/projects/rome/

http://phototour.cs.washington.edu/
http://phototour.cs.washington.edu/
http://grail.cs.washington.edu/projects/rome/


Outline
• Representative SfM pipeline

• Incremental SfM
• Bundle adjustment

• Ambiguities in SfM
• Special Case: Affine structure from motion

• Factorization
• SfM in practice



Is SFM always uniquely solvable?

Source: N. Snavely

Necker cube

http://en.wikipedia.org/wiki/Necker_cube


Source: N. Snavely

Is SFM always uniquely solvable?
• Necker reversal



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

Slide from L. Lazebnik.



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same:

It is impossible to recover the absolute scale of the scene!
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Slide from L. Lazebnik.



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same 

• More generally, if we transform the scene using a 
transformation Q and apply the inverse 
transformation to the camera matrices, then the 
images do not change:

Slide from L. Lazebnik.



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same 

• More generally, if we transform the scene using a 
transformation Q and apply the inverse 
transformation to the camera matrices, then the 
images do not change:

( )( )QXPQPXx -1==

Slide from L. Lazebnik.



Types of ambiguity

ú
û

ù
ê
ë

é
vTv
tAProjective

15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

Preserves intersection and 
tangency

Preserves parallellism, 
volume ratios

Preserves angles, ratios of 
length

ú
û

ù
ê
ë

é
10
tA

T

ú
û

ù
ê
ë

é
10
tR

T

s

ú
û

ù
ê
ë

é
10
tR

T
Preserves angles, lengths

• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean

Slide from L. Lazebnik.



Projective ambiguity
• With no constraints on the camera calibration matrix 

or on the scene, we can reconstruct up to a projective 
ambiguity
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Slide from L. Lazebnik.



Projective ambiguity

Slide from L. Lazebnik.



Affine ambiguity
• If we impose parallelism constraints, we can get a 

reconstruction up to an affine ambiguity

( )( )XQPQPXx  A
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Slide from L. Lazebnik.



Affine ambiguity

Slide from L. Lazebnik.



Similarity ambiguity
• A reconstruction that obeys orthogonality constraints 

on camera parameters and/or scene
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Slide from L. Lazebnik.



Similarity ambiguity

Slide from L. Lazebnik.
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Special Case: Affine structure from motion
• Let’s start with affine or weak perspective cameras

(the math is easier)

center at
infinity

Slide from L. Lazebnik.



Recall: Orthographic Projection

Image World

Projection along the z direction

Slide from L. Lazebnik.



Orthographic Projection

Parallel Projection

Affine cameras

Slide from L. Lazebnik.



Affine cameras
• A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 
projection, and an affine transformation of the image:

• Affine projection is a linear mapping + translation in 
non-homogeneous coordinates
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Affine structure from motion
• Given: m images of n fixed 3D points:

xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences xij  to estimate 
m projection matrices Ai and translation vectors bi, 
and n points Xj

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12
• For two views, we need four point correspondences
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Slide from L. Lazebnik.



Affine structure from motion
• Centering: subtract the centroid of the image points in 

each view

• For simplicity, set the origin of the world coordinate 
system to the centroid of the 3D points

• After centering, each normalized 2D point is related 
to the 3D point Xj by
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Affine structure from motion
• Let’s create a 2m × n data (measurement) matrix:
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%2520and%2520motion%2520from%2520image%2520streams%2520under%2520orthography.pdf


Affine structure from motion
• Let’s create a 2m × n data (measurement) matrix:
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The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%2520and%2520motion%2520from%2520image%2520streams%2520under%2520orthography.pdf


Factorizing the measurement matrix

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert

This decomposition minimizes
|D-MS|2



Affine ambiguity

• The decomposition is not unique. We get the same D 
by using any 3×3 matrix C and applying the 
transformations M → MC, S →C-1S

• That is because we have only an affine transformation 
and we have not enforced any Euclidean constraints 
(like forcing the image axes to be perpendicular, for 
example)

Source: M. Hebert



• Transform each projection matrix A to another matrix 
AC to get orthographic projection
• Image axes are perpendicular and scale is 1

• This translates into 3m equations:
(AiC)(AiC)T = Ai(CCT)Ai = Id, i = 1, …, m

• Solve for L = CCT

• Recover C from L by Cholesky decomposition: L = CCT

• Update M and S: M = MC, S = C-1S

Eliminating the affine ambiguity

Source: M. Hebert

x

Xa1

a2

a1 · a2 = 0
|a1|2 = |a2|2 = 1



Reconstruction results

C. Tomasi and T. Kanade, Shape and motion from image streams under orthography: 
A factorization method, IJCV 1992

https://people.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%2520and%2520motion%2520from%2520image%2520streams%2520under%2520orthography.pdf


Dealing with missing data
• So far, we have assumed that all points are visible in 

all views
• In reality, the measurement matrix typically looks 

something like this:

• Possible solution: decompose matrix into dense sub-
blocks, factorize each sub-block, and fuse the results
• Finding dense maximal sub-blocks of the matrix is NP-

complete (equivalent to finding maximal cliques in a graph)

cameras

points

Slide from L. Lazebnik.



Dealing with missing data
• Incremental bilinear refinement

(1) Perform 
factorization on a 
dense sub-block

(2) Solve for a new 
3D point visible by 
at least two known 
cameras 
(triangulation)

(3) Solve for a new 
camera that sees at 
least three known 
3D points 
(calibration)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and Matching Video 
Clips Containing Multiple Moving Objects. PAMI 2007.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
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The devil is in the details
• Handling degenerate configurations (e.g., homographies)
• Eliminating outliers
• Dealing with repetitions and symmetries

Slide from L. Lazebnik.



Repetitive structures

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf


The devil is in the details
• Handling degenerate configurations (e.g., homographies)
• Eliminating outliers
• Dealing with repetitions and symmetries
• Handling multiple connected components
• Closing loops
• Making the whole thing efficient!

• See, e.g., Towards Linear-Time Incremental Structure from 
Motion

Slide from L. Lazebnik.

http://ccwu.me/vsfm/vsfm.pdf


SFM software
• Bundler
• OpenSfM
• OpenMVG
• VisualSFM
• See also Wikipedia’s list of toolboxes

Slide from L. Lazebnik.

http://www.cs.cornell.edu/~snavely/bundler/
https://github.com/mapillary/OpenSfM
https://github.com/openMVG/openMVG
http://ccwu.me/vsfm/
https://en.wikipedia.org/wiki/Structure_from_motion%2523Structure_from_motion_software_toolboxes
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