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Outline

• Overview of image and region categorization
– Task description
– What is a category

• Example of spatial pyramids bag-of-words scene 
categorizer

• Key concepts: features and classification

• Deep convolutional neural networks (CNNs)



Recognition as 3D Matching

Recognizing solid objects by alignment with an image. Huttenlocher and Ullman IJCV 1990.

“Instance” 
Recognition

“Category-level” 
Recognition

https://link.springer.com/article/10.1007/BF00054921


Detection, semantic segmentation, instance 
segmentation

semantic segmentation instance segmentation

image classification object detection

Image source

https://arxiv.org/pdf/1405.0312.pdf


“Classic” recognition pipeline

Feature 
representation

Trainable
classifier

Image
Pixels

Class 
label



Overview

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Image 
Features

Testing

Test Image

Trained 
Classifier

Trained 
Classifier Outdoor

Prediction



Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance or similarity function for our inputs
• No training required!
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K-nearest neighbor classifier

• Which classifier is more robust to outliers?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/


Linear classifiers

• Find a linear function to separate the classes:

f(x) = sgn(w × x + b)



• Linearly separable dataset in 1D:

• Non-separable dataset in 1D:

• We can map the data to a higher-dimensional space:
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Nonlinear SVMs

Slide credit: Andrew Moore



Bag of features
1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary 
4. Represent images by frequencies of “visual words” 



Digit Classification Case Study



The MNIST DATABASE of handwritten digits
Yann LeCun & Corinna Cortes

• Has a training set of 60 K 
examples (6K examples for 
each digit), and a test set of 
10K examples.

• Each digit is a 28 x 28 pixel grey 
level image. The digit itself 
occupies the central 20 x 20 
pixels, and the center of mass 
lies at the center of the box.



Bias-Variance Trade-off
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Figure 1: Comparison of kernel SVM for various training sizes using pyramid features onn the full
training set (60, 000 examples). Using the gradient features the the error rates are 0.79% using
intersection kernel and 1.44% using linear kernel SVM. The performance using the raw pixels is
1.41% using rbf and 1.34% using the polynomial kernels. The gradient features perform better
using the linear and intersection kernels comprared to rbf and polynomial kernels significantly when
the number of training data is small suggesting that the gradient features capture the invariances in
the digits quite well. We did not train the polynomial and rbf kernel SVMs on the gradient features
as both the training and test time were very high.

Feature Classifier Error Rate
Raw Pixels SVM (linear) 11.3%
Raw Pixels SVM (intersection) 8.7%
Raw Pixels SVM (poly, d = 3) [7] 4.0%
Raw Pixels VSV (poly, d = 3) [7] 3.2%
PHOG SVM (linear) 3.4%
PHOG SVM (intersection) 3.4%
PHOG SVM (poly, d = 5) 3.2%
PHOG SVM (rbf, γ = 0.1) 2.7%
Raw Pixels Tangent Distance [23]* 2.6%
Raw Pixels Boosted Neural Nets [8]* 2.6%

Human Error Rate [3] 2.5%

Table 5: Summary of various results on the USPS dataset. Both the linear and the intersection kernel
SVMs outperform the existing numbers using SVMs which is at 4%. The VSV method which jitters
the Support Vectors to create additional training examples, and retrains a SVM, leads to an improved
accuracy of 3.2%. Using polynomial and rbf kernel SVMs on PHOG features reduces the error rate
even further to 3.2% and 2.7% respectively. Some of the results shown in * use a different training
dataset which has been enhanced by adding machine-printed characters. Note that our numbers are
the best in the unmodified version of the dataset.
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Bias and Variance



Bias-Variance Trade-off
Performance as a function of model complexity (SVM)



Model Selection



Bias-Variance Trade-off
As a function of dataset size
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Features vs Classifiers
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What are the right features?
Depend on what you want to know!

•Object: shape
– Local shape info, shading, shadows, texture

•Scene : geometric layout
– linear perspective, gradients, line segments

•Material properties: albedo, feel, hardness
– Color, texture

•Action: motion
– Optical flow, tracked points



Stuff vs Objects
• recognizing cloth fabric vs recognizing cups



Feature Design Process
1. Start with a model
2. Look at errors on development set
3. Think of features that can improve 

performance
4. Develop new model, test whether new 

features help.
5. If not happy, go to step 1.
6. “Ablations”: Simplify system, prune out 

features that don’t help anymore in presence 
of other features.



Features vs Classifiers
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Categorization involves features and a classifier

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Image 
Features

Testing

Test Image

Trained 
Classifier

Outdoor
PredictionTrained 

Classifier



New training setup with moderate sized 
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New training setup with moderate sized 
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