Introduction to Recognition

Computer Vision CS 543 / ECE 549 University of Illinois

Many Slides from D. Hoiem, L. Lazebnik.

Outline

- Overview of image and region categorization
 - Task description
 - What is a category
- Example of spatial pyramids bag-of-words scene categorizer
- Key concepts: features and classification
- Deep convolutional neural networks (CNNs)

Recognition as 3D Matching

Recognizing solid objects by alignment with an image. Huttenlocher and Ullman IJCV 1990.

Detection, semantic segmentation, instance segmentation

image classification

object detection

semantic segmentation

instance segmentation

"Classic" recognition pipeline

Overview

Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

- All we need is a distance or similarity function for our inputs
- No training required!

K-nearest neighbor classifier

• Which classifier is more robust to *outliers*?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

Linear classifiers

• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Nonlinear SVMs

• Linearly separable dataset in 1D:

• Non-separable dataset in 1D:

• We can map the data to a *higher-dimensional space*:

Bag of features

- 1. Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

Digit Classification Case Study

The MNIST DATABASE of handwritten digits Yann LeCun & Corinna Cortes

- Has a training set of 60 K examples (6K examples for each digit), and a test set of 10K examples.
- Each digit is a 28 x 28 pixel grey level image. The digit itself occupies the central 20 x 20 pixels, and the center of mass lies at the center of the box.

Bias-Variance Trade-off

Bias and Variance

Bias-Variance Trade-off

Performance as a function of model complexity (SVM)

Model Selection

Bias-Variance Trade-off

As a function of dataset size

Generalization Error

Fixed classifier

Number of Training Examples

Features vs Classifiers

Performance on MNIST Dataset

What are the right features?

Depend on what you want to know!

•Object: shape

Local shape info, shading, shadows, texture

•Scene : geometric layout

- linear perspective, gradients, line segments

•Material properties: albedo, feel, hardness

– Color, texture

•Action: motion

Optical flow, tracked points

Stuff vs Objects

recognizing cloth fabric vs recognizing cups

Feature Design Process

- 1. Start with a model
- 2. Look at errors on development set
- 3. Think of features that can improve performance
- 4. Develop new model, test whether new features help.
- 5. If not happy, go to step 1.
- 6. "Ablations": Simplify system, prune out features that don't help anymore in presence of other features.

Features vs Classifiers

Performance on MNIST Dataset

"Classic" recognition pipeline

Categorization involves features and a classifier

New training setup with moderate sized datasets

Categorization involves features and a classifier

New training setup with moderate sized datasets

