
Introduction to Neural Networks

Slides from L. Lazebnik, B. Hariharan



Outline
• Perceptrons

• Perceptron update rule
• Multi-layer neural networks

• Training method
• Best practices for training classifiers
• After that: convolutional neural networks



Recall: “Shallow” recognition pipeline

Feature 
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier 

Class 
label



“Deep” recognition pipeline

• Learn a feature hierarchy from pixels to 
classifier

• Each layer extracts features from the output 
of previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3
Simple 

Classifier
Image 
pixels



Neural networks vs. SVMs 
(a.k.a. “deep” vs. “shallow” learning)



Linear classifiers revisited: Perceptron

x1

x2

xD

w1

w2

w3
x3

wD

Input

Weights

.

.

.

Output: sgn(w×x + b)

Can incorporate bias as 
component of the weight 
vector by always 
including a feature with 
value set to 1



Loose inspiration: Human neurons





Multi-layer perceptrons
• To make nonlinear classifiers out of perceptrons, 

build a multi-layer neural network!
• This requires each perceptron to have a nonlinearity



Multi-layer perceptrons
• To make nonlinear classifiers out of perceptrons, 

build a multi-layer neural network!
• This requires each perceptron to have a nonlinearity
• To be trainable, the nonlinearity should be differentiable

Sigmoid: g(t) = 1
1+ e−t

Rectified linear unit (ReLU): g(t) = max(0,t) 



• Find network weights to minimize the prediction loss 
between true and estimated labels of training examples:

𝐸 𝐰 =$
!

𝑙(𝐱!, 𝑦!; 𝐰)

• Possible losses (for binary problems):
• Quadratic loss: 𝑙 𝐱!, 𝑦!; 𝐰 = 𝑓𝐰(𝐱!) − 𝑦! #

• Log likelihood loss: 𝑙 𝐱!, 𝑦!; 𝐰 = −log 𝑃𝐰 𝑦! | 𝐱!

• Hinge loss: 𝑙 𝐱!, 𝑦!; 𝐰 = max(0,1 − 𝑦!𝑓𝐰 𝐱! )

Training of multi-layer networks



• Find network weights to minimize the prediction loss 
between true and estimated labels of training examples:

𝐸 𝐰 =$
!

𝑙(𝐱!, 𝑦!; 𝐰)

• Update weights by gradient descent:

Training of multi-layer networks

w
ww

¶
¶

-¬
Ea

w1
w2



• Find network weights to minimize the prediction loss 
between true and estimated labels of training examples:

𝐸 𝐰 =$
!

𝑙(𝐱!, 𝑦!; 𝐰)

• Update weights by gradient descent:

• Back-propagation: gradients are computed in the 
direction from output to input layers and combined using 
chain rule

• Stochastic gradient descent: compute the weight 
update w.r.t. one training example (or a small batch of 
examples) at a time, cycle through training examples in 
random order in multiple epochs

Training of multi-layer networks

w
ww

¶
¶

-¬
Ea



Back-propagation



Network with a single hidden layer
• Neural networks with at least one hidden 

layer are universal function approximators

http://neuralnetworksanddeeplearning.com/chap4.html


Network with a single hidden layer
• Hidden layer size and network capacity:

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/


Regularization
• It is common to add a penalty (e.g., quadratic) on 

weight magnitudes to the objective function:

𝐸 𝐰 =$
!

𝑙(𝐱!, 𝑦!; 𝐰) + 𝜆 𝐰 #

• Quadratic penalty encourages network to use all of its inputs 
“a little” rather than a few inputs “a lot”

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/


Multi-Layer Network Demo

http://playground.tensorflow.org/

http://playground.tensorflow.org/


Dealing with multiple classes
• If we need to classify inputs into C different 

classes, we put C units in the last layer to 
produce C one-vs.-others scores 𝑓!, 𝑓", … , 𝑓#

• Apply softmax function to convert these 
scores to probabilities:

softmax 𝑓!, … , 𝑓$ =
exp(𝑓!)
∑% exp(𝑓%)

, … ,
exp(𝑓#)
∑% exp(𝑓%)

• If one of the inputs is much larger than the others, 
then the corresponding softmax value will be 
close to 1 and others will be close to 0

• Use log likelihood (cross-entropy) loss: 
𝑙 𝐱& , 𝑦&; 𝐰 = −log 𝑃𝐰 𝑦& | 𝐱&



Neural networks: Pros and cons
• Pros

• Flexible and general function approximation 
framework

• Can build extremely powerful models by adding 
more layers

• Cons
• Hard to analyze theoretically (e.g., training is 

prone to local optima)
• Huge amount of training data, computing power 

may be required to get good performance
• The space of implementation choices is huge 

(network architectures, parameters)



Best practices for training classifiers

• Goal: obtain a classifier with good 
generalization or performance on never 
before seen data

1. Learn parameters on the training set
2. Tune hyperparameters (implementation 

choices) on the held out validation set
3. Evaluate performance on the test set

• Crucial: do not peek at the test set 
when iterating steps 1 and 2!



What’s the big deal?



http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015

http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015


Bias-variance tradeoff
• Prediction error of learning algorithms has two main 

components:
• Bias: error due to simplifying model assumptions
• Variance: error due to randomness of training set

• Bias-variance tradeoff can be controlled by turning 
“knobs” that determine model complexity

High bias, low variance Low bias, high variance

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html


Underfitting and overfitting
• Underfitting: training and test error are both high

• Model does an equally poor job on the training and the test set
• The model is too “simple” to represent the data or the model 

is not trained well
• Overfitting: Training error is low but test error is high

• Model fits irrelevant characteristics (noise) in the training data
• Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

