
From image classification to object detection

Object detection

Image source

Image classification

Slides from L. Lazebnik

https://medium.com/ilenze-com/object-detection-using-deep-learning-for-advanced-users-part-1-183bbbb08b19


What are the challenges of object detection?
• Images may contain more than one class, 

multiple instances from the same class
• Bounding box localization
• Evaluation

Image source

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088


Outline
• Task definition and evaluation
• Generic object detection before deep learning

• Sliding windows
• HoG, DPMs (Components, Parts)
• Region Classification Methods

• Deep detection approaches
• R-CNN
• Fast R-CNN
• Faster R-CNN
• SSD



Object detection evaluation
• At test time, predict bounding boxes, class labels, 

and confidence scores
• For each detection, determine whether it is a true or 

false positive
• PASCAL criterion: Area(GT ∩ Det) / Area(GT ∪ Det) > 0.5
• For multiple detections of the same ground truth 

box, only one considered a true positive

cat

dog

cat: 0.8

dog: 0.6

dog: 0.55

Ground truth (GT)



Object detection evaluation
• At test time, predict bounding boxes, class labels, 

and confidence scores
• For each detection, determine whether it is a true or 

false positive
• For each class, plot Recall-Precision curve and 

compute Average Precision (area under the curve)
• Take mean of  AP over classes to get mAP

Precision: 
true positive detections / 
total detections
Recall:
true positive detections / 
total positive test instances



PASCAL VOC Challenge (2005-2012)

• 20 challenge classes:
• Person
• Animals: bird, cat, cow, dog, horse, sheep 
• Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train 
• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

• Dataset size (by 2012): 11.5K training/validation images, 
27K bounding boxes, 7K segmentations 

http://host.robots.ox.ac.uk/pascal/VOC/

http://host.robots.ox.ac.uk/pascal/VOC/


Progress on PASCAL detection
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Newer benchmark: COCO

http://cocodataset.org/#home

http://cocodataset.org/


COCO detection metrics

• Leaderboard: http://cocodataset.org/#detection-leaderboard
• Current best mAP: ~52%

• Official COCO challenges no longer include detection
• More emphasis on instance segmentation and dense segmentation

http://cocodataset.org/


Detection before deep learning



Conceptual approach: Sliding window detection

• Slide a window across the image and evaluate a 
detection model at each location
• Thousands of windows to evaluate: efficiency and low false positive 

rates are essential
• Difficult to extend to a large range of scales, aspect ratios

Detection



Histograms of oriented gradients (HOG)
• Partition image into blocks and compute histogram of 

gradient orientations in each block

Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 
CVPR 2005

http://lear.inrialpes.fr/pubs/2005/DT05


Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector 

machine

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 
CVPR 2005

positive training examples

negative training examples

http://lear.inrialpes.fr/pubs/2005/DT05


Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector 

machine
• At test time, convolve feature map with template
• Find local maxima of response
• For multi-scale detection, repeat over multiple levels of a 

HOG pyramid

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 
CVPR 2005

TemplateHOG feature map Detector response map

http://lear.inrialpes.fr/pubs/2005/DT05


Discriminative part-based models
• Single rigid template usually not enough to 

represent a category
• Many objects (e.g. humans) are articulated, or 

have parts that can vary in configuration 

• Many object categories look very different from 
different viewpoints, or from instance to instance

Slide by N. Snavely



Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Root 
filter

Part 
filters

Deformation 
weights

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Discriminative part-based models

Multiple components

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Progress on PASCAL detection
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Conceptual approach: Proposal-driven detection

• Generate and evaluate a few hundred region 
proposals
• Proposal mechanism can take advantage of low-level perceptual 

organization cues
• Proposal mechanism can be category-specific or category-

independent, hand-crafted or trained
• Classifier can be slower but more powerful



Multiscale Combinatorial Grouping
• Use hierarchical segmentation: start with small 

superpixels and merge based on diverse cues

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014
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Figure 2. Multiscale Combinatorial Grouping. Starting from a multiresolution image pyramid, we perform hierarchical segmentation
at each scale independently. We align these multiple hierarchies and combine them into a single multiscale segmentation hierarchy. Our
grouping component then produces a ranked list of object candidates by efficiently exploring the combinatorial space of these regions.

As an example, in the gPb-ucm algorithm of [4], bright-
ness, color and texture gradients at three fixed disk sizes are
first computed. These local contour cues are globalized us-
ing spectral graph-partitioning, resulting in the gPb contour
detector. Hierarchical segmentation is then performed by
iteratively merging adjacent regions based on the average
gPb strength on their common boundary. This algorithm
produces therefore a tree of regions at multiple levels of ho-
mogeneity in brightness, color and texture, and the bound-
ary strength of its UCM can be interpreted as a measure of
contrast.

Coarse-to-fine is a powerful processing strategy in com-
puter vision. We exploit it in two different ways to develop
an efficient, scalable and high-performance segmentation
algorithm: (1) To speed-up spectral graph partitioning and
(2) To create aligned segmentation hierarchies.

3.1. Fast Downsampled Eigenvector Computation
The normalized cuts criterion is a key globalization

mechanism of recent high-performance contour detectors
such as [4, 21]; Although powerful, such spectral graph par-
titioning has a significant computational cost and memory
footprint that limit its scalability. In this section, we present
an efficient normalized cuts algorithm which in practice
preserves full performance for contour detection, has low
memory requirements and provides a 20⇥ speed-up.

Given a symmetric affinity matrix A, we would like to
compute the k smallest eigenvectors of the Laplacian of A.
Directly computing such eigenvectors can be very costly
even with sophisticated solvers, due to the large size of A.
We therefore present a technique for approximating them
much more efficiently by taking advantage of the multiscale
nature of our problem: A models affinities between pixels
in an image, and images naturally lend themselves to mul-
tiscale or pyramid-like representations and algorithms.

Our algorithm is inspired by two observations: 1) if A
is bistochastic (the rows and columns of A sum to 1) then

the eigenvectors of the Laplacian A are equal to the eigen-
vectors of the Laplacian of A2, and 2) because of the scale-
similar nature of images, the eigenvectors of a “downsam-
pled” version of A in which every other pixel has been re-
moved should be similar to the eigenvectors of A. Let us
define pixel decimate (A), which takes an affinity ma-
trix A and returns the indices of rows/columns in A corre-
sponding to a decimated version of the image from which
A was constructed. That is, if i = pixel decimate (A),
then A [i, i] is a decimated matrix in which alternating rows
and columns of the image have been removed. Computing
the eigenvectors of A [i, i] works poorly, as decimation dis-
connects pixels in the affinity matrix, but the eigenvectors
of the decimated squared affinity matrix A2

[i, i] are sim-
ilar to those of A, because by squaring the matrix before
decimation we intuitively allow each pixel to propagate in-
formation to all of its neighbors in the graph, maintaining
connections even after decimation. Our algorithm works by
efficiently computing A2

[i, i] as A [:, i]T A [:, i] (the naive
approach of first squaring A and then decimating it is in-
tractable), computing the eigenvectors of A2

[i, i], and then
“upsampling” those eigenvectors back to the space of the
original image by multiplying by A [:, i]. This squaring-
and-decimation procedure can be applied recursively sev-
eral times, improving efficiency while sacrificing accuracy.

Pseudocode for our algorithm, which we call “DNCuts”
(downsampled normalized cuts) is given in Alg. 1, where A
is our affinity matrix and D is the number of times that our
squaring-and-decimation operation is applied. Our algo-
rithm repeatedly applies our joint squaring-and-decimation
procedure, computes the smallest k eigenvectors of the
final “downsampled” matrix AD by using a standard
sparse eigensolver ncuts(AD, K), and repeatedly “upsam-
ples” those eigenvectors. Because our A is not bistochastic
and decimation is not an orthonormal operation, we must do
some normalization throughout the algorithm (line 5) and
whiten the resulting eigenvectors (line 10). We found that

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/resources/MCG_CVPR2014.pdf


Region Proposals for Detection (Eval)

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/resources/MCG_CVPR2014.pdf


Region Proposals for Detection

• Feature extraction: color SIFT, codebook of 
size 4K, spatial pyramid with four levels = 
360K dimensions

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for 
Object Recognition, IJCV 2013

http://koen.me/research/selectivesearch/


Another proposal method: EdgeBoxes

• Box score: number of edges 
in the box minus number of 
edges that overlap the box 
boundary

• Uses a trained edge detector
• Uses efficient data structures 

(incl. integral images) for fast 
evaluation

• Gets 75% recall with 800 
boxes (vs. 1400 for Selective 
Search), is 40 times faster

C. Zitnick and P. Dollar, Edge Boxes: Locating Object Proposals from Edges, 
ECCV 2014 

http://research.microsoft.com/pubs/220569/ZitnickDollarECCV14edgeBoxes.pdf


R-CNN: Region proposals + CNN features

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region 
through ConvNet

Classify regions with SVMs

Region proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and 
Semantic Segmentation, CVPR 2014. 

Source: R. Girshick

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


R-CNN details

• Regions: ~2000 Selective Search proposals
• Network: AlexNet pre-trained on ImageNet (1000 

classes), fine-tuned on PASCAL (21 classes)
• Final detector: warp proposal regions, extract fc7 network 

activations (4096 dimensions), classify with linear SVM
• Bounding box regression to refine box locations
• Performance: mAP of 53.7% on PASCAL 2010 

(vs. 35.1% for Selective Search and 33.4% for Deformable 
Part Models)



R-CNN pros and cons
• Pros

• Accurate!
• Any deep architecture can immediately be “plugged in”

• Cons
• Not a single end-to-end system

• Fine-tune network with softmax classifier (log loss)
• Train post-hoc linear SVMs (hinge loss)
• Train post-hoc bounding-box regressions (least squares)

• Training is slow (84h), takes a lot of disk space
• 2000 CNN passes per image

• Inference (detection) is slow (47s / image with VGG16)



Fast R-CNN

ConvNet

Forward whole image through ConvNet

Conv5 feature map of image

RoI Pooling layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Region 
proposals

Linear Bounding-box regressors

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf


RoI pooling
• “Crop and resample” a fixed-size feature 

representing a region of interest out of the 
outputs of the last conv layer
• Use nearest-neighbor interpolation of coordinates, max pooling

RoI
pooling 

layer

Conv feature map

FC layers 
…

Region of Interest 
(RoI)

RoI
feature

Source: R. Girshick, K. He



RoI pooling illustration

Image source

https://deepsense.ai/region-of-interest-pooling-explained/


Prediction
• For each RoI, network predicts probabilities 

for C+1 classes (class 0 is background) and 
four bounding box offsets for C classes

R. Girshick, Fast R-CNN, ICCV 2015

http://arxiv.org/pdf/1504.08083.pdf


Fast R-CNN training

ConvNet

Linear +
softmax

FCs

Linear

Log loss + smooth L1 loss

Trainable

Multi-task loss

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf


Multi-task loss
• Loss for ground truth class 𝑦, predicted class probabilities 

𝑃(𝑦), ground truth box 𝑏, and predicted box (𝑏:

𝐿 𝑦, 𝑃, 𝑏, &𝑏 = −log 𝑃(𝑦) + 𝜆𝕀[𝑦 ≥ 1]𝐿!"#(𝑏, &𝑏)

• Regression loss: smooth L1 loss on top of log space offsets 
relative to proposal 

𝐿!"# 𝑏, &𝑏 = 5
$%{',),*,+}

smooth-!(𝑏$ − &𝑏$)

softmax loss regression loss



Bounding box regression

Region proposal
(a.k.a default box, 
prior, reference, 
anchor)

Ground truth box

Predicted 
box

Target offset 
to predict*

Predicted 
offset

Loss

*Typically in transformed, 
normalized coordinates



Fast R-CNN results

Fast R-CNN R-CNN 
Train time (h) 9.5 84
- Speedup 8.8x 1x
Test time / 
image

0.32s 47.0s

Test speedup 146x 1x
mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

Source: R. Girshick

(vs. 53.7% for 
AlexNet)



Faster R-CNN

CNN

feature map

Region 
proposals

CNN

feature map

Region Proposal 
Network

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks, NIPS 2015

share features

http://arxiv.org/pdf/1506.01497.pdf


Region proposal network (RPN)
• Slide a small window (3x3) over the conv5 layer 

• Predict object/no object
• Regress bounding box coordinates with reference to anchors 

(3 scales x 3 aspect ratios)



One network, four losses

image

CNN

feature map

Region Proposal 
Network

proposals

RoI pooling

Classification  
loss

Bounding-box 
regression loss

…

Classification  
loss

Bounding-box 
regression loss

Source: R. Girshick, K. He



Faster R-CNN results



Object detection progress
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Streamlined detection architectures
• The Faster R-CNN pipeline separates 

proposal generation and region classification:

• Is it possible do detection in one shot?

Conv feature 
map of the 

entire image

Region 
Proposals

RoI
features

RPN

RoI
pooling

Classification + 
Regression

Detections

Conv feature 
map of the 

entire image
Detections

Classification + 
Regression



SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

• Similarly to RPN, use anchors and directly predict 
class-specific bounding boxes.

http://arxiv.org/pdf/1512.02325.pdf


SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

http://arxiv.org/pdf/1512.02325.pdf


SSD: Results (PASCAL 2007)
• More accurate and faster than YOLO and 

Faster R-CNN



Multi-resolution prediction
• SSD predicts boxes of different size from different 

conv maps, but each level of resolution has its 
own predictors and higher-level context does not 
get propagated back to lower-level feature maps

• Can we have a more elegant multi-resolution 
prediction architecture?



Feature pyramid networks

• Improve predictive power of 
lower-level feature maps by 
adding contextual 
information from higher-
level feature maps

• Predict different sizes of 
bounding boxes from 
different levels of the 
pyramid (but share 
parameters of predictors)

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid 
networks for object detection, CVPR 2017.

http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf


RetinaNet
• Combine feature pyramid network with focal loss to 

reduce the standard cross-entropy loss for well-
classified examples

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, 
ICCV 2017.

https://arxiv.org/pdf/1708.02002.pdf


RetinaNet
• Combine feature pyramid network with focal loss to 

reduce the standard cross-entropy loss for well-
classified examples

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, 
ICCV 2017.

https://arxiv.org/pdf/1708.02002.pdf


RetinaNet: Results

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, 
ICCV 2017.

https://arxiv.org/pdf/1708.02002.pdf


Deconvolutional SSD

• Improve performance of SSD by increasing resolution 
through learned “deconvolutional” layers

C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A. Berg, DSSD: Deconvolutional single-shot detector, 
arXiv 2017.

https://arxiv.org/pdf/1701.06659.pdf


Review: R-CNN

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region 
through ConvNet

Classify regions with SVMs

Region proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and 
Semantic Segmentation, CVPR 2014. 

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


Review: Fast R-CNN

ConvNet

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Region 
proposals

Linear Bounding-box regressors

R. Girshick, Fast R-CNN, ICCV 2015

http://arxiv.org/pdf/1504.08083.pdf


Review: Faster R-CNN

CNN

feature map

Region 
proposals

CNN

feature map

Region Proposal 
Network

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks, NIPS 2015

share features

http://arxiv.org/pdf/1506.01497.pdf


Review: RPN
• Slide a small window (3x3) over the conv5 layer 

• Predict object/no object
• Regress bounding box coordinates with reference to anchors 

(3 scales x 3 aspect ratios)



Review: YOLO
1. Take 7x7 conv feature map
2. Add two FC layers to  predict, at 

each location, a score for each class 
and 2 bboxes w/ confidences

• For PASCAL, output is 7x7x30 
(30 = 20 + 2*(4+1))

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time 
Object Detection, CVPR 2016

https://pjreddie.com/media/files/papers/yolo_1.pdf


Review: SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

http://arxiv.org/pdf/1512.02325.pdf


Summary: Object detection with CNNs
• R-CNN: region proposals + CNN on 

cropped, resampled regions
• Fast R-CNN: region proposals + RoI pooling 

on top of a conv feature map
• Faster R-CNN: RPN + RoI pooling
• Next generation of detectors

• Direct prediction of BB offsets, class scores on 
top of conv feature maps

• Get better context by combining feature maps at 
multiple resolutions


