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Outline
• Bottom-up segmentation

• Superpixel segmentation

• Semantic segmentation
• Metrics
• Architectures

• “Convolutionalization”
• Dilated convolutions
• Hyper-columns / skip-connections
• Learned up-sampling architectures

• Instance segmentation
• Metrics, RoI Align

• Other dense prediction problems



Superpixel segmentation
• Group together similar-looking pixels as an 

intermediate stage of processing
• “Bottom-up” process
• Typically unsupervised
• Should be fast
• Typically aims to produce an over-segmentation

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

http://ttic.uchicago.edu/~xren/research/iccv2003/
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9

Fig. 11. Watershed Transform. Left: Image. Middle Left: Boundary strength E(x, y). We regard E(x, y) as a
topographic surface and flood it from its local minima. Middle Right: This process partitions the image into catchment
basins P0 and arcs K0. There is exactly one basin per local minimum and the arcs coincide with the locations where
the floods originating from distinct minima meet. Local minima are marked with red dots. Right: Each arc weighted by
the mean value of E(x, y) along it. This weighting scheme produces artifacts, such as the strong horizontal contours
in the small gap between the two statues.

and spectral signals:

gPb(x, y, ✓) =
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�i,sGi,�(i,s)(x, y, ✓) + � · sPb(x, y, ✓)

(14)
We subsequently rescale gPb using a sigmoid to match
a probabilistic interpretation. As with mPb (10), the
weights �i,s and � are learned by gradient ascent on the
F-measure using the BSDS training images.

3.4 Results
Qualitatively, the combination of the multiscale cues
with our globalization machinery translates into a re-
duction of clutter edges and completion of contours in
the output, as shown in Figure 9.

Figure 10 breaks down the contributions of the mul-
tiscale and spectral signals to the performance of gPb.
These precision-recall curves show that the reduction of
false positives due to the use of global information in
sPb is concentrated in the high thresholds, while gPb
takes the best of both worlds, relying on sPb in the high
precision regime and on mPb in the high recall regime.

Looking again at the comparison of contour detectors
on the BSDS300 benchmark in Figure 1, the mean im-
provement in precision of gPb with respect to the single
scale Pb is 10% in the recall range [0.1, 0.9].

4 SEGMENTATION
The nonmax suppressed gPb contours produced in the
previous section are often not closed and hence do not
partition the image into regions. These contours may still
be useful, e.g. as a signal on which to compute image
descriptors. However, closed regions offer additional

advantages. Regions come with their own scale estimates
and provide natural domains for computing features
used in recognition. Many visual tasks can also benefit
from the complexity reduction achieved by transforming
an image with millions of pixels into a few hundred or
thousand “superpixels” [67].

In this section, we show how to recover closed con-
tours, while preserving the gains in boundary quality
achieved in the previous section. Our algorithm, first
reported in [4], builds a hierarchical segmentation by
exploiting the information in the contour signal. We
introduce a new variant of the watershed transform
[68], [69], the Oriented Watershed Transform (OWT), for
producing a set of initial regions from contour detector
output. We then construct an Ultrametric Contour Map
(UCM) [35] from the boundaries of these initial regions.

This sequence of operations (OWT-UCM) can be seen
as generic machinery for going from contours to a hier-
archical region tree. Contours encoded in the resulting
hierarchical segmentation retain real-valued weights in-
dicating their likelihood of being a true boundary. For a
given threshold, the output is a set of closed contours
that can be treated as either a segmentation or as a
boundary detector for the purposes of benchmarking.

To describe our algorithm in the most general setting,
we now consider an arbitrary contour detector, whose
output E(x, y, ✓) predicts the probability of an image
boundary at location (x, y) and orientation ✓.

4.1 Oriented Watershed Transform
Using the contour signal, we first construct a finest
partition for the hierarchy, an over-segmentation whose
regions determine the highest level of detail considered.

Contour Detection and Hierarchical Image Segmentation P. Arbeláez. PAMI 2010.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf
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Contour Detection and Hierarchical Image Segmentation P. Arbeláez. PAMI 2010.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf


Multiscale Combinatorial Grouping
• Use hierarchical segmentation: start with small 

superpixels and merge based on diverse cues

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014
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Figure 2. Multiscale Combinatorial Grouping. Starting from a multiresolution image pyramid, we perform hierarchical segmentation
at each scale independently. We align these multiple hierarchies and combine them into a single multiscale segmentation hierarchy. Our
grouping component then produces a ranked list of object candidates by efficiently exploring the combinatorial space of these regions.

As an example, in the gPb-ucm algorithm of [4], bright-
ness, color and texture gradients at three fixed disk sizes are
first computed. These local contour cues are globalized us-
ing spectral graph-partitioning, resulting in the gPb contour
detector. Hierarchical segmentation is then performed by
iteratively merging adjacent regions based on the average
gPb strength on their common boundary. This algorithm
produces therefore a tree of regions at multiple levels of ho-
mogeneity in brightness, color and texture, and the bound-
ary strength of its UCM can be interpreted as a measure of
contrast.

Coarse-to-fine is a powerful processing strategy in com-
puter vision. We exploit it in two different ways to develop
an efficient, scalable and high-performance segmentation
algorithm: (1) To speed-up spectral graph partitioning and
(2) To create aligned segmentation hierarchies.

3.1. Fast Downsampled Eigenvector Computation
The normalized cuts criterion is a key globalization

mechanism of recent high-performance contour detectors
such as [4, 21]; Although powerful, such spectral graph par-
titioning has a significant computational cost and memory
footprint that limit its scalability. In this section, we present
an efficient normalized cuts algorithm which in practice
preserves full performance for contour detection, has low
memory requirements and provides a 20⇥ speed-up.

Given a symmetric affinity matrix A, we would like to
compute the k smallest eigenvectors of the Laplacian of A.
Directly computing such eigenvectors can be very costly
even with sophisticated solvers, due to the large size of A.
We therefore present a technique for approximating them
much more efficiently by taking advantage of the multiscale
nature of our problem: A models affinities between pixels
in an image, and images naturally lend themselves to mul-
tiscale or pyramid-like representations and algorithms.

Our algorithm is inspired by two observations: 1) if A
is bistochastic (the rows and columns of A sum to 1) then

the eigenvectors of the Laplacian A are equal to the eigen-
vectors of the Laplacian of A2, and 2) because of the scale-
similar nature of images, the eigenvectors of a “downsam-
pled” version of A in which every other pixel has been re-
moved should be similar to the eigenvectors of A. Let us
define pixel decimate (A), which takes an affinity ma-
trix A and returns the indices of rows/columns in A corre-
sponding to a decimated version of the image from which
A was constructed. That is, if i = pixel decimate (A),
then A [i, i] is a decimated matrix in which alternating rows
and columns of the image have been removed. Computing
the eigenvectors of A [i, i] works poorly, as decimation dis-
connects pixels in the affinity matrix, but the eigenvectors
of the decimated squared affinity matrix A2

[i, i] are sim-
ilar to those of A, because by squaring the matrix before
decimation we intuitively allow each pixel to propagate in-
formation to all of its neighbors in the graph, maintaining
connections even after decimation. Our algorithm works by
efficiently computing A2

[i, i] as A [:, i]T A [:, i] (the naive
approach of first squaring A and then decimating it is in-
tractable), computing the eigenvectors of A2

[i, i], and then
“upsampling” those eigenvectors back to the space of the
original image by multiplying by A [:, i]. This squaring-
and-decimation procedure can be applied recursively sev-
eral times, improving efficiency while sacrificing accuracy.

Pseudocode for our algorithm, which we call “DNCuts”
(downsampled normalized cuts) is given in Alg. 1, where A
is our affinity matrix and D is the number of times that our
squaring-and-decimation operation is applied. Our algo-
rithm repeatedly applies our joint squaring-and-decimation
procedure, computes the smallest k eigenvectors of the
final “downsampled” matrix AD by using a standard
sparse eigensolver ncuts(AD, K), and repeatedly “upsam-
ples” those eigenvectors. Because our A is not bistochastic
and decimation is not an orthonormal operation, we must do
some normalization throughout the algorithm (line 5) and
whiten the resulting eigenvectors (line 10). We found that

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/resources/MCG_CVPR2014.pdf


Contour Detection and Hierarchical Image Segmentation. P. Arbeláez et al. PAMI 2010.

Applications: Interactive Segmentation 16

Fig. 19. Interactive segmentation. Left: Image. Middle: UCM produced by gPb-owt-ucm (grayscale) with additional
user annotations (color dots and lines). Right: The region hierarchy defined by the UCM allows us to automatically
propagate annotations to unlabeled segments, resulting in the desired labeling of the image with minimal user effort.

• MSRC [71]
The MSRC object recognition database is composed
of 591 natural images with objects belonging to
21 classes. We evaluate performance using the
ground-truth object instance labeling of [11], which
is cleaner and more precise than the original data.

• PASCAL 2008 [8]
We use the train and validation sets of the segmen-
tation task on the 2008 PASCAL segmentation chal-
lenge, composed of 1023 images. This is one of the
most difficult and varied datasets for recognition.
We evaluate performance with respect to the object
instance labels provided. Note that only objects
belonging to the 20 categories of the challenge are
labeled, and 76% of all pixels are unlabeled.

4.4.4 Summary
The gPb-owt-ucm segmentation algorithm offers the best
performance on every dataset and for every benchmark
criterion we tested. In addition, it is straight-forward,
fast, has no parameters to tune, and, as discussed in
the following sections, can be adapted for use with top-
down knowledge sources.

5 INTERACTIVE SEGMENTATION
Until now, we have only discussed fully automatic image
segmentation. Human assisted segmentation is relevant
for many applications, and recent approaches rely on the
graph-cuts formalism [72], [73], [74] or other energy min-
imization procedure [75] to extract foreground regions.

For example, [72] cast the task of determining binary
foreground/background pixel assignments in terms of
a cost function with both unary and pairwise poten-
tials. The unary potentials encode agreement with es-
timated foreground or background region models and
the pairwise potentials bias neighboring pixels not sep-
arated by a strong boundary to have the same label.

They transform this system into an equivalent minimum
cut/maximum flow graph partitioning problem through
the addition of a source node representing the fore-
ground and a sink node representing the background.
Edge weights between pixel nodes are defined by the
pairwise potentials, while the weights between pixel
nodes and the source and sink nodes are determined by
the unary potentials. User-specified hard labeling con-
straints are enforced by connecting a pixel to the source
or sink with sufficiently large weight. The minimum cut
of the resulting graph can be computed efficiently and
produces a cost-optimizing assignment.

It turns out that the segmentation trees generated
by the OWT-UCM algorithm provide a natural starting
point for user-assisted refinement. Following the proce-
dure of [76], we can extend a partial labeling of regions
to a full one by assigning to each unlabeled region the
label of its closest labeled region, as determined by the
ultrametric distance (15). Computing the full labeling is
simply a matter of propagating information in a single
pass along the segmentation tree. Each unlabeled region
receives the label of the first labeled region merged with
it. This procedure, illustrated in Figure 19, allows a user
to obtain high quality results with minimal annotation.

6 MULTISCALE FOR OBJECT ANALYSIS

Our contour detection and segmentation algorithms cap-
ture multiscale information by combining local gradient
cues computed at three different scales, as described in
Section 3.2. We did not see any performance benefit on
the BSDS by using additional scales. However, this fact is
not an invitation to conclude that a simple combination
of a limited range of local cues is a sufficient solution
to the problem of multiscale image analysis. Rather,
it is a statement about the nature of the BSDS. The
fixed resolution of the BSDS images and the inherent
photographic bias of the dataset lead to the situation in

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf


Semantic Segmentation: Metrics

Image Ground Truth Prediction

• Pixel Classification Accuracy
• Intersection over Union
• Average Precision



Semantic Segmentation: Metrics



Semantic Segmentation
• Do dense prediction as a post-process on 

top of an image classification CNN

Have: feature maps from 
image classification network

Want: pixel-wise 
predictions



Convolutionalization

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

• Design a network with only convolutional 
layers, make predictions for all pixels at once

http://arxiv.org/pdf/1411.4038.pdf


Sparse, Low-resolution Output

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

http://arxiv.org/pdf/1411.4038.pdf


Aside: Receptive Field, Stride
• Receptive Field: Pixels in the image that are 

“connected” to a given unit.
• Stride: Shift in receptive field between 

consecutive units in a convolutional feature 
map.

• See: https://distill.pub/2019/computing-
receptive-fields/

https://distill.pub/2019/computing-receptive-fields/


Sparse, Low-resolution Output

J. Long, et al., Fully Convolutional Networks for Semantic Segmentation, CVPR 2015
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FCN-32s FCN-16s FCN-8s Ground truth

Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Figure 3).

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Figure 4 shows
the progressively finer structure of the output.

TABLE 3
Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval.

Learning is end-to-end with batch size one and high momentum, with
the exception of the fixed variant that fixes all features. Note that

FCN-32s is FCN-VGG16, renamed to highlight stride, and the
FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

4.4 Experimental framework
Fine-tuning We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73% of the full fine-tuning performance
as compared in Table 3. Fine-tuning in stages takes 36 hours
on a single GPU. Learning FCN-8s all-at-once takes half the
time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.
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our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
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simple, end-to-end method is accurate and fast.
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by randomly mirroring and “jittering” the images by trans-
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Bilinear Up sampling: Differentiable, 
train through up-sampling.

http://arxiv.org/pdf/1411.4038.pdf
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gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.
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Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Figure 3).

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Figure 4 shows
the progressively finer structure of the output.

TABLE 3
Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval.

Learning is end-to-end with batch size one and high momentum, with
the exception of the fixed variant that fixes all features. Note that

FCN-32s is FCN-VGG16, renamed to highlight stride, and the
FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

4.4 Experimental framework
Fine-tuning We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73% of the full fine-tuning performance
as compared in Table 3. Fine-tuning in stages takes 36 hours
on a single GPU. Learning FCN-8s all-at-once takes half the
time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.

• Shift the image, and re-run CNN to get 
denser output.



Fix 1: A trous Conv., Dilated Conv.

A. 3x3 conv
stride 2

B. 3x3 conv, stride1



Fix 1: A trous Conv., Dilated Conv.

A. 3x3 conv
stride 1

B. 3x3 conv, stride1, 
dilation 2



Fix 1: A trous Conv., Dilated Conv.

Image source

Dilation factor 1 Dilation factor 2 Dilation factor 3

https://qph.fs.quoracdn.net/main-qimg-d9025e88d7d792e26f4040b767b25819.webp


Fix 1: A trous Conv., Dilated Conv.
• Use in FCN to remove downsampling: 

change stride of max pooling layer from 2 to 1, 
dilate subsequent convolutions by factor of 2 
(possibly without re-training any parameters)

• Instead of reducing spatial resolution of feature 
maps, use a large sparse filter

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille, DeepLab: Semantic Image Segmentation with 
Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI 2017

https://arxiv.org/pdf/1606.00915.pdf


Fix 1: A trous Conv., Dilated Conv.
• Can increase receptive field size exponentially with a 

linear growth in the number of parameters

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 
ICLR 2016 

Feature map 1 (F1) 
produced from F0 by 
1-dilated convolution

F2 produced from 
F1 by 2-dilated 

convolution

F3 produced from 
F2 by 4-dilated 

convolution

Receptive field: 3x3 Receptive field: 7x7 Receptive field: 15x15

https://arxiv.org/pdf/1511.07122.pdf


Fix 2: Hyper-columns/Skip Connections
• Even though with dilation we can predict each pixel, 

fine-grained information needs to be propagated 
through the network.

• Idea: Additionally use features from within the 
network.

B. Hariharan, P. Arbelaez, R. Girshick, and J. 
Malik, Hypercolumns for Object Segmentation 

and Fine-grained Localization, CVPR 2015
J. Long, et al., Fully Convolutional Networks for 

Semantic Segmentation, CVPR 2015

http://arxiv.org/pdf/1411.5752.pdf
http://arxiv.org/pdf/1411.4038.pdf


Fix 2: Hyper-columns/Skip Connections

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

• Predictions by 1x1 conv layers, 
bilinear upsampling

• Predictions by 1x1 conv layers, 
learned 2x upsampling, 
fusion by summing

http://arxiv.org/pdf/1411.4038.pdf


Fix 2: Hyper-columns/Skip Connections

J. Long, et al., Fully Convolutional Networks for 
Semantic Segmentation, CVPR 2015
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Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Figure 3).

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Figure 4 shows
the progressively finer structure of the output.

TABLE 3
Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval.

Learning is end-to-end with batch size one and high momentum, with
the exception of the fixed variant that fixes all features. Note that

FCN-32s is FCN-VGG16, renamed to highlight stride, and the
FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

4.4 Experimental framework
Fine-tuning We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73% of the full fine-tuning performance
as compared in Table 3. Fine-tuning in stages takes 36 hours
on a single GPU. Learning FCN-8s all-at-once takes half the
time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.

http://arxiv.org/pdf/1411.4038.pdf


Fix 2b: Learned Upsampling

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

• Predictions by 1x1 conv layers, 
bilinear upsampling

• Predictions by 1x1 conv layers, 
learned 2x upsampling, 
fusion by summing

http://arxiv.org/pdf/1411.4038.pdf


• Like FCN, fuse upsampled higher-level feature maps with 
higher-res, lower-level feature maps

• Unlike FCN, fuse by concatenation, predict at the end

U-Net

O. Ronneberger, P. Fischer, T. Brox U-Net: Convolutional Networks for Biomedical 
Image Segmentation, MICCAI 2015

https://arxiv.org/pdf/1505.04597.pdf


Up-convolution

Animation: https://distill.pub/2016/deconv-checkerboard/

• “Paint” in the output feature map with the 
learned filter
• Multiply input value by filter, place result in the 

output, sum overlapping values

https://distill.pub/2016/deconv-checkerboard/


Up-convolution: Alternate view
• 2D case: for stride 2, dilate the input by inserting rows 

and columns of zeros between adjacent entries, 
convolve with flipped filter

• Sometimes called convolution with fractional input 
stride 1/2

V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, 
arXiv 2018

input

output
Q: What 3x3 filter would 
correspond to bilinear 
upsampling?

1
4

1
2

1
4

1
2

1
1
2

1
4

1
2

1
4

https://arxiv.org/pdf/1603.07285.pdf


Upsampling in a deep network
• Alternative to transposed convolution: 

max unpooling

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

5 6

7 8

Max 
pooling

Remember pooling 
indices (which 

element was max)

0 0 6 0

0 5 0 0

0 0 0 0

7 0 0 8

Max 
unpooling

Output is sparse, so need to 
follow this with a transposed 

convolution layer

(sometimes called 
deconvolution instead of 
transposed convolution, 
but this is not accurate)



DeconvNet

H. Noh, S. Hong, and B. Han, Learning Deconvolution Network for Semantic 
Segmentation, ICCV 2015

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf


Summary of upsampling architectures

Figure source

https://phillipi.github.io/pix2pix/


Fix 3: Use local edge information (CRFs)

P (y|x) = 1

Z
e�E(y,x)

y⇤ = argmax
y

P (y|x)

= argmin
y

E(y,x)

E(y,x) =
X

i

Edata(yi,x) +
X

i,j2N
Esmooth(yi, yj ,x)

Source: B. Hariharan



Fix 3: Use local edge information (CRFs)

Idea: take convolutional network prediction and 
sharpen using classic techniques

Conditional Random Field

y⇤ = argmin
y

X

i

Edata(yi,x) +
X

i,j2N
Esmooth(yi, yj ,x)

Esmooth(yi, yj ,x) = µ(yi, yj)wij(x)

Label 
compatibility

Pixel 
similarity

Source: B. Hariharan



Fix 3: Use local edge information (CRFs)

Source: B. Hariharan
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Fig. 6. Visualization results on val set. The last row shows a failure mode.

Backbone Decoder ASPP Image-Level mIOU

X-65 X X 77.33
X-65 X X X 78.79
X-65 X X 79.14
X-71 X X 79.55

Method Coarse mIOU

ResNet-38 [83] X 80.6
PSPNet [24] X 81.2
Mapillary [86] X 82.0

DeepLabv3 X 81.3

DeepLabv3+ X 82.1

(a) val set results (b) test set results
Table 7. (a) DeepLabv3+ on the Cityscapes val set when trained with train fine set.
(b) DeepLabv3+ on Cityscapes test set. Coarse: Use train extra set (coarse annota-
tions) as well. Only a few top models are listed in this table.

models. As shown in Tab. 7 (b), our proposed DeepLabv3+ attains a performance
of 82.1% on the test set, setting a new state-of-art performance on Cityscapes.

5 Conclusion

Our proposed model “DeepLabv3+” employs the encoder-decoder structure where
DeepLabv3 is used to encode the rich contextual information and a simple yet
e↵ective decoder module is adopted to recover the object boundaries. One could
also apply the atrous convolution to extract the encoder features at an arbitrary
resolution, depending on the available computation resources. We also explore
the Xception model and atrous separable convolution to make the proposed
model faster and stronger. Finally, our experimental results show that the pro-
posed model sets a new state-of-the-art performance on PASCAL VOC 2012 and
Cityscapes datasets.

Acknowledgments We would like to acknowledge the valuable discussions
with Haozhi Qi and Jifeng Dai about Aligned Xception, the feedback from Chen
Sun, and the support from Google Mobile Vision team.
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Method mIOU

Deep Layer Cascade (LC) [82] 82.7
TuSimple [77] 83.1
Large Kernel Matters [60] 83.6
Multipath-RefineNet [58] 84.2
ResNet-38 MS COCO [83] 84.9
PSPNet [24] 85.4
IDW-CNN [84] 86.3
CASIA IVA SDN [63] 86.6
DIS [85] 86.8

DeepLabv3 [23] 85.7
DeepLabv3-JFT [23] 86.9

DeepLabv3+ (Xception) 87.8
DeepLabv3+ (Xception-JFT) 89.0

Table 6. PASCAL VOC 2012 test set results with top-performing models.

Image w/ BU w/ Decoder

(a) mIOU vs. Trimap width (b) Decoder e↵ect

Fig. 5. (a) mIOU as a function of trimap band width around the object boundaries
when employing train output stride = eval output stride = 16. BU: Bilinear upsam-
pling. (b) Qualitative e↵ect of employing the proposed decoder module compared with
the naive bilinear upsampling (denoted as BU). In the examples, we adopt Xception
as feature extractor and train output stride = eval output stride = 16.

module and image-level features [52], attains the performance of 77.33% on the
validation set. Adding the proposed decoder module significantly improves the
performance to 78.79% (1.46% improvement). We notice that removing the aug-
mented image-level feature improves the performance to 79.14%, showing that
in DeepLab model, the image-level features are more e↵ective on the PASCAL
VOC 2012 dataset. We also discover that on the Cityscapes dataset, it is e↵ec-
tive to increase more layers in the entry flow in the Xception [26], the same as
what [31] did for the object detection task. The resulting model building on top
of the deeper network backbone (denoted as X-71 in the table), attains the best
performance of 79.55% on the validation set.

After finding the best model variant on val set, we then further fine-tune
the model on the coarse annotations in order to compete with other state-of-art

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian 
Schroff, Hartwig Adam, DeepLabv3+: Encoder-Decoder with 

Atrous Separable Convolution, ECCV 2018

https://arxiv.org/pdf/1802.02611v3.pdf


Instance segmentation

Evaluation
• Average Precision like 

detection, except region IoU
as opposed to box IoU.

B. Hariharan et al., Simultaneous Detection and 
Segmentation, ECCV 2014

http://home.bharathh.info/pubs/pdfs/BharathECCV2014.pdf


Mask R-CNN
• Mask R-CNN = Faster R-CNN + FCN on RoIs

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

Mask branch: separately predict segmentation 
for each possible class

Classification+regression
branch

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


RoIAlign vs. RoIPool
• RoIPool: nearest neighbor quantization

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


RoIAlign vs. RoIPool
• RoIPool: nearest neighbor quantization
• RoIAlign: bilinear interpolation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Mask R-CNN
• From RoIAlign features, predict class label, 

bounding box, and segmentation mask

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

Feature Pyramid Networks 
(FPN) architecture

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Mask R-CNN

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Example results



Example results



Instance segmentation results on COCO

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

AP at different IoU
thresholds

AP for different 
size instances

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Unifying Semantic and Instance Segm.

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár, 
Panoptic Segmentation, CVPR 2019.

Panoptic Segmentation

Alexander Kirillov1,2 Kaiming He1 Ross Girshick1 Carsten Rother2 Piotr Dollár1

1Facebook AI Research (FAIR) 2HCI/IWR, Heidelberg University, Germany

Abstract

We propose and study a task we name panoptic segmen-
tation (PS). Panoptic segmentation unifies the typically dis-

tinct tasks of semantic segmentation (assign a class label to

each pixel) and instance segmentation (detect and segment

each object instance). The proposed task requires gener-

ating a coherent scene segmentation that is rich and com-

plete, an important step toward real-world vision systems.

While early work in computer vision addressed related im-

age/scene parsing tasks, these are not currently popular,

possibly due to lack of appropriate metrics or associated

recognition challenges. To address this, we propose a novel

panoptic quality (PQ) metric that captures performance for

all classes (stuff and things) in an interpretable and unified

manner. Using the proposed metric, we perform a rigorous

study of both human and machine performance for PS on

three existing datasets, revealing interesting insights about

the task. The aim of our work is to revive the interest of the

community in a more unified view of image segmentation.

1. Introduction
In the early days of computer vision, things – countable

objects such as people, animals, tools – received the dom-
inant share of attention. Questioning the wisdom of this
trend, Adelson [1] elevated the importance of studying sys-
tems that recognize stuff – amorphous regions of similar
texture or material such as grass, sky, road. This dichotomy
between stuff and things persists to this day, reflected in
both the division of visual recognition tasks and in the spe-
cialized algorithms developed for stuff and thing tasks.

Studying stuff is most commonly formulated as a task
known as semantic segmentation, see Figure 1b. As stuff
is amorphous and uncountable, this task is defined as sim-
ply assigning a class label to each pixel in an image (note
that semantic segmentation treats thing classes as stuff).
In contrast, studying things is typically formulated as the
task of object detection or instance segmentation, where the
goal is to detect each object and delineate it with a bound-
ing box or segmentation mask, respectively, see Figure 1c.
While seemingly related, the datasets, details, and metrics

(a) image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 1: For a given (a) image, we show ground truth for: (b)
semantic segmentation (per-pixel class labels), (c) instance seg-
mentation (per-object mask and class label), and (d) the proposed
panoptic segmentation task (per-pixel class+instance labels). The
PS task: (1) encompasses both stuff and thing classes, (2) uses a
simple but general format, and (3) introduces a uniform evaluation
metric for all classes. Panoptic segmentation generalizes both se-
mantic and instance segmentation and we expect the unified task
will present novel challenges and enable innovative new methods.

for these two visual recognition tasks vary substantially.
The schism between semantic and instance segmentation

has led to a parallel rift in the methods for these tasks. Stuff
classifiers are usually built on fully convolutional nets [30]
with dilations [52, 5] while object detectors often use object
proposals [15] and are region-based [37, 14]. Overall algo-
rithmic progress on these tasks has been incredible in the
past decade, yet, something important may be overlooked
by focussing on these tasks in isolation.

A natural question emerges: Can there be a reconcilia-

tion between stuff and things? And what is the most effec-
tive design of a unified vision system that generates rich and
coherent scene segmentations? These questions are particu-
larly important given their relevance in real-world applica-
tions, such as autonomous driving or augmented reality.

Interestingly, while semantic and instance segmentation
dominate current work, in the pre-deep learning era there
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https://arxiv.org/pdf/1801.00868.pdf


Keypoint prediction
• Given K keypoints, train model to predict K 

m x m one-hot maps 



Other dense prediction tasks
• Depth estimation
• Surface normal estimation
• Colorization
• ….



Depth and normal estimation
Predicted depth Ground truth

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels 
with a Common Multi-Scale Convolutional Architecture, ICCV 2015

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf


Depth and normal estimation
Predicted normals Ground truth

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels 
with a Common Multi-Scale Convolutional Architecture, ICCV 2015

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf


Colorization

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016

http://richzhang.github.io/colorization/

