Segmentation

Bottom-up Segmentation

Semantic / instance segmentation

Outline

- Bottom-up segmentation
 - Superpixel segmentation
- Semantic segmentation
 - Metrics
 - Architectures
 - "Convolutionalization"
 - Dilated convolutions
 - Hyper-columns / skip-connections
 - Learned up-sampling architectures
- Instance segmentation
 - Metrics, Rol Align
- Other dense prediction problems

Superpixel segmentation

- Group together similar-looking pixels as an intermediate stage of processing
 - "Bottom-up" process
 - Typically unsupervised
 - Should be fast
 - Typically aims to produce an over-segmentation

Superpixel segmentation

Superpixel segmentation

Multiscale Combinatorial Grouping

 Use hierarchical segmentation: start with small superpixels and merge based on diverse cues

Applications: Interactive Segmentation

Contour Detection and Hierarchical Image Segmentation. P. Arbeláez et al. PAMI 2010.

Semantic Segmentation: Metrics

- Pixel Classification Accuracy
- Intersection over Union
- Average Precision

Semantic Segmentation: Metrics

Semantic Segmentation

 Do dense prediction as a post-process on top of an image classification CNN

Convolutionalization

 Design a network with only convolutional layers, make predictions for all pixels at once

Sparse, Low-resolution Output

J. Long, E. Shelhamer, and T. Darrell, <u>Fully Convolutional Networks for Semantic Segmentation</u>, CVPR 2015

Aside: Receptive Field, Stride

- Receptive Field: Pixels in the image that are "connected" to a given unit.
- Stride: Shift in receptive field between consecutive units in a convolutional feature map.
- See: https://distill.pub/2019/computing-receptive-fields/

Sparse, Low-resolution Output

Bilinear Up sampling: Differentiable, train through up-sampling.

J. Long, et al., Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

Fix 1: Shift and Stitch

 Shift the image, and re-run CNN to get denser output.

B. 3x3 conv, stride1

A. 3x3 conv stride 2

		J. 1		
1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25
1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
	9	14	19	24
5	10	15	20	25
1	6	11	16	21
1 2	6 7	11 12	16 17	21
2	7	12	17	22
2	7	12 13	17 18	22
2 3 4	7 8 9	12 13 14	17 18 19	22 23 24
2 3 4 5	7 8 9 10	12 13 14 15	17 18 19 20	22232425
2 3 4 5	7 8 9 10 6	12 13 14 15	17 18 19 20 16	22 23 24 25 21
2 3 4 5 1 2	7 8 9 10 6 7	12 13 14 15 11 12	17 18 19 20 16 17	22 23 24 25 21 22
2 3 4 5 1 2 3	7 8 9 10 6 7 8	12 13 14 15 11 12 13	17 18 19 20 16 17	22 23 24 25 21 22 23

2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25
1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25
1	6	11	16	21
			1	21
2	7	12	17	22
2	7	12	17	22
2	7	12 13	17 18	22
2 3 4	7 8 9	12 13 14	17 18 19	222324
2 3 4 5	7 8 9 10	12 13 14 15	17 18 19 20	22 23 24 25
2 3 4 5	7 8 9 10	12 13 14 15	17 18 19 20	22 23 24 25 21
2 3 4 5 1 2	7 8 9 10 6 7	12 13 14 15 11	17 18 19 20 16 17	22 23 24 25 21 22

11 16 21

1	1	6	6	11	11	16	16	21	21
1	1	6	6	11	11	16	16	21	21
2	2	7	7	12	12	17	17	22	22
2	2	7	7	12	12	17	17	22	22
w	3	8	8	13	13	18	18	23	23
3	3	8	8	13	13	18	18	23	23
4	4	9	9	14	14	19	19	24	24
4	4	9	9	14	14	19	19	24	24
5	5	10	10	15	15	20	20	25	25
5	5	10	10	15	15	20	20	25	25

B. 3x3 conv, stride1, dilation 2

A. 3x3 conv stride 1

1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25

- Use in FCN to remove downsampling: change stride of max pooling layer from 2 to 1, dilate subsequent convolutions by factor of 2 (possibly without re-training any parameters)
- Instead of reducing spatial resolution of feature maps, use a large sparse filter

 Can increase receptive field size exponentially with a linear growth in the number of parameters

Feature map 1 (F1) produced from F0 by 1-dilated convolution

Receptive field: 3x3

Receptive field: 7x7

Receptive field: 15x15

F. Yu and V. Koltun, <u>Multi-scale context aggregation by dilated convolutions</u>, ICLR 2016

Fix 2: Hyper-columns/Skip Connections

- Even though with dilation we can predict each pixel, fine-grained information needs to be propagated through the network.
- Idea: Additionally use features from within the network.

 B. Hariharan, P. Arbelaez, R. Girshick, and J.
 Malik, <u>Hypercolumns for Object Segmentation</u> <u>and Fine-grained Localization</u>, CVPR 2015
 J. Long, et al., <u>Fully Convolutional Networks for</u> <u>Semantic Segmentation</u>, CVPR 2015

Fix 2: Hyper-columns/Skip Connections

- Predictions by 1x1 conv layers, bilinear upsampling
- Predictions by 1x1 conv layers, learned 2x upsampling, fusion by summing

Fix 2: Hyper-columns/Skip Connections

J. Long, et al., <u>Fully Convolutional Networks for</u>
<u>Semantic Segmentation</u>, CVPR 2015

Fix 2b: Learned Upsampling

J. Long, E. Shelhamer, and T. Darrell, <u>Fully Convolutional Networks for Semantic Segmentation</u>, CVPR 2015

U-Net

- Like FCN, fuse upsampled higher-level feature maps with higher-res, lower-level feature maps
- Unlike FCN, fuse by concatenation, predict at the end

O. Ronneberger, P. Fischer, T. Brox <u>U-Net: Convolutional Networks for Biomedical Image Segmentation</u>, MICCAI 2015

Up-convolution

- "Paint" in the output feature map with the learned filter
 - Multiply input value by filter, place result in the output, sum overlapping values

Animation: https://distill.pub/2016/deconv-checkerboard/

Up-convolution: Alternate view

- 2D case: for stride 2, dilate the input by inserting rows and columns of zeros between adjacent entries, convolve with flipped filter
- Sometimes called convolution with fractional input stride 1/2

Q: What 3x3 filter would correspond to bilinear upsampling?

$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$
$\frac{1}{2}$	1	$\frac{1}{2}$
$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

V. Dumoulin and F. Visin, <u>A guide to convolution arithmetic for deep learning</u>, arXiv 2018

Upsampling in a deep network

Alternative to transposed convolution: max unpooling

indices (which

element was max)

Output is sparse, so need to follow this with a transposed

0

5

0

0

6

0

0

0

0

0

0

8

convolution layer

(sometimes called deconvolution instead of transposed convolution, but this is not accurate)

DeconvNet

H. Noh, S. Hong, and B. Han, <u>Learning Deconvolution Network for Semantic Segmentation</u>, ICCV 2015

Summary of upsampling architectures

Fix 3: Use local edge information (CRFs)

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z}e^{-E(\mathbf{y},\mathbf{x})}$$
$$\mathbf{y}^* = \arg\max_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})$$
$$= \arg\min_{\mathbf{y}} E(\mathbf{y},\mathbf{x})$$

$$E(\mathbf{y}, \mathbf{x}) = \sum_{i} E_{data}(y_i, \mathbf{x}) + \sum_{i,j \in \mathcal{N}} E_{smooth}(y_i, y_j, \mathbf{x})$$

Source: B. Hariharan

Fix 3: Use local edge information (CRFs)

Idea: take convolutional network prediction and sharpen using classic techniques

Conditional Random Field

$$\mathbf{y}^* = \arg\min_{\mathbf{y}} \sum_{i} E_{data}(y_i, \mathbf{x}) + \sum_{i,j \in \mathcal{N}} E_{smooth}(y_i, y_j, \mathbf{x})$$

$$E_{smooth}(y_i, y_j, \mathbf{x}) = \mu(y_i, y_j) w_{ij}(\mathbf{x})$$
Label Pixel

Label Pixel compatibility similarity

Source: B. Hariharan

Fix 3: Use local edge information (CRFs)

Source: B. Hariharan

Semantic Segmentation Results

Method	mIOU
Deep Layer Cascade (LC) [82]	82.7
TuSimple [77]	83.1
Large_Kernel_Matters [60]	83.6
Multipath-RefineNet [58]	84.2
ResNet-38_MS_COCO [83]	84.9
PSPNet [24]	85.4
IDW-CNN [84]	86.3
CASIA_IVA_SDN [63]	86.6
DIS [85]	86.8
DeepLabv3 [23]	85.7
DeepLabv3-JFT [23]	86.9
DeepLabv3+ (Xception)	87.8
DeepLabv3+ (Xception-JFT)	89.0

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam, <u>DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution</u>, ECCV 2018

Instance segmentation

Object Detection

Semantic Segmentation

Instance Segmentation

Evaluation

 Average Precision like detection, except region IoU as opposed to box IoU.

B. Hariharan et al., <u>Simultaneous Detection and</u> <u>Segmentation</u>, ECCV 2014

Mask R-CNN

Mask R-CNN = Faster R-CNN + FCN on Rols

Mask branch: separately predict segmentation for each possible class

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

RolAlign vs. RolPool

RolPool: nearest neighbor quantization

RolAlign vs. RolPool

- RolPool: nearest neighbor quantization
- RolAlign: bilinear interpolation

Mask R-CNN

 From RolAlign features, predict class label, bounding box, and segmentation mask

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Mask R-CNN

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Example results

Example results

Instance segmentation results on COCO

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

AP at different IoU AP for different thresholds

size instances

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Unifying Semantic and Instance Segm.

(a) image

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár, <u>Panoptic Segmentation</u>, CVPR 2019.

Keypoint prediction

 Given K keypoints, train model to predict K m x m one-hot maps

Other dense prediction tasks

- Depth estimation
- Surface normal estimation
- Colorization
- •

Depth and normal estimation

D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels</u> with a Common Multi-Scale Convolutional Architecture, ICCV 2015

Depth and normal estimation

D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels</u> with a Common Multi-Scale Convolutional Architecture, ICCV 2015

Colorization

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016