
Videos

Saurabh Gupta
CS 543 / ECE 549 Computer Vision

Spring 2020

Outline

• Optical Flow
• Tracking
• Correspondence
• Recognition in Videos

Optical Flow

• Data / Supervision
• Architecture

Datasets
• Traditional datasets: Yosemite, Middlebury
• KITTI:

http://www.cvlibs.net/datasets/kitti/eval_scene_flo
w.php?benchmark=flow
• Sintel: http://sintel.is.tue.mpg.de/
• Synthetic Datasets
• Flying Chairs et al: https://lmb.informatik.uni-

freiburg.de/resources/datasets/FlyingChairs.en.html
• Supervision: from Simulation
• Metrics: End-point Error

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php%3Fbenchmark=flow
http://sintel.is.tue.mpg.de/
https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html

“Classical Optical Flow Pipeline” 5

Fig. 3. Traditional coarse-to-fine approach vs. PWC-Net. Left: Image pyramid and refinement at one pyramid level by the energy minimization
approach [20], [21], [23], [24]. Right: Feature pyramid and refinement at one pyramid level by PWC-Net. PWC-Net warps features of the second
image using the upsampled flow, computes a cost volume, and process the cost volume using CNNs. Both post-processing and context network
are optional in each system. The arrows indicate the direction of flow estimation and pyramids are constructed in the opposite direction. Please
refer to the text for details about the network.

flow at the top pyramid level and the warped features are
the same as features of the second image, i.e., cLw=cL2 .

Cost volume layer. Next, we use the features to construct
a cost volume that stores the matching costs for associating a
pixel with its corresponding pixels at the next frame [14]. We
define the matching cost as the correlation [8], [17] between
features of the first image and warped features of the second
image:

cvl(x1,x2)=
1

N

⇣
cl1(x1)

⌘T
clw(x2), (2)

where T is the transpose operator and N is the length of the
column vector cl1(x1). For an L-level pyramid setting, we
only need to compute a partial cost volume with a limited
range of d pixels, i.e., |x1 � x2|1d. A one-pixel motion at
the top level corresponds to 2L�1 pixels at the full resolution
images. Thus we can set d to be small. The dimension of the
3D cost volume is d

2⇥H
l⇥W

l, where H
l and W

l denote
the height and width of the lth pyramid level, respectively.

Optical flow estimator. It is a multi-layer CNN. Its input
are the cost volume, features of the first image, and upsam-
pled optical flow and its output is the flow wl at the lth
level. The numbers of feature channels at each convolutional
layers are respectively 128, 128, 96, 64, and 32, which are
kept fixed at all pyramid levels. The estimators at different
levels have their own parameters instead of sharing the
same parameters. This estimation process is repeated until
the desired level, l0.

The estimator architecture can be enhanced with
DenseNet connections [7]. The inputs to every convolutional
layer are the output of and the input to its previous layer.
DenseNet has more direct connections than traditional lay-
ers and leads to significant improvement in image classifi-
cation. We test this idea for dense flow prediction.

Context network. Traditional flow methods often use
contextual information to post-process the flow. Thus we
employ a sub-network, called the context network, to effec-
tively enlarge the receptive field size of each output unit
at the desired pyramid level. It takes the estimated flow
and features of the second last layer from the optical flow
estimator and outputs a refined flow, ŵl0

⇥(x).
The context network is a feed-forward CNN and its

design is based on dilated convolutions [55]. It consists of

7 convolutional layers. The spatial kernel for each convo-
lutional layer is 3⇥3. These layers have different dilation
constants. A convolutional layer with a dilation constant k
means that an input unit to a filter in the layer are k-unit
apart from the other input units to the filter in the layer, both
in vertical and horizontal directions. Convolutional layers
with large dilation constants enlarge the receptive field of
each output unit without incurring a large computational
burden. From bottom to top, the dilation constants are
1, 2, 4, 8, 16, 1, and 1.

Training loss. Let ⇥ be the set of all the learnable
parameters in our final network, which includes the feature
pyramid extractor and the optical flow estimators at dif-
ferent pyramid levels (the warping and cost volume layers
have no learnable parameters). Let wl

⇥ denote the flow field
at the lth pyramid level predicted by the network, and
wl

GT the corresponding supervision signal. We use the same
multi-scale training loss proposed in FlowNet [8]:

L(⇥)=
LX

l=l0

↵l

X

x

|wl
⇥(x)�wl

GT(x)|2+�|⇥|22, (3)

where | · |2 computes the L2 norm of a vector and the
second term regularizes parameters of the model. Note that
if the context network is used at the l0th level, wl0

⇥ will be
replaced by the output of the context network, ŵl0

⇥(x). For
fine-tuning, we use the following robust training loss:

L(⇥)=
LX

l=l0

↵l

X

x

⇣
|wl

⇥(x)�wl
GT(x)|+✏

⌘q
+�|⇥|22 (4)

where | · | denotes the L1 norm, q < 1 gives less penalty to
outliers, and ✏ is a small constant.

4 EXPERIMENTAL RESULTS

Implementation details. The weights in the training loss (3)
are set to be ↵6 = 0.32,↵5 = 0.08,↵4 = 0.02,↵3 = 0.01,
and ↵2 = 0.005. The trade-off weight � is set to be 0.0004.
We scale the ground truth flow by 20 and downsample it
to obtain the supervision signals at different levels. Note
that we do not further scale the supervision signal at each
level, the same as [8]. As a result, we need to scale the
upsampled flow at each pyramid level for the warping layer.

PWC Net 5

Fig. 3. Traditional coarse-to-fine approach vs. PWC-Net. Left: Image pyramid and refinement at one pyramid level by the energy minimization
approach [20], [21], [23], [24]. Right: Feature pyramid and refinement at one pyramid level by PWC-Net. PWC-Net warps features of the second
image using the upsampled flow, computes a cost volume, and process the cost volume using CNNs. Both post-processing and context network
are optional in each system. The arrows indicate the direction of flow estimation and pyramids are constructed in the opposite direction. Please
refer to the text for details about the network.

flow at the top pyramid level and the warped features are
the same as features of the second image, i.e., cLw=cL2 .

Cost volume layer. Next, we use the features to construct
a cost volume that stores the matching costs for associating a
pixel with its corresponding pixels at the next frame [14]. We
define the matching cost as the correlation [8], [17] between
features of the first image and warped features of the second
image:

cvl(x1,x2)=
1

N

⇣
cl1(x1)

⌘T
clw(x2), (2)

where T is the transpose operator and N is the length of the
column vector cl1(x1). For an L-level pyramid setting, we
only need to compute a partial cost volume with a limited
range of d pixels, i.e., |x1 � x2|1d. A one-pixel motion at
the top level corresponds to 2L�1 pixels at the full resolution
images. Thus we can set d to be small. The dimension of the
3D cost volume is d

2⇥H
l⇥W

l, where H
l and W

l denote
the height and width of the lth pyramid level, respectively.

Optical flow estimator. It is a multi-layer CNN. Its input
are the cost volume, features of the first image, and upsam-
pled optical flow and its output is the flow wl at the lth
level. The numbers of feature channels at each convolutional
layers are respectively 128, 128, 96, 64, and 32, which are
kept fixed at all pyramid levels. The estimators at different
levels have their own parameters instead of sharing the
same parameters. This estimation process is repeated until
the desired level, l0.

The estimator architecture can be enhanced with
DenseNet connections [7]. The inputs to every convolutional
layer are the output of and the input to its previous layer.
DenseNet has more direct connections than traditional lay-
ers and leads to significant improvement in image classifi-
cation. We test this idea for dense flow prediction.

Context network. Traditional flow methods often use
contextual information to post-process the flow. Thus we
employ a sub-network, called the context network, to effec-
tively enlarge the receptive field size of each output unit
at the desired pyramid level. It takes the estimated flow
and features of the second last layer from the optical flow
estimator and outputs a refined flow, ŵl0

⇥(x).
The context network is a feed-forward CNN and its

design is based on dilated convolutions [55]. It consists of

7 convolutional layers. The spatial kernel for each convo-
lutional layer is 3⇥3. These layers have different dilation
constants. A convolutional layer with a dilation constant k
means that an input unit to a filter in the layer are k-unit
apart from the other input units to the filter in the layer, both
in vertical and horizontal directions. Convolutional layers
with large dilation constants enlarge the receptive field of
each output unit without incurring a large computational
burden. From bottom to top, the dilation constants are
1, 2, 4, 8, 16, 1, and 1.

Training loss. Let ⇥ be the set of all the learnable
parameters in our final network, which includes the feature
pyramid extractor and the optical flow estimators at dif-
ferent pyramid levels (the warping and cost volume layers
have no learnable parameters). Let wl

⇥ denote the flow field
at the lth pyramid level predicted by the network, and
wl

GT the corresponding supervision signal. We use the same
multi-scale training loss proposed in FlowNet [8]:

L(⇥)=
LX

l=l0

↵l

X

x

|wl
⇥(x)�wl

GT(x)|2+�|⇥|22, (3)

where | · |2 computes the L2 norm of a vector and the
second term regularizes parameters of the model. Note that
if the context network is used at the l0th level, wl0

⇥ will be
replaced by the output of the context network, ŵl0

⇥(x). For
fine-tuning, we use the following robust training loss:

L(⇥)=
LX

l=l0

↵l

X

x

⇣
|wl

⇥(x)�wl
GT(x)|+✏

⌘q
+�|⇥|22 (4)

where | · | denotes the L1 norm, q < 1 gives less penalty to
outliers, and ✏ is a small constant.

4 EXPERIMENTAL RESULTS

Implementation details. The weights in the training loss (3)
are set to be ↵6 = 0.32,↵5 = 0.08,↵4 = 0.02,↵3 = 0.01,
and ↵2 = 0.005. The trade-off weight � is set to be 0.0004.
We scale the ground truth flow by 20 and downsample it
to obtain the supervision signals at different levels. Note
that we do not further scale the supervision signal at each
level, the same as [8]. As a result, we need to scale the
upsampled flow at each pyramid level for the warping layer.

5

Fig. 3. Traditional coarse-to-fine approach vs. PWC-Net. Left: Image pyramid and refinement at one pyramid level by the energy minimization
approach [20], [21], [23], [24]. Right: Feature pyramid and refinement at one pyramid level by PWC-Net. PWC-Net warps features of the second
image using the upsampled flow, computes a cost volume, and process the cost volume using CNNs. Both post-processing and context network
are optional in each system. The arrows indicate the direction of flow estimation and pyramids are constructed in the opposite direction. Please
refer to the text for details about the network.

flow at the top pyramid level and the warped features are
the same as features of the second image, i.e., cLw=cL2 .

Cost volume layer. Next, we use the features to construct
a cost volume that stores the matching costs for associating a
pixel with its corresponding pixels at the next frame [14]. We
define the matching cost as the correlation [8], [17] between
features of the first image and warped features of the second
image:

cvl(x1,x2)=
1

N

⇣
cl1(x1)

⌘T
clw(x2), (2)

where T is the transpose operator and N is the length of the
column vector cl1(x1). For an L-level pyramid setting, we
only need to compute a partial cost volume with a limited
range of d pixels, i.e., |x1 � x2|1d. A one-pixel motion at
the top level corresponds to 2L�1 pixels at the full resolution
images. Thus we can set d to be small. The dimension of the
3D cost volume is d

2⇥H
l⇥W

l, where H
l and W

l denote
the height and width of the lth pyramid level, respectively.

Optical flow estimator. It is a multi-layer CNN. Its input
are the cost volume, features of the first image, and upsam-
pled optical flow and its output is the flow wl at the lth
level. The numbers of feature channels at each convolutional
layers are respectively 128, 128, 96, 64, and 32, which are
kept fixed at all pyramid levels. The estimators at different
levels have their own parameters instead of sharing the
same parameters. This estimation process is repeated until
the desired level, l0.

The estimator architecture can be enhanced with
DenseNet connections [7]. The inputs to every convolutional
layer are the output of and the input to its previous layer.
DenseNet has more direct connections than traditional lay-
ers and leads to significant improvement in image classifi-
cation. We test this idea for dense flow prediction.

Context network. Traditional flow methods often use
contextual information to post-process the flow. Thus we
employ a sub-network, called the context network, to effec-
tively enlarge the receptive field size of each output unit
at the desired pyramid level. It takes the estimated flow
and features of the second last layer from the optical flow
estimator and outputs a refined flow, ŵl0

⇥(x).
The context network is a feed-forward CNN and its

design is based on dilated convolutions [55]. It consists of

7 convolutional layers. The spatial kernel for each convo-
lutional layer is 3⇥3. These layers have different dilation
constants. A convolutional layer with a dilation constant k
means that an input unit to a filter in the layer are k-unit
apart from the other input units to the filter in the layer, both
in vertical and horizontal directions. Convolutional layers
with large dilation constants enlarge the receptive field of
each output unit without incurring a large computational
burden. From bottom to top, the dilation constants are
1, 2, 4, 8, 16, 1, and 1.

Training loss. Let ⇥ be the set of all the learnable
parameters in our final network, which includes the feature
pyramid extractor and the optical flow estimators at dif-
ferent pyramid levels (the warping and cost volume layers
have no learnable parameters). Let wl

⇥ denote the flow field
at the lth pyramid level predicted by the network, and
wl

GT the corresponding supervision signal. We use the same
multi-scale training loss proposed in FlowNet [8]:

L(⇥)=
LX

l=l0

↵l

X

x

|wl
⇥(x)�wl

GT(x)|2+�|⇥|22, (3)

where | · |2 computes the L2 norm of a vector and the
second term regularizes parameters of the model. Note that
if the context network is used at the l0th level, wl0

⇥ will be
replaced by the output of the context network, ŵl0

⇥(x). For
fine-tuning, we use the following robust training loss:

L(⇥)=
LX

l=l0

↵l

X

x

⇣
|wl

⇥(x)�wl
GT(x)|+✏

⌘q
+�|⇥|22 (4)

where | · | denotes the L1 norm, q < 1 gives less penalty to
outliers, and ✏ is a small constant.

4 EXPERIMENTAL RESULTS

Implementation details. The weights in the training loss (3)
are set to be ↵6 = 0.32,↵5 = 0.08,↵4 = 0.02,↵3 = 0.01,
and ↵2 = 0.005. The trade-off weight � is set to be 0.0004.
We scale the ground truth flow by 20 and downsample it
to obtain the supervision signals at different levels. Note
that we do not further scale the supervision signal at each
level, the same as [8]. As a result, we need to scale the
upsampled flow at each pyramid level for the warping layer.

Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow
Estimation. Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. arXiv 2018.

PWC Net

7

Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean) Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ft

Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final) Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6 W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ft

Fig. 5. Results on Sintel training and test sets. Context network, DenseNet connections, and fine-tuning all improve the results. Small and rapidly
moving objects, e.g., the left arm in “Market 5”, are still challenging to the pyramid-based PWC-Net.

First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training) Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ft

First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test) Second frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frame W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ft

Fig. 6. Results on KITTI 2015 training and test sets. Fine-tuning fixes large regions of errors and recovers sharp motion boundaries.

ticular, fine-tuning fixes large regions of errors in the test
set, demonstrating the benefit of learning when the training
and test data share similar statistics.

First frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frame Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth

Fig. 7. Improperly read images and flow fields due to an I/O bug.

An I/O bug. We use the Caffe code [8] to make all the
image pairs and flow fields into a single LMDB file for
training. The code requires that all the input images are
of the same resolution. The size of the first 156 sequences

of KITTI 2015 is 375 ⇥ 1242, but the last 44 are of different
resolutions, including 370⇥1224, 374⇥1238, and 376⇥1241.
The Caffe code cannot read the last 44 sequences properly,
as shown in Fig. 7. As a results, PWC-Net has been trained
using only 156 “good” sequences and 44 “bad” ones. As a
remedy, we crop all the sequences to the size of 370⇥ 1224,
because there is no reliable way to resize the sparse ground
truth. Re-training with the correct 200 sequences leads to
about 20% improvement on the test set of KITTI 2012 (Fl-
Noc 4.22% ! 3.41%) and 2015 (Fl-all 9.60% ! 7.90%). At
the time of writing, PWC-Net is ranked second in non-
occluded regions among all methods on KITTI 2015. It is
surpassed by only one recent scene flow method that uses

9

TABLE 4
Ablation experiments. Unless explicitly stated, the models have been trained on the FlyingChairs dataset.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Feature " 1.92 3.03 4.17 4.57 26.73% 11.64 39.80%
Feature # 2.18 3.36 4.56 5.75 30.79% 14.05 44.92%
Image 2.95 4.42 5.58 7.28 31.25% 16.29 45.13%

(a) Larger-capacity feature pyramid extractor has better performance.
Learning features leads to significantly better results than fixed image
pyramids.

Max. Chairs Sintel Sintel KITTI 2012 KITTI 2015
Disp. Clean Final AEPE Fl-all AEPE Fl-all
0 2.13 3.66 5.09 5.25 29.82% 13.85 43.52%
2 2.09 3.30 4.50 5.26 25.99% 13.67 38.99%

Full model (4) 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
6 1.97 3.31 4.60 4.96 27.05% 12.97 40.94%

(b) Cost volume. Removing the cost volume (0) results in moderate
performance loss. PWC-Net can handle large motion using a small search
range to compute the cost volume.

Trained on FlyingChairs Fine-tuned on FlyingThings
Chairs Clean Final Chairs Clean Final

5-level 2.13 3.28 4.52 2.62 2.98 4.29
6-level 1.95 2.96 4.32 2.28 2.50 3.97
Full model (7) 2.00 3.33 4.59 2.30 2.55 3.93

(c) More feature pyramid levels help after fine-tuning on FlyingThings.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Estimator " 1.92 3.09 4.50 4.64 25.34% 12.25 39.18%
Estimator # 2.01 3.37 4.58 4.82 26.35% 12.83 40.53%

(d) Larger-capacity optical flow estimator has better performance.

Trained on FlyingChairs Fine-tuned on FlyingThings
Chairs Clean Final Chairs Clean Final

Full model 2.00 3.33 4.59 2.34 2.60 3.95

No DenseNet 2.06 3.09 4.37 2.48 2.83 4.08
No Context 2.23 3.47 4.74 2.55 2.75 4.13

(e) Context network consistently helps; DenseNet helps after fine-tuning
on FlyingThings.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

1st run 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
2nd run 2.00 3.23 4.36 4.70 25.52% 12.57 39.06%
3rd run 2.00 3.33 4.65 4.81 27.12% 13.10 40.84%

(f) Independent runs with different initializations lead to minor
performance differences.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
No warping 2.17 3.79 5.30 5.80 32.73% 13.74 44.87%

(g) Warping layer is a critical component for the performance.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Residual 1.96 3.14 4.43 4.87 27.74% 12.58 41.16%

(h) Residual connections in the optical flow estimator are helpful.

olution images causes out-of-memory issue on an NVIDIA
Pascal TitanX GPU with 12GB memory and requires an
NVIDIA Volta 100 GPU with 16GB memory. Figure 9 shows
some visual results on Middlebury and HD1K test set.
Despite minor artifacts, PWC-Net ROB performs robustly
across these benchmarks using the same set of parameters.

4.2 Ablation Experiments

Feature pyramid extractor. PWC-Net uses a two-layer CNN
to extract features at each pyramid level. Table 5a sum-
marizes the results of two variants that use one layer (#)
and three layers (") respectively. A larger-capacity feature
pyramid extractor leads to consistently better results on both
the training and validation datasets. Replacing the feature
pyramids with image pyramids results in about 40% loss in
accuracy, confirming the benefits of learning features.

To further understand the effect of the pyramids, we
test feature pyramids with different levels, as shown in
Table 5c. Using 5-level pyramids leads to consistently worse
results. Using 6-level pyramids has better performance than
the default 7-level pyramids when trained on FlyingChairs,
but the two have close performance after fine-tuning using
FlyingThings3D. One possible reason is that the cropping
size for FlyingChairs (448⇥ 384) is too small for the 7-level
pyramids. The size of the top level is 7 ⇥ 6, too small for a
search range of 4 pixels. By contrast, the cropping size for
FlyingThings3D (768 ⇥ 384) is better suited for the 7-level-
pyramids.

Optical flow estimator. PWC-Net uses a five-layer CNN
in the optical flow estimator at each level. Table 5d shows

the results by two variants that use four layer (#) and
seven layers (") respectively. A larger-capacity optical flow
estimator leads to better performance. However, we observe
in our experiments that a deeper optical flow estimator
might get stuck at poor local minima, which can be detected
by checking the validation errors after a few thousand
iterations and fixed by running from a different random
initialization.

Removing the context network results in larger errors on
both the training and validation sets (Table 5e). Removing
the DenseNet connections results in higher training error
but lower validation errors when the model is trained on
FlyingChairs. However, after the model is fine-tuned on
FlyingThings3D, DenseNet leads to lower errors.

We also test a residual version of the optical flow esti-
mator, which estimates a flow increment and adds it to the
initial flow to obtain the refined flow. As shown in Table 5h,
this residual version slightly improves the performance.

Cost volume. We test the search range to compute the
cost volume, shown in Table 5b. Removing the cost volume
results in consistent worse results. A larger range leads to
lower training error. However, all three settings have similar
performance on Sintel, because a range of 2 at every level
can already deal with a motion up to 200 pixels at the
input resolution. A larger range has lower EPE on KITTI,
likely because the images from the KITTI dataset have larger
displacements than those from Sintel. A smaller range,
however, seems to force the network to ignore pixels with
extremely large motion and focus more on small-motion
pixels, thereby achieving lower Fl-all scores.

Flying Chairs Dataset6 Nikolaus Mayer et al.

random
sampling

random
sampling

object
prototype

background
prototype

initial
object

transform

initial
background
transform

object
motion

transform

background
motion

transform

first frame optical flow second frame

Outputs:

Fig. 2 FlyingChairs: A two-frame sample is created by composing a foreground object onto backgrounds. Each object and
background has an initial transform (to introduce scene variety), as well as a transform between frames which induces optical
flow. All transforms are affine which makes computing the ground truth flow field easy. This schematic shows a simplification
for a single foreground object; in our datasets there are multiple objects, each with an individual transform. Note that the
foreground object’s transform is composed onto the one of the background, i.e. the object will move “with the background” if
its own transform is the identity. This correlates object motion with background motion and simulates optical flow induced by
camera motion. Dice icons indicate randomization.

3.2 Manual modeling

In the previous section, we presented approaches to gen-
erate large amounts of data automatically. This section
discusses the generation of synthetic data that involves
manual engineering. We use the 3D model rendering
approach described in Section 3.1.2.

3.2.1 Monkaa

The publicly available open source movie Monkaa pro-
vides 3D scenes and assets that can be loaded into Blen-
der. We created a dataset that contains original scenes
as well as new custom ones (Mayer et al, 2016).

In contrast to FlyingThings3D, data is generated
from the movie in a deterministic way. The original
scenes and objects were modeled by 3D artists. For our
custom scenes, we manually collected, composed and
animated original set pieces and objects from the movie,
producing entirely new environments and movements
while keeping the visual style of the Monkaa movie. To
obtain a sufficient amount of data, we rendered longer
scenes instead of procedurally generating many varia-
tions. Contrary to the datasets mentioned above, Mon-
kaa contains articulated non-rigid motion of animals

and extremely complex fur. Fig. 1 shows a frame from
our Monkaa dataset release.

During our work on Monkaa, we encountered many
of the problems described by the creators of the Sintel
benchmark dataset (Wulff et al, 2012), such as changing
focal length, scenes containing objects only in the exact
locations viewed by the camera and optical tricks which
break when using a stereo setup (e.g . forced perspec-
tive or “fog” rendered as a flat 2D sprite). This greatly
limited the amount of usable scenes and contributes to
the fact that this approach to data generation cannot
be scaled easily to produce more data.

3.2.2 Driving

Videos captured from a camera on a driving car provide
a very special setting and usually differ significantly
from other video material. This is demonstrated well in
the KITTI benchmark suite (Geiger et al, 2012). Wide-
angle lenses are typically used to cover large areas, and
the scene motion is dominated by the forward camera
motion of the driving car. Most of the scene is static and
the arrangement of objects in the scenes is very similar,
with sky at the top, the road at the bottom and mostly
walls and parked vehicles on the sides. These motion
and object types are not covered in the previously pre-

What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation? 9

Test data

Training data Sintel KITTI2015 FlyingChairs

Sintel 6.42 18.13 5.49
FlyingChairs 5.73 16.23 3.32
FlyingThings3D 6.64 18.31 5.21
Monkaa 8.47 16.17 7.08
Driving 10.95 11.09 9.88

Table 2 FlowNet trained on existing synthetic data-

sets. Sintel and FlyingChairs were split into a training and
a validation set. As expected, training on the Driving data-
set works best for KITTI. The Sintel dataset, although very
similar to its validation set, is too small to yield great perfor-
mance. Surprisingly, the FlyingChairs datasets yields consis-
tently better numbers than the more sophisticated FlyingTh-
ings3D and Monkaa datasets. This observation motivates our
investigation of what makes a good dataset.

This positive result from Dosovitskiy et al (2015)
does not yet clearly indicate what are the relevant data-
set properties, apart from its size. Interestingly, Table 2
also shows that training on the more diverse and more
realistic FlyingThings3D dataset yields inferior perfor-
mance to training on FlyingChairs. This is surprising
and motivates our efforts to get more insights into: (1)
which properties of the FlyingChairs dataset make it so
successful for training optical flow networks and (2) how
the training data can be potentially further improved.

To this end, we performed an extensive ablation
study to evaluate the contributions of object shape and
types of motion. These aim primarily on explaining the
generally good training behavior of the FlyingChairs
dataset. Additionally, we tested the importance of sur-
face features imparted by textures and the effect of
lighting when lifting the FlyingChairs dataset into 3D,
and what happens when combining the FlyingChairs
and FlyingThings3D datasets. This is to investigate the
underlying reason why the FlyingChairs dataset out-
performs the more sophisticated FlyingThings3D. This
set of experiments was conducted on the optical flow
task.

In a complementary step, focusing on real data, we
looked at data characteristics that originate not in the
observed scene but in the imaging system itself. In par-
ticular, we were interested in how explicit modeling of
e.g . camera lens distortion or Bayer artifacts in the
training data may help improve the performance of the
resulting network when applied to images from a real
camera system showing these characteristics. For this
set of experiments, we used the disparity estimation
task because we found comparing disparity maps and
assessing fine details by eye much easier than doing so
on flow fields.

Due to time and compute power constraints, we
could not evaluate both parts of our experiments suite

on both optical flow and disparity estimation. Consider-
ing how closely related the two tasks are, the disparity
results are presumably valid for optical flow as well,
just as the optical flow results can likely be applied to
disparity estimation.

5.2.1 Object shape and motion

In our first experiment, we investigated the influence of
object shapes and the way they move. The general setup
here is similar to the FlyingChairs dataset—2D mo-
tions of objects in front of a background image—and we
used the same composition approach, shown in Fig. 2.
However, instead of chairs, we used different randomly
shaped polygons and ellipses; and instead of arbitrary
affine motions, we used different subsets thereof, plus
optionally non-rigid deformations. We used the same
random Flickr images as in the FlyingChairs dataset,
both for the background and for the foreground ob-
jects. On every dataset variant we trained a network
from scratch and evaluated its performance on three
benchmark datasets: Sintel, KITTI and FlyingChairs.

We designed a series of increasingly complex data-
sets, starting off with axis-aligned rectangular boxes
and motions restricted to translation only, and going all
the way to complex thin and non-convex objects with
non-rigid motions. Examples for the tested scenarios
are shown in Figure 4. During training we applied the
same color and geometry augmentations used for opti-
cal flow training in Dosovitskiy et al (2015); however,
geometry augmentations were restricted to respect the
class of motions of the training dataset; for instance,
we applied no rotation augmentation if there was no
rotation motion in the dataset.

Boxes Polygons Ellipses

With holes Outlines Needles

Fig. 4 Object shapes. Distinct shape classes used in our
“shapes and motions” ablation experiment. For more exam-
ples, see Fig. 11 and Fig. 12.

What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation? 5

“Yosemite” (synth.) “Marbled-Block” (real) “Medium complexity” (synth.) “Split sphere” (synth.)
Barron et al (1994) Otte and Nagel (1995) McCane et al (2001) Huguet and Devernay (2007)

“Middlebury” (real+synth.) “UCL Dataset” (synth.) “Sintel” (synth.) “KITTI 2015” (real)
Baker et al (2011) Mac Aodha et al (2013) Butler et al (2012) Menze and Geiger (2015)

“FlyingChairs” (synth.) “FlyingThings3D” (synth.) “Monkaa” (synth.) “Virtual KITTI” (synth.)
Dosovitskiy et al (2015) Mayer et al (2016) Mayer et al (2016) Gaidon et al (2016)

Fig. 1 Samples from real and synthetic datasets with optical flow annotation. Real datasets are small and restricted
in diversity due to the difficulty to derive ground truth optical flow. Synthetic data can be based on manual scene modeling,
such as the open-source Sintel and Monkaa movies, or procedural generation, such as the FlyingChairs and FlyingThings3D
datasets.

3.1.2 Synthetic 3D data for optical flow, disparity and

scene flow: FlyingThings3D

The FlyingChairs were generated using simple 2D affine
transformations. Since such datasets cannot contain in-
formation from depth in the scene, i.e. 3D rotation and
translation in space and camera motion, we took the
randomization approach further and created FlyingTh-
ings3D: a 3D dataset rendered from true 3D models,
with ground truth for stereo disparity, optical flow, and
for the full scene flow task (Mayer et al, 2016).

To obtain 3D scenes, we created a simple but struc-
tured background from simple geometric random shapes.
For the dynamic foreground objects, we used models
from ShapeNet (Chang et al, 2015). All foreground ob-
jects follow linear trajectories in 3D space, and so does
the camera. To animate the camera’s viewing direction,
an invisible moving object is added to the scene and the

camera is constrained to always point or “look” at this
object. This 3D setting with combined object and cam-
era motions allows for complex object flows and scene
configurations.

To render the 3D models into 2D images, we used
the freely available Blender suite. We modified its in-
ternal rendering engine to directly produce fully dense
and accurate ground truth for depth, disparity, optical
flow and object segmentation (among others), all for
both views of a virtual stereo camera.

The FlyingThings3D dataset combines sophisticated
3D rendering with the procedural generation of scenes
which allows for arbitrary amounts of data without
manual effort. While the generated scenes are by no
means realistic in the naturalistic sense of e.g . Sintel,
they allow for a large and diverse dataset.

Tracking

• Problem Statements
• Tracking by Detection
• General Object Tracking

Problem Statements

• Single Object Tracking (eg:
https://nanonets.com/blog/content/images/2019/07/
messi_football_track.gif)
• Multi-object Tracking (eg:

https://motchallenge.net/vis/MOT20-02/gt/)
• Multi-object Tracking and Segmentation (eg:

https://www.youtube.com/watch?v=K38_pZw_P9s)

https://nanonets.com/blog/content/images/2019/07/messi_football_track.gif
https://motchallenge.net/vis/MOT20-02/gt/
https://www.youtube.com/watch%3Fv=K38_pZw_P9s

Tracking by Detection18 Chapter 2. Tracking-by-Detection

Video sequence

Detector

Detections
per frame

. . .

Tracker

Object
detection

Data
association

Final
trajectories

FIGURE 2.2: Tracking-by-detection paradigm. Firstly, an independent detector is ap-
plied to all image frames to obtain likely pedestrian detections. Secondly, a tracker is
run on the set of detections to perform data association, i.e., link the detections to obtain

full trajectories.

This makes tracking or data association a challenging task. Some of the most important
challenges include:

• Missed detections: long-term occlusions are usually present in semi-crowded sce-
narios, where a detector might lose a pedestrian for 1-2 seconds. In this case, it is
very hard for the tracker to re-identify the pedestrian without distinctive appear-
ance information, and therefore, the track is usually lost. That is why in recent lit-
erature, researchers are opting for global optimization methods [4, 27, 28], which
are very good at dealing with long-term occlusions.

• False alarms: the detector can be triggered by regions in the image that actually
do not contain any pedestrian, creating false positive. A tracker might follow the
false alarms and create what is called a ghost trajectory.

• Similar appearance: one source of information commonly used for pedestrian iden-
tification is appearance. However, in some videos similar clothing can lead to
virtually identical appearance models for two different pedestrians. Many meth-
ods in recent literature focus on the motion of the pedestrian rather than his/her
appearance [4, 29].

• Groups and other special behaviors: when dealing with semi-crowded scenarios, it is
very common to observe social behaviors like grouping or waiting at a bus stop or
stopping to talk to a person. All these behaviors do not fit classic tracking models
like Kalman Filter [30], which consider pedestrians motion to be rather constant.

Source: Laura Leal-Taixé

Tracking by Detection

Strike a Pose! Tracking People by Learning Their Appearance. D. Ramanan et al. ,
PAMI 2007

classify all the test pixels and define the cost of the
segmentation to be the total number of misclassified pixels.
Note that this strategy would not work if we used classifiers
with high Vapnik-Chervonenkis (VC) dimension (a nearest
neighbor classifier always returns 0 errors when training
and testing on the same data [45]). Restricting ourselves to a
near-linear classifier (such as quadratic logistic regression)
seems to address this issue. We threshold this final
segmentation score to obtain good stylized-pose detections.

5.2 Discriminative Appearance Models
Since our person detector localizes a complete person in a
single frame, we know both the person pixels and the
nonperson pixels. This suggests that we can build a
discriminative model of appearance. We assume each limb
is (more or less) constant colored and train a quadratic logistic
regression classifier. One could also use more expressive
classifiers (such as SVMs) with complex decision boundaries,
but we did not find this necessary. We use all pixels inside the
estimated limb rectangle as positives and use all nonperson
pixels (not inside any limb mask) as negatives. Our
appearance model for each limb is a quadratic surface that

splits RGB space into limb/nonlimb pixels (Fig. 12). Recall
that our set of limbs are the head, torso, upper/lower arm,
and left/right upper/lower leg. We fit one model for the
upper leg using examples from both left and right limbs (and
similarly for the lower leg).

Our classifiers learn some illumination invariance (since
illumination tends to be poor feature with which to classify
the training examples; see Fig. 12). This suggests our
models naturally cope with illumination changes (Fig. 13).
Alternatively, one could build an explicit temporal illumi-
nation variable as in [46].

6 TRACKING BY MODEL DETECTION

Given either model-building method (from Sections 4 or 5),
we now have a representation of the appearance of each
part Ci. Since people tend to be symmetric in appearance,
we maintain a single appearance for the left and right limbs.
The representation may be generative (a template patch) or
discriminative (a classifier). To score a template, we evaluate
candidate patches under the (RGB-histogram) Gaussian
model fit to each limb cluster from Section 4.2. For speed

72 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 1, JANUARY 2007

Fig. 12. An overview of our approach. Given a video sequence, we run a single-scale walking pose detector on each frame. Our detector fails on the
small scale figure and the on atypical pose, but correctly detects the walking pose (left). Given the estimated limb positions from that detection, we
learn a quadratic logistic regression classifier for each limb in RGB space, using the masked limb pixels as positives and all nonperson pixels as
negatives. In the middle left, we show the learned decision boundary for the torso and crudely visualize the remaining limb classifiers with a
Gaussian fit to the positive pixels. Note that the visual models appear to be poor; many models look like the background because some of the limb
pixels happen to be in shadow. The classifiers are successful precisely because they learn to ignore these pixels (since they do not help discriminate
between positive and negative examples). We then run the classifiers on all frames from a sequence to obtain limb masks on the middle right (we
show pixels from the third frame classified as torso, lower arm, lower leg, and head). We then search these masks for candidate limbs arranged in a
pictorial structure [34], searching over general pose deformations at multiple scales. This yields the recovered configurations on the right. We show
additional frames in Fig. 23.

Fig. 13. We show tracking results for a sequence with large changes in illumination. On the left, we show the frame on which our walking pose
detector fired. Our system automatically learns discriminative limb appearance models from that single frame and uses those models to track the
figure when the background changes (right). This suggests that our logistic regression appearance model is quite generalizable. Note that, since our
system tracks by detection, it can track through partial and full occlusion.

General Object Tracking

Learning to Track at 100 FPS with Deep Regression Networks. D. Held et al., ECCV16.

4 Held, Thrun, Savarese

Previous	frame	

Current	frame	

Predicted	loca3on	
	of	target	

within	search	region	

Crop	

Crop	

What	to	track	

Search	Region	
Conv	Layers	

Conv	Layers	

Fully-Connected		
Layers	

Fig. 2. Our network architecture for tracking. We input to the network a search region
from the current frame and a target from the previous frame. The network learns to
compare these crops to find the target object in the current image

object. By avoiding the need to score many candidate patches, we are able to
track objects at 100 fps.

Prior attempts have been made to use neural networks for tracking in var-
ious other ways [18], including visual attention models [4,29]. However, these
approaches are not competitive with other state-of-the-art trackers when evalu-
ated on di�cult tracker datasets.

3 Method

3.1 Method Overview

At a high level, we feed frames of a video into a neural network, and the network
successively outputs the location of the tracked object in each frame. We train
the tracker entirely o✏ine with video sequences and images. Through our o✏ine
training procedure, our tracker learns a generic relationship between appearance
and motion that can be used to track novel objects at test time with no online
training required.

3.2 Input / output format

What to track. In case there are multiple objects in the video, the network
must receive some information about which object in the video is being tracked.
To achieve this, we input an image of the target object into the network. We
crop and scale the previous frame to be centered on the target object, as shown
in Figure 2. This input allows our network to track novel objects that it has not
seen before; the network will track whatever object is being input in this crop.
We pad this crop to allow the network to receive some contextual information
about the surroundings of the target object.

In more detail, suppose that in frame t� 1, our tracker previously predicted
that the target was located in a bounding box centered at c = (cx, cy) with a
width of w and a height of h. At time t, we take a crop of frame t� 1 centered

Correspondence in Time
Optical Flow

(Pixel-level, short-range)
Tracking

(Box-level, long-range)
Middle Ground
(Mid-level, long-range)

Self-Supervised / Unsupervised LearningHuman Annotations Synthetic Data

Source: Xiaolong Wang

Learning to Track

How to obtain supervision?

ℱℱℱ

ℱ: a deep tracker

Source: Xiaolong Wang

Supervision: Cycle-Consistency in Time

Track backwards

Track forwards, back to the future

ℱℱℱ

ℱℱℱ

Source: Xiaolong Wang

Backpropagation through time, along the cycle

Supervision: Cycle-Consistency in Time

ℱℱℱ

ℱℱℱ

Source: Xiaolong Wang

Multiple Cycles

Sub-cycles: a natural curriculum

Source: Xiaolong Wang

Multiple Cycles

Shorter cycles: a natural curriculum

Source: Xiaolong Wang

Multiple Cycles

Shorter cycles: a natural curriculum

Source: Xiaolong Wang

Tracker ℱ
Densely match features in learned feature space

Correlatio
n Filter

(𝑋, 𝑌)

𝑃!

𝐼!"#

Crop

𝑃!"#�

�

�

Source: Xiaolong Wang

Visualization of Training

Source: Xiaolong Wang

Test Time: Nearest Neighbors in Feature Space

𝑡 − 1 𝑡

�

Source: Xiaolong Wang

𝑡 − 1 𝑡

Test Time: Nearest Neighbors in Feature Space �

Source: Xiaolong Wang

Evaluation: Label Propagation

Source: Xiaolong Wang

Evaluation: Label Propagation

Source: Xiaolong Wang

Evaluation: Label Propagation

Source: Xiaolong Wang

Evaluation: Label Propagation

Source: Xiaolong Wang

Instance Mask Tracking
DAVIS Dataset

DAVIS Dataset: Pont-Tuset et al. The 2017 DAVIS Challenge on Video Object Segmentation. 2017.

Source: Xiaolong Wang

Source: Xiaolong Wang

Pose Keypoint Tracking

JHMDB Dataset

Source: Xiaolong Wang

Comparison

Our Correspondence Optical Flow

Source: Xiaolong Wang

Texture Tracking
DAVIS Dataset

DAVIS Dataset: Pont-Tuset et al. The 2017 DAVIS Challenge on Video Object Segmentation. 2017.
Source: Xiaolong Wang

Semantic Masks Tracking

Video Instance Parsing Dataset

Zhou et al. Adaptive Temporal Encoding Network for Video Instance-level Human Parsing. ACM MM 2018.
Source: Xiaolong Wang

Outline

• Optical Flow
• Tracking
• Correspondence
• Recognition in Videos
• Tasks
• Datasets
• Models

• Applications

Recognition in Videos

• Tasks / Datasets
• Models

Tasks and Datasets

• Action Classification
• Kinetics Dataset: https://arxiv.org/pdf/1705.06950.pdf
• ActivityNet, Sports-8M, …

• Action “Detection”
• In space, in time. Eg: JHMDB, AV

https://arxiv.org/pdf/1705.06950.pdf

Tasks and Datasets
• Time scale
• Atomic Visual

Actions (AVA)
Dataset:
https://research.goo
gle.com/ava/explor
e.html

• Bias
• Something

Something Dataset:
https://20bn.com/da
tasets/something-
something

Figure 2. This figure illustrates the hierarchical nature of an activ-
ity. From Barker and Wright [3], pg. 247.

motivate the main design choices of AVA.
Atomic action categories. Barker & Wright [3] noted the
hierarchical nature of activity (Fig. 2) in their classic study
of the ”behavior episodes” in the daily lives of the residents
of a small town in Kansas. At the finest level, the actions
consist of atomic body movements or object manipulation
but at coarser levels, the most natural descriptions are in
terms of intentionality and goal-directed behavior.

This hierarchy makes defining a vocabulary of action la-
bels ill posed, contributing to the slower progress of our
field compared to object recognition; exhaustively listing
high-level behavioral episodes is impractical. However if
we limit ourselves to fine time scales, then the actions
are very physical in nature and have clear visual signa-
tures. Here, we annotate keyframes at 1 Hz as this is suf-
ficiently dense to capture the complete semantic content
of actions while enabling us to avoid requiring unrealisti-
cally precise temporal annotation of action boundaries. The
THUMOS challenge [18] observed that action boundaries
(unlike objects) are inherently fuzzy, leading to significant
inter-annotator disagreement. By contrast, annotators can
easily determine (using ±1.5s of context) whether a frame
contains a given action. Effectively, AVA localizes action
start and end points to an acceptable precision of ±0.5 s.
Person-centric action time series. While events such as
trees falling do not involve people, our focus is on the ac-
tivities of people, treated as single agents. There could be
multiple people as in sports or two people hugging, but each
one is an agent with individual choices, so we treat each sep-
arately. The action labels assigned to a person over time is
a rich source of data for temporal modeling (Section 4.3).
Annotation of movies. Ideally we would want behavior “in
the wild”. We do not have that, but movies are a compelling
approximation, particularly when we consider the diversity
of genres and countries with flourishing film industries. We
do expect some bias in this process. Stories have to be in-
teresting and there is a grammar of the film language [2]
that communicates through the juxtaposition of shots. That
said, in each shot we can expect an unfolding sequence of
human actions, somewhat representative of reality, as con-
veyed by competent actors. AVA complements the current
datasets sourced from user generated video because we ex-

pect movies to contain a greater range of activities as befits
the telling of diverse stories.
Exhaustive action labeling. We label all the actions of
all the people in all the keyframes. This will naturally re-
sult in a Zipf’s law type of imbalance across action cat-
egories. There will be many more examples of typical
actions (standing or sitting) than memorable ones (danc-
ing), but this is how it should be! Recognition models
need to operate on realistic “long tailed” action distribu-
tions [15] rather than being scaffolded using artificially bal-
anced datasets. Another consequence of our protocol is that
since we do not retrieve examples of action categories by
explicit querying of internet video resources, we avoid a
certain kind of bias: opening a door is a common event that
occurs frequently in movie clips; however a door opening
action that has been tagged as such on YouTube is likely
attention worthy in a way that makes it atypical.

We believe that AVA, with its realistic complexity, ex-
poses the inherent difficulty of action recognition hidden by
many popular datasets in the field. A video clip of a sin-
gle person performing a visually salient action like swim-
ming in typical background is easy to discriminate from,
say, one of a person running. Compare with AVA where
we encounter multiple actors, small in image size, perform-
ing actions which are only subtly different such as touch-
ing vs. holding an object. To verify this intuition, we do
comparative bench-marking on JHMDB [20], UCF101-24
categories [32] and AVA. The approach we use for spatio-
temporal action localization (see Section 5) builds upon
multi-frame approaches [16, 41], but classifies tubelets with
I3D convolutions [6]. We obtain state-of-the-art perfor-
mance on JHMDB [20] and UCF101-24 categories [32]
(see Section 6) while the mAP on AVA is only 15.6%.

The AVA dataset has been released publicly at https:
//research.google.com/ava/.

2. Related work

Action recognition datasets. Most popular action clas-
sification datasets, such as KTH [35], Weizmann [4],
Hollywood-2 [26], HMDB [24], UCF101 [39] consist of
short clips, manually trimmed to capture a single ac-
tion. These datasets are ideally suited for training fully-
supervised, whole-clip, forced-choice video classifiers. Re-
cently, datasets, such as TrecVid MED [29], Sports-
1M [21], YouTube-8M [1], Something-something [12],
SLAC [48], Moments in Time [28], and Kinetics [22] have
focused on large-scale video classification, often with auto-
matically generated – and hence potentially noisy – annota-
tions. They serve a valuable purpose but address a different
need than AVA.

Some recent work has moved towards temporal localiza-
tion. ActivityNet [5], THUMOS [18], MultiTHUMOS [46]
and Charades [37] use large numbers of untrimmed videos,

We don’t quite know how do
define good meaningful tasks for

videos. More on this later.

https://research.google.com/ava/explore.html
https://20bn.com/datasets/something-something

Models

• Recurrent Neural Nets (See:
https://colah.github.io/posts/2015-08-
Understanding-LSTMs/)
• Simple Extensions of 2D CNNs
• 3D Convolution Networks
• Two-Stream Networks
• Inflated 3D Conv Nets
• Slow Fast Networks
• Non-local Networks

2D convolution

output

3D convolution

output
output

2D convolution on multiple frames(a) (b) (c)

H

W

L

k

k
L H

W

L

k

k d < L

k

kH

W

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c⇥ l ⇥ h⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks

Source: https://colah.github.io/posts/2015-09-NN-Types-FP/

https://colah.github.io/posts/2015-09-NN-Types-FP/

3D Convolutions

Figure 1: Explored approaches for fusing information over
temporal dimension through the network. Red, green and
blue boxes indicate convolutional, normalization and pool-
ing layers respectively. In the Slow Fusion model, the de-
picted columns share parameters.

3.1. Time Information Fusion in CNNs
We investigate several approaches to fusing information

across temporal domain (Figure 1): the fusion can be done
early in the network by modifying the first layer convolu-
tional filters to extend in time, or it can be done late by
placing two separate single-frame networks some distance
in time apart and fusing their outputs later in the process-
ing. We first describe a baseline single-frame CNN and then
discuss its extensions in time according to different types of
fusion.

Single-frame. We use a single-frame baseline architec-
ture to understand the contribution of static appearance to
the classification accuracy. This network is similar to the
ImageNet challenge winning model [11], but accepts in-
puts of size 170 ⇥ 170 ⇥ 3 pixels instead of the original
224⇥ 224⇥ 3. Using shorthand notation, the full architec-
ture is C(96, 11, 3)-N -P -C(256, 5, 1)-N -P -C(384, 3, 1)-
C(384, 3, 1)-C(256, 3, 1)-P -FC(4096)-FC(4096), where
C(d, f, s) indicates a convolutional layer with d filters of
spatial size f ⇥f , applied to the input with stride s. FC(n)
is a fully connected layer with n nodes. All pooling layers P
pool spatially in non-overlapping 2⇥ 2 regions and all nor-
malization layers N are defined as described in Krizhevsky
et al. [11] and use the same parameters: k = 2, n = 5,↵ =
10�4,� = 0.5. The final layer is connected to a softmax
classifier with dense connections.

Early Fusion. The Early Fusion extension combines in-
formation across an entire time window immediately on the
pixel level. This is implemented by modifying the filters on
the first convolutional layer in the single-frame model by
extending them to be of size 11⇥ 11⇥ 3⇥ T pixels, where
T is some temporal extent (we use T = 10, or approxi-
mately a third of a second). The early and direct connectiv-
ity to pixel data allows the network to precisely detect local
motion direction and speed.

Late Fusion. The Late Fusion model places two sepa-
rate single-frame networks (as described above, up to last
convolutional layer C(256, 3, 1) with shared parameters a
distance of 15 frames apart and then merges the two streams

in the first fully connected layer. Therefore, neither single-
frame tower alone can detect any motion, but the first fully
connected layer can compute global motion characteristics
by comparing outputs of both towers.

Slow Fusion. The Slow Fusion model is a balanced
mix between the two approaches that slowly fuses temporal
information throughout the network such that higher lay-
ers get access to progressively more global information in
both spatial and temporal dimensions. This is implemented
by extending the connectivity of all convolutional layers
in time and carrying out temporal convolutions in addition
to spatial convolutions to compute activations, as seen in
[1, 10]. In the model we use, the first convolutional layer is
extended to apply every filter of temporal extent T = 4 on
an input clip of 10 frames through valid convolution with
stride 2 and produces 4 responses in time. The second and
third layers above iterate this process with filters of tempo-
ral extent T = 2 and stride 2. Thus, the third convolutional
layer has access to information across all 10 input frames.

3.2. Multiresolution CNNs
Since CNNs normally take on orders of weeks to train on

large-scale datasets even on the fastest available GPUs, the
runtime performance is a critical component to our ability
to experiment with different architecture and hyperparame-
ter settings. This motivates approaches for speeding up the
models while still retaining their performance. There are
multiple fronts to these endeavors, including improvements
in hardware, weight quantization schemes, better optimiza-
tion algorithms and initialization strategies, but in this work
we focus on changes in the architecture that enable faster
running times without sacrificing performance.

One approach to speeding up the networks is to reduce
the number of layers and neurons in each layer, but simi-
lar to [28] we found that this consistently lowers the per-
formance. Instead of reducing the size of the network, we
conducted further experiments on training with images of
lower resolution. However, while this improved the run-
ning time of the network, the high-frequency detail in the
images proved critical to achieving good accuracy.

Fovea and context streams. The proposed multiresolu-
tion architecture aims to strike a compromise by having two
separate streams of processing over two spatial resolutions
(Figure 2). A 178 ⇥ 178 frame video clip forms an input
to the network. The context stream receives the downsam-
pled frames at half the original spatial resolution (89 ⇥ 89
pixels), while the fovea stream receives the center 89 ⇥ 89
region at the original resolution. In this way, the the total
input dimensionality is halved. Notably, this design takes
advantage of the camera bias present in many online videos,
since the object of interest often occupies the center region.

Architecture changes. Both streams are processed by
identical network as the full frame models, but starting at

Karpathy et al. Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

3D Convolutions

2D convolution

output

3D convolution

output
output

2D convolution on multiple frames(a) (b) (c)

H

W

L

k

k
L H

W

L

k

k d < L

k

kH

W

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c⇥ l ⇥ h⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

2D convolution

output

3D convolution

output
output

2D convolution on multiple frames(a) (b) (c)

H

W

L

k

k
L H

W

L

k

k d < L

k

kH

W

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c⇥ l ⇥ h⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

2D convolution

output

3D convolution

output
output

2D convolution on multiple frames(a) (b) (c)

H

W

L

k

k
L H

W

L

k

k d < L

k

kH

W

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c⇥ l ⇥ h⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

Two Stream Networks

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

conv1
7x7x96
stride 2
norm.

pool 2x2

conv2
5x5x256
stride 2
norm.

pool 2x2

conv3
3x3x512
stride 1

conv4
3x3x512
stride 1

conv5
3x3x512
stride 1
pool 2x2

full6
4096

dropout

full7
2048

dropout

softmax

conv1
7x7x96
stride 2
norm.

pool 2x2

conv2
5x5x256
stride 2
pool 2x2

conv3
3x3x512
stride 1

conv4
3x3x512
stride 1

conv5
3x3x512
stride 1
pool 2x2

full6
4096

dropout

full7
2048

dropout

softmax

Spatial stream ConvNet

Temporal stream ConvNet

single frame

input
video multi-frame

optical flow

class
score
fusion

Figure 1: Two-stream architecture for video classification.

strongly associated with particular objects. In fact, as will be shown in Sect. 6, action classification
from still frames (the spatial recognition stream) is fairly competitive on its own. Since a spatial
ConvNet is essentially an image classification architecture, we can build upon the recent advances
in large-scale image recognition methods [15], and pre-train the network on a large image classifica-
tion dataset, such as the ImageNet challenge dataset. The details are presented in Sect. 5. Next, we
describe the temporal stream ConvNet, which exploits motion and significantly improves accuracy.

3 Optical flow ConvNets
In this section, we describe a ConvNet model, which forms the temporal recognition stream of our
architecture (Sect. 2). Unlike the ConvNet models, reviewed in Sect. 1.1, the input to our model is
formed by stacking optical flow displacement fields between several consecutive frames. Such input
explicitly describes the motion between video frames, which makes the recognition easier, as the
network does not need to estimate motion implicitly. We consider several variations of the optical
flow-based input, which we describe below.

(a) (b) (c) (d) (e)

Figure 2: Optical flow. (a),(b): a pair of consecutive video frames with the area around a mov-
ing hand outlined with a cyan rectangle. (c): a close-up of dense optical flow in the outlined area;
(d): horizontal component dx of the displacement vector field (higher intensity corresponds to pos-
itive values, lower intensity to negative values). (e): vertical component dy . Note how (d) and (e)
highlight the moving hand and bow. The input to a ConvNet contains multiple flows (Sect. 3.1).

3.1 ConvNet input configurations
Optical flow stacking. A dense optical flow can be seen as a set of displacement vector fields dt

between the pairs of consecutive frames t and t+ 1. By dt(u, v) we denote the displacement vector
at the point (u, v) in frame t, which moves the point to the corresponding point in the following
frame t + 1. The horizontal and vertical components of the vector field, dxt and dyt , can be seen
as image channels (shown in Fig. 2), well suited to recognition using a convolutional network. To
represent the motion across a sequence of frames, we stack the flow channels dx,yt of L consecutive
frames to form a total of 2L input channels. More formally, let w and h be the width and height
of a video; a ConvNet input volume I⌧ 2 Rw⇥h⇥2L for an arbitrary frame ⌧ is then constructed as
follows:

I⌧ (u, v, 2k � 1) = dx⌧+k�1(u, v), (1)
I⌧ (u, v, 2k) = dy⌧+k�1(u, v), u = [1;w], v = [1;h], k = [1;L].

For an arbitrary point (u, v), the channels I⌧ (u, v, c), c = [1; 2L] encode the motion at that point
over a sequence of L frames (as illustrated in Fig. 3-left).

Trajectory stacking. An alternative motion representation, inspired by the trajectory-based de-
scriptors [29], replaces the optical flow, sampled at the same locations across several frames, with

3

Two Stream Networks

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Two Stream Networks

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Table 1: Individual ConvNets accuracy on UCF-101 (split 1).
(a) Spatial ConvNet.

Training setting Dropout ratio
0.5 0.9

From scratch 42.5% 52.3%
Pre-trained + fine-tuning 70.8% 72.8%
Pre-trained + last layer 72.7% 59.9%

(b) Temporal ConvNet.

Input configuration Mean subtraction
off on

Single-frame optical flow (L = 1) - 73.9%
Optical flow stacking (1) (L = 5) - 80.4%
Optical flow stacking (1) (L = 10) 79.9% 81.0%
Trajectory stacking (2)(L = 10) 79.6% 80.2%
Optical flow stacking (1)(L = 10), bi-dir. - 81.2%

(L = 1 setting). Increasing the number of input flows from 5 to 10 leads to a smaller improvement,
so we kept L fixed to 10 in the following experiments. Second, we find that mean subtraction is
helpful, as it reduces the effect of global motion between the frames. We use it in the following
experiments as default. The difference between different stacking techniques is marginal; it turns
out that optical flow stacking performs better than trajectory stacking, and using the bi-directional
optical flow is only slightly better than a uni-directional forward flow. Finally, we note that temporal
ConvNets significantly outperform the spatial ConvNets (Table 1a), which confirms the importance
of motion information for action recognition.

We also implemented the “slow fusion” architecture of [14], which amounts to applying a ConvNet
to a stack of RGB frames (11 frames in our case). When trained from scratch on UCF-101, it
achieved 56.4% accuracy, which is better than a single-frame architecture trained from scratch
(52.3%), but is still far off the network trained from scratch on optical flow. This shows that while
multi-frame information is important, it is also important to present it to a ConvNet in an appropriate
manner.

Multi-task learning of temporal ConvNets. Training temporal ConvNets on UCF-101 is challeng-
ing due to the small size of the training set. An even bigger challenge is to train the ConvNet on
HMDB-51, where each training split is 2.6 times smaller than that of UCF-101. Here we evaluate
different options for increasing the effective training set size of HMDB-51: (i) fine-tuning a temporal
network pre-trained on UCF-101; (ii) adding 78 classes from UCF-101, which are manually selected
so that there is no intersection between these classes and the native HMDB-51 classes; (iii) using the
multi-task formulation (Sect. 4) to learn a video representation, shared between the UCF-101 and
HMDB-51 classification tasks. The results are reported in Table 2. As expected, it is beneficial to

Table 2: Temporal ConvNet accuracy on HMDB-51 (split 1 with additional training data).
Training setting Accuracy
Training on HMDB-51 without additional data 46.6%
Fine-tuning a ConvNet, pre-trained on UCF-101 49.0%
Training on HMDB-51 with classes added from UCF-101 52.8%
Multi-task learning on HMDB-51 and UCF-101 55.4%

utilise full (all splits combined) UCF-101 data for training (either explicitly by borrowing images, or
implicitly by pre-training). Multi-task learning performs the best, as it allows the training procedure
to exploit all available training data.

We have also experimented with multi-task learning on the UCF-101 dataset, by training a network
to classify both the full HMDB-51 data (all splits combined) and the UCF-101 data (a single split).
On the first split of UCF-101, the accuracy was measured to be 81.5%, which improves on 81.0%
achieved using the same settings, but without the additional HMDB classification task (Table 1b).

Two-stream ConvNets. Here we evaluate the complete two-stream model, which combines the
two recognition streams. One way of combining the networks would be to train a joint stack of
fully-connected layers on top of full6 or full7 layers of the two nets. This, however, was not feasible
in our case due to over-fitting. We therefore fused the softmax scores using either averaging or
a linear SVM. From Table 3 we conclude that: (i) temporal and spatial recognition streams are
complementary, as their fusion significantly improves on both (6% over temporal and 14% over
spatial nets); (ii) SVM-based fusion of softmax scores outperforms fusion by averaging; (iii) using
bi-directional flow is not beneficial in the case of ConvNet fusion; (iv) temporal ConvNet, trained
using multi-task learning, performs the best both alone and when fused with a spatial net.

Comparison with the state of the art. We conclude the experimental evaluation with the com-
parison against the state of the art on three splits of UCF-101 and HMDB-51. For that we used a

7

Inflated 3D Convolutions

Joao Carreira, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2017

Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of
neighboring frames of the video.

this makes them harder to train. Also, they seem to preclude
the benefits of ImageNet pre-training, and consequently
previous work has defined relatively shallow custom archi-
tectures and trained them from scratch [14, 15, 30, 31]. Re-
sults on benchmarks have shown promise but have not been
competitive with state-of-the-art, making this type of mod-
els a good candidate for evaluation on our larger dataset.

For this paper we implemented a small variation of C3D
[31], which has 8 convolutional layers, 5 pooling layers and
2 fully connected layers at the top. The inputs to the model
are short 16-frame clips with 112 ⇥ 112-pixel crops as in
the original implementation. Differently from [31] we used
batch normalization after all convolutional and fully con-
nected layers. Another difference to the original model is
in the first pooling layer, we use a temporal stride of 2 in-
stead of 1, which reduces the memory footprint and allows
for bigger batches – this was important for batch normal-
ization (especially after the fully connected layers, where
there is no weight tying). Using this stride we were able to
train with 15 videos per batch per GPU using standard K40
GPUs.

2.3. The Old III: Two-Stream Networks
LSTMs on features from the last layers of ConvNets can

model high-level variation, but may not be able to capture
fine low-level motion which is critical in many cases. It is
also expensive to train as it requires unrolling the network
through multiple frames for backpropagation-through-time.

A different, very practical approach, introduced by Si-
monyan and Zisserman [27], models short temporal snap-
shots of videos by averaging the predictions from a single
RGB frame and a stack of 10 externally computed optical

flow frames, after passing them through two replicas of an
ImageNet pre-trained ConvNet. The flow stream has an
adapted input convolutional layer with twice as many input
channels as flow frames (because flow has two channels,
horizontal and vertical), and at test time multiple snapshots
are sampled from the video and the action prediction is av-
eraged. This was shown to get very high performance on
existing benchmarks, while being very efficient to train and
test.

A recent extension [8] fuses the spatial and flow streams
after the last network convolutional layer, showing some
improvement on HMDB while requiring less test time aug-
mentation (snapshot sampling). Our implementation fol-
lows this paper approximately using Inception-V1. The in-
puts to the network are 5 consecutive RGB frames sam-
pled 10 frames apart, as well as the corresponding optical
flow snippets. The spatial and motion features before the
last average pooling layer of Inception-V1 (5 ⇥ 7 ⇥ 7 fea-
ture grids, corresponding to time, x and y dimensions) are
passed through a 3⇥ 3⇥ 3 3D convolutional layer with 512
output channels, followed by a 3 ⇥ 3 ⇥ 3 3D max-pooling
layer and through a final fully connected layer. The weights
of these new layers are initialized with Gaussian noise.

Both models, the original two-stream and the 3D fused
version, are trained end-to-end (including the two-stream
averaging process in the original model).

2.4. The New: Two-Stream Inflated 3D ConvNets
With this architecture, we show how 3D ConvNets can

benefit from ImageNet 2D ConvNet designs and, option-
ally, from their learned parameters. We also adopt a two-
stream configuration here – it will be shown in section 4

Inflated 3D Convolutions

Joao Carreira, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2017

UCF-101 HMDB-51 Kinetics
Architecture RGB Flow RGB + Flow RGB Flow RGB + Flow RGB Flow RGB + Flow
(a) LSTM 81.0 – – 36.0 – – 63.3 – –
(b) 3D-ConvNet 51.6 – – 24.3 – – 56.1 – –
(c) Two-Stream 83.6 85.6 91.2 43.2 56.3 58.3 62.2 52.4 65.6
(d) 3D-Fused 83.2 85.8 89.3 49.2 55.5 56.8 – – 67.2
(e) Two-Stream I3D 84.5 90.6 93.4 49.8 61.9 66.4 71.1 63.4 74.2

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51;
(right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31]
model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual
RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames
then averages the predictions.

Kinetics ImageNet then Kinetics
Architecture RGB Flow RGB + Flow RGB Flow RGB + Flow
(a) LSTM 53.9 – – 63.3 – –
(b) 3D-ConvNet 56.1 – – – – –
(c) Two-Stream 57.9 49.6 62.8 62.2 52.4 65.6
(d) 3D-Fused – – 62.7 – – 67.2
(e) Two-Stream I3D 68.4 (88.0) 61.5 (83.4) 71.6 (90.0) 71.1 (89.3) 63.4 (84.9) 74.2 (91.3)

Table 3. Performance training and testing on Kinetics with and without ImageNet pretraining. Numbers in brackets () are the Top-5
accuracy, all others are Top-1.

ties. This is interesting, given its very large number of pa-
rameters and that UCF-101 and HMDB-51 are so small, and
shows that the benefits of ImageNet pre-training can extend
to 3D ConvNets.

Second, the performance of all models is far lower on Ki-
netics than on UCF-101, an indication of the different levels
of difficulty of the two datasets. It is however higher than on
HMDB-51; this may be in part due to lack of training data
in HMDB-51 but also because this dataset was purposefully
built to be hard: many clips have different actions in the ex-
act same scene (e.g. “drawing sword” examples are taken
from same videos as “sword” and “sword exercise”). Third,
the ranking of the different architectures is mostly consis-
tent.

Additionally, two-stream architectures exhibit superior
performance on all datasets, but the relative value of RGB
and flow differs significantly between Kinetics and the other
datasets. The contribution from flow alone, is slightly
higher than that of RGB on UCF-101, much higher on
HMDB-51, and substantially lower on Kinetics. Visual in-
spection of the datasets suggests that Kinetics has much
more camera motion which may make the job of the motion
stream harder. The I3D model seems able to get more out
of the flow stream than the other models, however, which
can probably be explained by its much longer temporal re-
ceptive field (64 frames vs 10 during training) and more
integrated temporal feature extraction machinery. While it

seems plausible that the RGB stream has more discrimina-
tive information – we often struggled with our own eyes to
discern actions from flow alone in Kinetics, and this was
rarely the case from RGB – there may be opportunities for
future research on integrating some form of motion stabi-
lization into these architectures.

We also evaluated the value of training models in Kinet-
ics starting from ImageNet-pretrained weights versus from
scratch – the results are shown in table 3. It can be seen
that ImageNet pre-training still helps in all cases and this is
slightly more noticeable for the RGB streams, as would be
expected.

5. Experimental Evaluation of Features
In this section we investigate the generalizability of

the networks trained on Kinetics. We consider two
measures of this: first, we freeze the network weights
and use the network to produce features for the (un-
seen) videos of the UCF-101/HMDB-51 datasets. We
then train multi-way soft-max classifiers for the classes of
UCF-101/HMDB-51 (using their training data), and eval-
uate on their test sets; Second, we fine-tune each net-
work for the UCF-101/HMDB-51 classes (using the UCF-
101/HMDB-51 training data), and again evaluate on the
UCF-101/HMDB-51 test sets.

We also examine how important it is to pre-train on Im-
ageNet+Kinetics instead of just Kinetics.

SlowFast Networks

Christoph Feichtenhofer et al., Quo Vadis, SlowFast Networks for Video Recognition, CVPR 2019

SlowFast Networks for Video Recognition

Christoph Feichtenhofer Haoqi Fan Jitendra Malik Kaiming He

Facebook AI Research (FAIR)

Abstract

We present SlowFast networks for video recognition. Our

model involves (i) a Slow pathway, operating at low frame

rate, to capture spatial semantics, and (ii) a Fast path-

way, operating at high frame rate, to capture motion at

fine temporal resolution. The Fast pathway can be made

very lightweight by reducing its channel capacity, yet can

learn useful temporal information for video recognition.

Our models achieve strong performance for both action

classification and detection in video, and large improve-

ments are pin-pointed as contributions by our SlowFast con-

cept. We report state-of-the-art accuracy on major video

recognition benchmarks, Kinetics, Charades and AVA. Code

has been made available at: https://github.com/
facebookresearch/SlowFast.

1. Introduction
It is customary in the recognition of images I(x, y) to

treat the two spatial dimensions x and y symmetrically. This
is justified by the statistics of natural images, which are to
a first approximation isotropic—all orientations are equally
likely—and shift-invariant [41, 26]. But what about video
signals I(x, y, t)? Motion is the spatiotemporal counterpart
of orientation [2], but all spatiotemporal orientations are
not equally likely. Slow motions are more likely than fast
motions (indeed most of the world we see is at rest at a given
moment) and this has been exploited in Bayesian accounts of
how humans perceive motion stimuli [58]. For example, if
we see a moving edge in isolation, we perceive it as moving
perpendicular to itself, even though in principle it could
also have an arbitrary component of movement tangential to
itself (the aperture problem in optical flow). This percept is
rational if the prior favors slow movements.

If all spatiotemporal orientations are not equally likely,
then there is no reason for us to treat space and time sym-
metrically, as is implicit in approaches to video recognition
based on spatiotemporal convolutions [49, 5]. We might
instead “factor” the architecture to treat spatial structures
and temporal events separately. For concreteness, let us
study this in the context of recognition. The categorical
spatial semantics of the visual content often evolve slowly.

T

C

H,W

prediction

High frame rate

C

αT

C
C

αT
αT βC

βC

βC

T
T

T
Low frame rate

Figure 1. A SlowFast network has a low frame rate, low temporal
resolution Slow pathway and a high frame rate, ↵⇥ higher temporal
resolution Fast pathway. The Fast pathway is lightweight by using
a fraction (�, e.g., 1/8) of channels. Lateral connections fuse them.

For example, waving hands do not change their identity as
“hands” over the span of the waving action, and a person
is always in the “person” category even though he/she can
transit from walking to running. So the recognition of the cat-
egorical semantics (as well as their colors, textures, lighting
etc.) can be refreshed relatively slowly. On the other hand,
the motion being performed can evolve much faster than
their subject identities, such as clapping, waving, shaking,
walking, or jumping. It can be desired to use fast refreshing
frames (high temporal resolution) to effectively model the
potentially fast changing motion.

Based on this intuition, we present a two-pathway
SlowFast model for video recognition (Fig. 1). One path-
way is designed to capture semantic information that can be
given by images or a few sparse frames, and it operates at
low frame rates and slow refreshing speed. In contrast, the
other pathway is responsible for capturing rapidly changing
motion, by operating at fast refreshing speed and high tem-
poral resolution. Despite its high temporal rate, this pathway
is made very lightweight, e.g., ⇠20% of total computation.
This is because this pathway is designed to have fewer chan-
nels and weaker ability to process spatial information, while
such information can be provided by the first pathway in a
less redundant manner. We call the first a Slow pathway and
the second a Fast pathway, driven by their different temporal
speeds. The two pathways are fused by lateral connections.

ar
X

iv
:1

81
2.

03
98

2v
3

 [c
s.C

V
]

29
 O

ct
 2

01
9

SlowFast Networks

Christoph Feichtenhofer et al., Quo Vadis, SlowFast Networks for Video Recognition, CVPR 2019

High temporal resolution features. Our Fast pathway not
only has a high input resolution, but also pursues high-
resolution features throughout the network hierarchy. In
our instantiations, we use no temporal downsampling lay-
ers (neither temporal pooling nor time-strided convolutions)
throughout the Fast pathway, until the global pooling layer
before classification. As such, our feature tensors always
have ↵T frames along the temporal dimension, maintaining
temporal fidelity as much as possible.

Low channel capacity. Our Fast pathway also distin-
guishes with existing models in that it can use significantly
lower channel capacity to achieve good accuracy for the
SlowFast model. This makes it lightweight.

In a nutshell, our Fast pathway is a convolutional network
analogous to the Slow pathway, but has a ratio of � (� < 1)
channels of the Slow pathway. The typical value is � = 1/8
in our experiments. Notice that the computation (floating-
number operations, or FLOPs) of a common layer is often
quadratic in term of its channel scaling ratio. This is what
makes the Fast pathway more computation-effective than
the Slow pathway. In our instantiations, the Fast pathway
typically takes ⇠20% of the total computation. Interestingly,
as mentioned in Sec. 1, evidence suggests that ⇠15-20% of
the retinal cells in the primate visual system are M-cells (that
are sensitive to fast motion but not color or spatial detail).

The low channel capacity can also be interpreted as a
weaker ability of representing spatial semantics. Technically,
our Fast pathway has no special treatment on the spatial
dimension, so its spatial modeling capacity should be lower
than the Slow pathway because of fewer channels. The good
results of our model suggest that it is a desired tradeoff for
the Fast pathway to weaken its spatial modeling ability while
strengthening its temporal modeling ability.

Motivated by this interpretation, we also explore different
ways of weakening spatial capacity in the Fast pathway, in-
cluding reducing input spatial resolution and removing color
information. As we will show by experiments, these versions
can all give good accuracy, suggesting that a lightweight Fast
pathway with less spatial capacity can be made beneficial.

3.3. Lateral connections
The information of the two pathways is fused, so one

pathway is not unaware of the representation learned by the
other pathway. We implement this by lateral connections,
which have been used to fuse optical flow-based, two-stream
networks [12, 13]. In image object detection, lateral con-
nections [35] are a popular technique for merging different
levels of spatial resolution and semantics.

Similar to [12, 35], we attach one lateral connection be-
tween the two pathways for every “stage" (Fig. 1). Specif-
ically for ResNets [24], these connections are right after
pool1, res2, res3, and res4. The two pathways have different
temporal dimensions, so the lateral connections perform a

stage Slow pathway Fast pathway output sizes T⇥S2

raw clip - - 64⇥2242

data layer stride 16, 12 stride 2, 12 Slow : 4⇥2242

Fast : 32⇥2242

conv1
1⇥72, 64 5⇥72, 8 Slow : 4⇥1122

Fast : 32⇥1122stride 1, 22 stride 1, 22

pool1
1⇥32 max 1⇥32 max Slow : 4⇥562

Fast : 32⇥562stride 1, 22 stride 1, 22

res2

2

4
1⇥12, 64
1⇥32, 64
1⇥12, 256

3

5⇥3

2

4
3⇥12, 8
1⇥32, 8
1⇥12, 32

3

5⇥3 Slow : 4⇥562

Fast : 32⇥562

res3

2

4
1⇥12, 128
1⇥32, 128
1⇥12, 512

3

5⇥4

2

4
3⇥12, 16
1⇥32, 16
1⇥12, 64

3

5⇥4 Slow : 4⇥282

Fast : 32⇥282

res4

2

4
3⇥12, 256
1⇥32, 256

1⇥12, 1024

3

5⇥6

2

4
3⇥12, 32
1⇥32, 32

1⇥12, 128

3

5⇥6 Slow : 4⇥142

Fast : 32⇥142

res5

2

4
3⇥12, 512
1⇥32, 512

1⇥12, 2048

3

5⇥3

2

4
3⇥12, 64
1⇥32, 64

1⇥12, 256

3

5⇥3 Slow : 4⇥72

Fast : 32⇥72

global average pool, concate, fc # classes

Table 1. An example instantiation of the SlowFast network. The
dimensions of kernels are denoted by {T⇥S2, C} for temporal,
spatial, and channel sizes. Strides are denoted as {temporal stride,
spatial stride2}. Here the speed ratio is ↵ = 8 and the channel
ratio is � = 1/8. ⌧ is 16. The green colors mark higher temporal
resolution, and orange colors mark fewer channels, for the Fast
pathway. Non-degenerate temporal filters are underlined. Residual
blocks are shown by brackets. The backbone is ResNet-50.

transformation to match them (detailed in Sec. 3.4). We
use unidirectional connections that fuse features of the Fast
pathway into the Slow one (Fig. 1). We have experimented
with bidirectional fusion and found similar results.

Finally, a global average pooling is performed on each
pathway’s output. Then two pooled feature vectors are con-
catenated as the input to the fully-connected classifier layer.

3.4. Instantiations
Our idea of SlowFast is generic, and it can be instanti-

ated with different backbones (e.g., [45, 47, 24]) and im-
plementation specifics. In this subsection, we describe our
instantiations of the network architectures.

An example SlowFast model is specified in Table 1. We
denote spatiotemporal size by T⇥S2 where T is the tempo-
ral length and S is the height and width of a square spatial
crop. The details are described next.

Slow pathway. The Slow pathway in Table 1 is a temporally
strided 3D ResNet, modified from [12]. It has T = 4 frames
as the network input, sparsely sampled from a 64-frame raw
clip with a temporal stride ⌧ = 16. We opt to not perform
temporal downsampling in this instantiation, as doing so
would be detrimental when the input stride is large.

Unlike typical C3D / I3D models, we use non-degenerate

temporal convolutions (temporal kernel size > 1, underlined
in Table 1) only in res4 and res5; all filters from conv1 to
res3 are essentially 2D convolution kernels in this pathway.

model flow pretrain top-1 top-5 GFLOPs⇥views
I3D [5] ImageNet 72.1 90.3 108 ⇥ N/A
Two-Stream I3D [5] X ImageNet 75.7 92.0 216 ⇥ N/A
S3D-G [61] X ImageNet 77.2 93.0 143 ⇥ N/A
Nonlocal R50 [56] ImageNet 76.5 92.6 282 ⇥ 30
Nonlocal R101 [56] ImageNet 77.7 93.3 359 ⇥ 30
R(2+1)D Flow [50] X - 67.5 87.2 152 ⇥ 115
STC [9] - 68.7 88.5 N/A ⇥ N/A
ARTNet [54] - 69.2 88.3 23.5 ⇥ 250
S3D [61] - 69.4 89.1 66.4 ⇥ N/A
ECO [63] - 70.0 89.4 N/A ⇥ N/A
I3D [5] X - 71.6 90.0 216 ⇥ N/A
R(2+1)D [50] - 72.0 90.0 152 ⇥ 115
R(2+1)D [50] X - 73.9 90.9 304 ⇥ 115
SlowFast 4⇥16, R50 - 75.6 92.1 36.1 ⇥ 30
SlowFast 8⇥8, R50 - 77.0 92.6 65.7 ⇥ 30
SlowFast 8⇥8, R101 - 77.9 93.2 106 ⇥ 30
SlowFast 16⇥8, R101 - 78.9 93.5 213 ⇥ 30
SlowFast 16⇥8, R101+NL - 79.8 93.9 234 ⇥ 30

Table 2. Comparison with the state-of-the-art on Kinetics-400.
In the last column, we report the inference cost with a single “view"
(temporal clip with spatial crop) ⇥ the numbers of such views used.
The SlowFast models are with different input sampling (T⇥⌧) and
backbones (R-50, R-101, NL). “N/A” indicates the numbers are
not available for us.

+3.3

+3.0

+3.4 +2.1

+2.0

+1.7

 16×8, R101

 8×8, R101

4×16, R101

4×16, R50

2×32, R50

8×8, R50

SlowFast
Slow-only

Model capacity in GFLOPs for a single clip with 2562 spatial size
K

in
et

ic
s

to
p-

1
ac

cu
ra

cy
 (%

)
100 125 150 175 20025 50 75

70

72

74

76

78

Figure 2. Accuracy/complexity tradeoff on Kinetics-400 for the
SlowFast (green) vs. Slow-only (blue) architectures. SlowFast is
consistently better than its Slow-only counterpart in all cases (green
arrows). SlowFast provides higher accuracy and lower cost than
temporally heavy Slow-only (e.g. red arrow). The complexity is for
a single 2562 view, and accuracy are obtained by 30-view testing.

Fig. 2 shows that for all variants the Fast pathway is able to
consistently improve the performance of the Slow counter-
part at comparatively low cost. The next subsection provides
a more detailed analysis on Kinetics-400.

Kinetics-600 is relatively new, and existing results are lim-
ited. So our goal is mainly to provide results for future ref-
erence in Table 3. Note that the Kinetics-600 validation set
overlaps with the Kinetics-400 training set [3], and therefore
we do not pre-train on Kinetics-400. The winning entry [21]
of the latest ActivityNet Challenge 2018 [15] reports a best

model pretrain top-1 top-5 GFLOPs⇥views
I3D [3] - 71.9 90.1 108 ⇥ N/A
StNet-IRv2 RGB [21] ImgNet+Kin400 79.0 N/A N/A
SlowFast 4⇥16, R50 - 78.8 94.0 36.1 ⇥ 30
SlowFast 8⇥8, R50 - 79.9 94.5 65.7 ⇥30
SlowFast 8⇥8, R101 - 80.4 94.8 106 ⇥ 30
SlowFast 16⇥8, R101 - 81.1 95.1 213 ⇥ 30
SlowFast 16⇥8, R101+NL - 81.8 95.1 234 ⇥ 30

Table 3. Comparison with the state-of-the-art on Kinetics-600.
SlowFast models the same as in Table 2.

model pretrain mAP GFLOPs⇥views
CoViAR, R-50 [59] ImageNet 21.9 N/A
Asyn-TF, VGG16 [42] ImageNet 22.4 N/A
MultiScale TRN [62] ImageNet 25.2 N/A
Nonlocal, R101 [56] ImageNet+Kinetics400 37.5 544 ⇥ 30
STRG, R101+NL [57] ImageNet+Kinetics400 39.7 630 ⇥ 30
our baseline (Slow-only) Kinetics-400 39.0 187 ⇥ 30
SlowFast Kinetics-400 42.1 213 ⇥ 30
SlowFast, +NL Kinetics-400 42.5 234 ⇥ 30
SlowFast, +NL Kinetics-600 45.2 234 ⇥ 30

Table 4. Comparison with the state-of-the-art on Charades. All
our variants are based on T⇥⌧ = 16⇥8, R-101.

single-model, single-modality accuracy of 79.0%. Our vari-
ants show good performance with the best model at 81.8%.
SlowFast results on the recent Kinetics-700 [4] are in [11].

Charades [43] is a dataset with longer range activities. Ta-
ble 4 shows our SlowFast results on it. For fair comparison,
our baseline is the Slow-only counterpart that has 39.0 mAP.
SlowFast increases over this baseline by 3.1 mAP (to 42.1),
while the extra NL leads to an additional 0.4 mAP. We also
achieve 45.2 mAP when pre-trained on Kinetics-600. Over-
all, our SlowFast models in Table 4 outperform the previous
best number (STRG [57]) by solid margins, at lower cost.

4.2. Ablation Experiments
This section provides ablation studies on Kinetics-400

comparing accuracy and computational complexity.

Slow vs. SlowFast. We first aim to explore the SlowFast
complementarity by changing the sample rate (T⇥⌧) of the
Slow pathway. Therefore, this ablation studies ↵, the frame
rate ratio between the Fast and Slow paths. Fig. 2 shows the
accuracy vs. complexity tradeoff for various instantiations of
Slow and SlowFast models. It is seen that doubling the num-
ber of frames in the Slow pathway increases performance
(vertical axis) at double computational cost (horizontal axis),
while SlowFast significantly extends the performance of all
variants at small increase of computational cost, even if the
Slow pathways operates on higher frame rate. Green arrows
illustrate the gain of adding the Fast pathway to the corre-
sponding Slow-only architecture. The red arrow illustrates
that SlowFast provides higher accuracy and reduced cost.

Next, Table 5 shows a series of ablations on the Fast
pathway design, using the default SlowFast, T⇥⌧ = 4⇥16,
R-50 instantiation (specified in Table 1), analyzed in turn.

Non-local Networks

Xiaolong Wang et al., Non-local Neural Networks, CVPR 2018

i is often based only on the current and the latest time steps
(e.g., j = i or i� 1).

The non-local operation is also different from a fully-
connected (fc) layer. Eq.(1) computes responses based on
relationships between different locations, whereas fc uses
learned weights. In other words, the relationship between xj

and xi is not a function of the input data in fc, unlike in non-
local layers. Furthermore, our formulation in Eq.(1) supports
inputs of variable sizes, and maintains the corresponding
size in the output. On the contrary, an fc layer requires a
fixed-size input/output and loses positional correspondence
(e.g., that from xi to yi at the position i).

A non-local operation is a flexible building block and can
be easily used together with convolutional/recurrent layers.
It can be added into the earlier part of deep neural networks,
unlike fc layers that are often used in the end. This allows us
to build a richer hierarchy that combines both non-local and
local information.

3.2. Instantiations

Next we describe several versions of f and g. Interest-
ingly, we will show by experiments (Table 2a) that our non-
local models are not sensitive to these choices, indicating
that the generic non-local behavior is the main reason for the
observed improvements.

For simplicity, we only consider g in the form of a linear
embedding: g(xj) = Wgxj , where Wg is a weight matrix
to be learned. This is implemented as, e.g., 1⇥1 convolution
in space or 1⇥1⇥1 convolution in spacetime.

Next we discuss choices for the pairwise function f .

Gaussian. Following the non-local mean [4] and bilateral
filters [47], a natural choice of f is the Gaussian function. In
this paper we consider:

f(xi,xj) = e
xT
i xj . (2)

Here xT
i xj is dot-product similarity. Euclidean distance as

used in [4, 47] is also applicable, but dot product is more
implementation-friendly in modern deep learning platforms.
The normalization factor is set as C(x) =

P
8j f(xi,xj).

Embedded Gaussian. A simple extension of the Gaussian
function is to compute similarity in an embedding space. In
this paper we consider:

f(xi,xj) = e
✓(xi)

T�(xj). (3)

Here ✓(xi) = W✓xi and �(xj) = W�xj are two embed-
dings. As above, we set C(x) =

P
8j f(xi,xj).

We note that the self-attention module [49] recently pre-
sented for machine translation is a special case of non-local
operations in the embedded Gaussian version. This can be
seen from the fact that for a given i, 1

C(x)f(xi,xj) becomes
the softmax computation along the dimension j. So we have

Ƨ: 1×1×1 ƴ: 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x
Figure 2. A spacetime non-local block. The feature maps are
shown as the shape of their tensors, e.g., T⇥H⇥W⇥1024 for
1024 channels (proper reshaping is performed when noted). “⌦”
denotes matrix multiplication, and “�” denotes element-wise sum.
The softmax operation is performed on each row. The blue boxes de-
note 1⇥1⇥1 convolutions. Here we show the embedded Gaussian
version, with a bottleneck of 512 channels. The vanilla Gaussian
version can be done by removing ✓ and �, and the dot-product
version can be done by replacing softmax with scaling by 1/N .

y = softmax(xT
W

T
✓ W�x)g(x), which is the self-attention

form in [49]. As such, our work provides insight by relating
this recent self-attention model to the classic computer vision
method of non-local means [4], and extends the sequential
self-attention network in [49] to a generic space/spacetime
non-local network for image/video recognition in computer
vision.

Despite the relation to [49], we show that the attentional
behavior (due to softmax) is not essential in the applications
we study. To show this, we describe two alternative versions
of non-local operations next.

Dot product. f can be defined as a dot-product similarity:

f(xi,xj) = ✓(xi)
T
�(xj). (4)

Here we adopt the embedded version. In this case, we set the
normalization factor as C(x) = N , where N is the number of
positions in x, rather than the sum of f , because it simplifies
gradient computation. A normalization like this is necessary
because the input can have variable size.

The main difference between the dot product and embed-
ded Gaussian versions is the presence of softmax, which
plays the role of an activation function.

Concatenation. Concatenation is used by the pairwise func-
tion in Relation Networks [40] for visual reasoning. We also
evaluate a concatenation form of f :

f(xi,xj) = ReLU(wT
f [✓(xi), �(xj)]). (5)

Here [·, ·] denotes concatenation and wf is a weight vector
that projects the concatenated vector to a scalar. As above,
we set C(x) = N . In this case, we adopt ReLU [35] in f .

To demonstrate the generality of non-local operations,
we further present object detection/segmentation and pose
estimation experiments on the COCO dataset [33]. On top of
the strong Mask R-CNN baseline [19], our non-local blocks
can increase accuracy on all three tasks at a small extra
computational cost. Together with the evidence on videos,
these image experiments show that non-local operations are
generally useful and can become a basic building block in
designing deep neural networks.

2. Related Work

Non-local image processing. Non-local means [4] is a clas-
sical filtering algorithm that computes a weighted mean of
all pixels in an image. It allows distant pixels to contribute to
the filtered response at a location based on patch appearance
similarity. This non-local filtering idea was later developed
into BM3D (block-matching 3D) [10], which performs filter-
ing on a group of similar, but non-local, patches. BM3D is
a solid image denoising baseline even compared with deep
neural networks [5]. Block matching was used with neural
networks for image denoising [6, 31]. Non-local match-
ing is also the essence of successful texture synthesis [12],
super-resolution [16], and inpainting [1] algorithms.
Graphical models. Long-range dependencies can be mod-
eled by graphical models such as conditional random fields
(CRF) [29, 28]. In the context of deep neural networks, a
CRF can be exploited to post-process semantic segmenta-
tion predictions of a network [9]. The iterative mean-field
inference of CRF can be turned into a recurrent network
and trained [56, 42, 8, 18, 34]. In contrast, our method is a
simpler feedforward block for computing non-local filtering.
Unlike these methods that were developed for segmentation,
our general-purpose component is applied for classification
and detection. These methods and ours are also related to a
more abstract model called graph neural networks [41].
Feedforward modeling for sequences. Recently there
emerged a trend of using feedforward (i.e., non-recurrent)
networks for modeling sequences in speech and language
[36, 54, 15]. In these methods, long-term dependencies
are captured by the large receptive fields contributed by
very deep 1-D convolutions. These feedforward models are
amenable to parallelized implementations and can be more
efficient than widely used recurrent models.
Self-attention. Our work is related to the recent self-
attention [49] method for machine translation. A self-
attention module computes the response at a position in
a sequence (e.g., a sentence) by attending to all positions
and taking their weighted average in an embedding space.
As we will discuss in the next, self-attention can be viewed
as a form of the non-local mean [4], and in this sense our
work bridges self-attention for machine translation to the
more general class of non-local filtering operations that are
applicable to image and video problems in computer vision.

Interaction networks. Interaction Networks (IN) [2, 52]
were proposed recently for modeling physical systems. They
operate on graphs of objects involved in pairwise interactions.
Hoshen [24] presented the more efficient Vertex Attention
IN (VAIN) in the context of multi-agent predictive modeling.
Another variant, named Relation Networks [40], computes a
function on the feature embeddings at all pairs of positions
in its input. Our method also processes all pairs, as we will
explain (f(xi,xj) in Eq.(1)). While our non-local networks
are connected to these approaches, our experiments indicate
that the non-locality of the model, which is orthogonal to
the ideas of attention/interaction/relation (e.g., a network
can attend to a local region), is the key to their empirical
success. Non-local modeling, a long-time crucial element of
image processing (e.g., [12, 4]), has been largely overlooked
in recent neural networks for computer vision.

Video classification architectures. A natural solution to
video classification is to combine the success of CNNs for
images and RNNs for sequences [55, 11]. In contrast, feed-
forward models are achieved by 3D convolutions (C3D)
[26, 48] in spacetime, and the 3D filters can be formed by
“inflating” [13, 7] pre-trained 2D filters. In addition to end-
to-end modeling on raw video inputs, it has been found that
optical flow [45] and trajectories [50, 51] can be helpful.
Both flow and trajectories are off-the-shelf modules that
may find long-range, non-local dependency. A systematic
comparison of video architectures can be found in [7].

3. Non-local Neural Networks

We first give a general definition of non-local operations
and then we provide several specific instantiations of it.

3.1. Formulation

Following the non-local mean operation [4], we define a
generic non-local operation in deep neural networks as:

yi =
1

C(x)
X

8j
f(xi,xj)g(xj). (1)

Here i is the index of an output position (in space, time, or
spacetime) whose response is to be computed and j is the
index that enumerates all possible positions. x is the input
signal (image, sequence, video; often their features) and y
is the output signal of the same size as x. A pairwise func-
tion f computes a scalar (representing relationship such as
affinity) between i and all j. The unary function g computes
a representation of the input signal at the position j. The
response is normalized by a factor C(x).

The non-local behavior in Eq.(1) is due to the fact that
all positions (8j) are considered in the operation. As a
comparison, a convolutional operation sums up the weighted
input in a local neighborhood (e.g., i� 1 j i+ 1 in a
1D case with kernel size 3), and a recurrent operation at time

Non-local Networks

Xiaolong Wang et al., Non-local Neural Networks, CVPR 2018

https://arxiv.org/abs/1711.07971

