Videos

Saurabh Gupta CS 543 / ECE 549 Computer Vision Spring 2020

Outline

- Optical Flow
- Tracking
- Correspondence
- Recognition in Videos

Optical Flow

- Data / Supervision
- Architecture

Datasets

- Traditional datasets: Yosemite, Middlebury
- KITTI: w.php?benchmark=flow
- Sintel: <u>http://sintel.is.tue.mpg.de/</u>
- Synthetic Datasets
 - Flying Chairs et al: <u>https://lmb.informatik.uni-</u> freiburg.de/resources/datasets/FlyingChairs.en.html
- Supervision: from Simulation
- Metrics: End-point Error

"Classical Optical Flow Pipeline"

Upsampled flow

PWC Net

Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation. Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. arXiv 2018.

PWC Net

Max.	Chaira	Sintel	Sintel	KITTI 2012		KITTI 2015	
Disp.		Clean	Final	AEPE	Fl-all	AEPE	Fl-all
0	2.13	3.66	5.09	5.25	29.82%	13.85	43.52%
2	2.09	3.30	4.50	5.26	25.99 %	13.67	38.99 %
Full model (4)	2.00	3.33	4.59	5.14	28.67%	13.20	41.79%
6	1.97	3.31	4.60	4.96	27.05%	12.97	40.94%

(b) **Cost volume.** Removing the cost volume (0) results in moderate performance loss. PWC-Net can handle large motion using a small search range to compute the cost volume.

Flying Chairs Dataset

FlyingChairs

Tracking

- Problem Statements
- Tracking by Detection
- General Object Tracking

Problem Statements

- Single Object Tracking (eg: https://nanonets.com/blog/content/images/2019/07/ messi football track.gif
- Multi-object Tracking (eg: https://motchallenge.net/vis/MOT20-02/gt/)
- Multi-object Tracking and Segmentation (eg: https://www.youtube.com/watch?v=K38 pZw P9s

Tracking by Detection

Detections per frame

FIGURE 2.2: Tracking-by-detection paradigm. Firstly, an independent detector is applied to all image frames to obtain likely pedestrian detections. Secondly, a tracker is run on the set of detections to perform data association, *i.e.*, link the detections to obtain full trajectories.

Source: Laura Leal-Taixé

Tracking by Detection

Strike a Pose! Tracking People by Learning Their Appearance. D. Ramanan et al., PAMI 2007

General Object Tracking

Previous frame

Conv Layers

Learning to Track at 100 FPS with Deep Regression Networks. D. Held et al., ECCV16.

Correspondence in Time

Tracking (Box-level, long-range) Middle Ground (Mid-level, long-range)

Human Ann Salft Suppervised / Unsupervised Leasyinghetic Data

Source: Xiaolong Wang

Optical Flow (Pixel-level, short-range)

Learning to Track *F*: a deep tracker

How to obtain supervision?

Supervision: Cycle-Consistency in Time

Track backwards

Track forwards, back to the future

Supervision: Cycle-Consistency in Time

Backpropagation through time, along the cycle

Multiple Cycles

Sub-cycles: a natural curriculum

Multiple Cycles

Shorter cycles: a natural curriculum

Multiple Cycles

Shorter cycles: a natural curriculum

Tracker *F*

Densely match features in learned feature space

Visualization of Training

Iteration: 1200

Test Time: Nearest Neighbors in Feature Space ϕ

t - 1

Source: Xiaolong Wang

t

Test Time: Nearest Neighbors in Feature Space ϕ

t - 1

Source: Xiaolong Wang

t

Instance Mask Tracking DAVIS Dataset

Source: Xiaolong Wang DAVIS Dataset: Pont-Tuset et al

DAVIS Dataset: Pont-Tuset et al. *The 2017 DAVIS Challenge on Video Object Segmentation.* 2017.

Pose Keypoint Tracking

JHMDB Dataset

Comparison

Our Correspondence

Source: Xiaolong Wang

Optical Flow

Texture Tracking DAVIS Dataset

Source: Xiaolong Wang DAVIS Dataset: Pont-Tuset et

DAVIS Dataset: Pont-Tuset et al. *The 2017 DAVIS Challenge on Video Object Segmentation*. 2017.

Semantic Masks Tracking

Video Instance Parsing Dataset

Source: Xiaolong Wang Zhou et al. *Adaptive Temporal Encoding Network for Video Instance-level Human Parsing*. ACM MM 2018.

Outline

- Optical Flow
- Tracking
- Correspondence
- Recognition in Videos
 - Tasks
 - Datasets
 - Models
- Applications

Recognition in Videos

- Tasks / Datasets
- Models

Tasks and Datasets

Action Classification

- Kinetics Dataset: <u>https://arxiv.org/pdf/1705.06950.pdf</u>
- ActivityNet, Sports-8M, ...
- Action "Detection"
 - In space, in time. Eg: JHMDB, AV

Tasks and Datasets

- Time scale
 - Atomic Visual Actions (AVA) Dataset:

- Bias
 - Something Something Dataset:

A TO C: CROSSING STREET A TO D: WALKING TO SCHOOL A TO E: WORKING TO "PASS" FROM THE THIRD GRADE A TO F: GETTING AN EDUCATION A TO G: CLIMBING TO THE TOP IN LIFE

We don't quite know how do define good meaningful tasks for videos. More on this later.

Models

- Recurrent Neural Nets (See: https://colah.github.io/posts/2015-08-**Understanding-LSTMs/**
- Simple Extensions of 2D CNNs
- 3D Convolution Networks
- Two-Stream Networks
- Inflated 3D Conv Nets
- Slow Fast Networks
- Non-local Networks

Recurrent Neural Networks

Source: https://colah.github.io/posts/2015-09-NN-Types-FP/

3D Convolutions

Karpathy et al. Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

3D Convolutions

Two Stream Networks

300		Spatial stream						
	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	con 3x3x5 stride pool 2		
		Temporal strean						
		conv1	conv2	conv3	conv4	con		
input		7x7x96 stride 2 norm.	5x5x256 stride 2 pool 2x2	3x3x512 stride 1	3x3x512 stride 1	3x3x5 stride		
video	multi-frame	pool 2x2	I. I					
	optical flow							

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Two Stream Networks

Figure 3: ConvNet input derivation from the multi-frame optical flow. Left: optical flow stacking (1) samples the displacement vectors d at the same location in multiple frames. Right: trajectory stacking (2) samples the vectors along the trajectory. The frames and the corresponding displacement vectors are shown with the same colour.

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Two Stream Networks

Table 1: Individual ConvNets accuracy on UCF-101 (split 1).

(a) **Spatial ConvNet.**

Training setting	Dropout ratio			
Iranning setting	0.5	0.9		
From scratch	42.5%	52.3%		
Pre-trained + fine-tuning	70.8%	72.8%		
Pre-trained + last layer	72.7%	59.9%		

Input configuration Single-frame optical

Optical flow stacking

Optical flow stacking

Trajectory stacking (2

Optical flow stacking

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

(b) **Temporal ConvNet.**

	Mean subtraction			
	off	on		
flow $(L = 1)$	-	73.9%		
g(1)(L=5)	-	80.4%		
g(1)(L=10)	79.9%	81.0%		
2)(L = 10)	79.6%	80.2%		
g(1)(L = 10), bi-dir.	-	81.2%		

Inflated 3D Convolutions

Joao Carreira, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2017

Inflated 3D Convolutions

	UCF-101		HMDB-51			Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0		—	36.0	_	_	63.3	_	_
(b) 3D-ConvNet	51.6	—	—	24.3	-	—	56.1		—
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	—		67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

Joao Carreira, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2017

SlowFast Networks

Christoph Feichtenhofer et al., Quo Vadis, SlowFast Networks for Video Recognition, CVPR 2019

SlowFast Networks

stage	Slow pathway	Fast pathway	output sizes $T \times S^2$	
raw clip	-	-	64×224^2	
data layer	stride 16, 1 ²	stride 2 , 1 ²	$Slow: 4 \times 224^2$ $Fast: 32 \times 224^2$	
CONV1	$1 \times 7^2, 64$	5×7^2 , 8	Slow: 4×112^2	
	stride 1, 2^2	stride 1, 2^2	$Fast: 32 \times 112^2$	
pool	1×3^2 max	1×3^2 max	$Slow: 4 \times 56^2$	
poort	stride 1, 2^2	stride 1, 2^2	$Fast: 32 \times 56^2$	
res ₂	$\begin{bmatrix} 1 \times 1^{2}, 64 \\ 1 \times 3^{2}, 64 \\ 1 \times 1^{2}, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 8}{1 \times 3^2, 8} \\ 1 \times 1^2, 32 \end{bmatrix} \times 3$	$Slow: 4 \times 56^{2}$ $Fast: 32 \times 56^{2}$	
res ₃	$\begin{bmatrix} 1 \times 1^2, 128 \\ 1 \times 3^2, 128 \\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\left[\begin{array}{c} \frac{3\times1^2, 16}{1\times3^2, 16}\\ 1\times1^2, 64 \end{array}\right] \times 4$	$Slow: 4 \times 28^{2}$ $Fast: 32 \times 28^{2}$	
res ₄	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, 256\\ 1 \times 1^2, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} \frac{3 \times 1^2, 32}{1 \times 3^2, 32} \\ 1 \times 1^2, 128 \end{bmatrix} \times 6$	$Slow: 4 \times 14^2$ Fast: 32 × 14 ²	
res ₅	$\begin{bmatrix} \frac{3 \times 1^2, 512}{1 \times 3^2, 512} \\ 1 \times 1^2, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 64}{1 \times 3^2, 64} \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$Slow: 4 \times 7^{2}$ $Fast: 32 \times 7^{2}$	

global average pool, concate, fc

classes

Table 1. An example instantiation of the SlowFast network. The dimensions of kernels are denoted by $\{T \times S^2, C\}$ for temporal, spatial, and channel sizes. Strides are denoted as $\{\text{temporal stride}^2\}$. Here the speed ratio is $\alpha = 8$ and the channel ratio is $\beta = 1/8$. τ is 16. The green colors mark *higher* temporal resolution, and orange colors mark *fewer* channels, for the Fast pathway. Non-degenerate temporal filters are underlined. Residual blocks are shown by brackets. The backbone is ResNet-50.

Model capacity in GFLOPs for a single clip with 256² spatial size

Figure 2. Accuracy/complexity tradeoff on Kinetics-400 for the SlowFast (green) *vs*. Slow-only (blue) architectures. SlowFast is consistently better than its Slow-only counterpart in all cases (green arrows). SlowFast provides higher accuracy *and* lower cost than temporally heavy Slow-only (*e.g.* red arrow). The complexity is for a single 256^2 view, and accuracy are obtained by 30-view testing.

Christoph Feichtenhofer et al., Quo Vadis, SlowFast Networks for Video Recognition, CVPR 2019

Non-local Networks

Xiaolong Wang et al., Non-local Neural Networks, CVPR 2018

 $\mathbf{y}_i = \frac{1}{\mathcal{C}(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_i, \mathbf{x}_j) g(\mathbf{x}_j).$

Non-local Networks

Xiaolong Wang et al., <u>Non-local Neural Networks</u>, CVPR 2018