Dynamic Perspective

CS 543 / ECE 549 - Saurabh Gupta Spring 2021, UIUC http://saurabhg.web.illinois.edu/teaching/ece549/sp2021/

Perspective Projection

- Point $\mathrm{P}(X, Y, Z)$ in the world moves relative to the camera, its projection in the image (x, y) moves as well.
- This movement in the image plane is called optical flow.
- Suppose the image of the point (x, y) moves to $(x+\Delta x, y+\Delta y)$ in time Δt, then $\left(\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}\right)$ are the two components of the optical flow.

Outline

- Relate optical flow to camera motion
- Special cases

How does a point X in the scene move?

- Assume that the camera moves with a translational velocity $t=\left(t_{x}, t_{y}, t_{z}\right)$ and angular velocity $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.
- Linear velocity of point $P=(X, Y, Z)$ is given by $\dot{P}=-t-\omega \times P$.

$$
\left[\begin{array}{l}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{array}\right]=-\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]-\left[\begin{array}{l}
\omega_{y} Z-\omega_{z} Y \\
\omega_{z} X-\omega_{x} Z \\
\omega_{x} Y-\omega_{y} X
\end{array}\right]
$$

Now, lets consider the effect of projection

$$
\left[\begin{array}{l}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{array}\right]=-\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]-\left[\begin{array}{l}
\omega_{y} Z-\omega_{z} Y \\
\omega_{z} X-\omega_{x} Z \\
\omega_{x} Y-\omega_{y} X
\end{array}\right]
$$

- Assume, $f=1, x=\frac{X}{Z}, y=\frac{Y}{Z}$.
- $\dot{x}=\frac{\dot{X} Z-\dot{Z} X}{z^{2}}, \dot{y}=\frac{\dot{Y} Z-\dot{Z} Y}{z^{2}}$
- Substitute $\dot{X}, \dot{Y}, \dot{Z}$, from equation above:

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\frac{1}{Z}\left[\begin{array}{ccc}
-1 & 0 & x \\
0 & -1 & y
\end{array}\right]\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{ccc}
x y & -\left(1+x^{2}\right) & y \\
\left(1+y^{2}\right) & -x y & -x
\end{array}\right]\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

Dynamic Perspective Equations

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\frac{1}{Z}\left[\begin{array}{ccc}
-1 & 0 & x \\
0 & -1 & y
\end{array}\right]\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{ccc}
x y & -\left(1+x^{2}\right) & y \\
\left(1+y^{2}\right) & -x y & -x
\end{array}\right]\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

Translation Component
Rotation Component

Optical flow for pure rotation

$$
\begin{aligned}
& {\left[\begin{array}{l}
u \\
v
\end{array}\right] }=\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\frac{1}{Z}\left[\begin{array}{ccc}
-1 & 0 & x \\
0 & -1 & y
\end{array}\right]\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{ccc}
x y & -\left(1+x^{2}\right) & y \\
\left(1+y^{2}\right) & -x y & -x
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \\
& \cdot\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{ccc}
x y & -\left(1+x^{2}\right) & y \\
\left(1+y^{2}\right) & -x y & -x
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
\end{aligned}
$$

- We can determine ω from the flow field.
- Flow field is independent of $Z(x, y)$.

Optical flow for pure translation along Z-axis

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\frac{1}{Z}\left[\begin{array}{ccc}
-1 & 0 & x \\
0 & -1 & y
\end{array}\right]\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{ccc}
x y & -\left(1+x^{2}\right) & y \\
\left(1+y^{2}\right) & -x y & -x
\end{array}\right]\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

- $\left[\begin{array}{l}u \\ v\end{array}\right]=\frac{t_{z}}{Z(x, y)}\left[\begin{array}{l}x \\ y\end{array}\right]$
- Optical flow vector is a scalar multiple of position vector.
- Scale factor ambiguity, if $t_{z} \rightarrow$ $k t_{Z}$, and $Z \rightarrow k Z$, optical flow remains unchanged.
- But, you can get time to collision, Z / t_{z}.

Optical flow for pure translation along Z-axis

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\frac{1}{Z}\left[\begin{array}{ccc}
-1 & 0 & x \\
0 & -1 & y
\end{array}\right]\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{ccc}
x y & -\left(1+x^{2}\right) & y \\
\left(1+y^{2}\right) & -x y & -x
\end{array}\right]\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

- $u=\frac{-t_{x}+x t_{z}}{Z(x, y)}, v=\frac{-t_{y}+y t_{z}}{Z(x, y)}$

Optical flow for points on a road

Optical flow for points on a road

Translating along X -axis in front of a wall

Translation along X -axis in front of a wall

Recap

- Relate optical flow to camera motion

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\frac{1}{Z}\left[\begin{array}{ccc}
-1 & 0 & x \\
0 & -1 & y
\end{array}\right]\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{ccc}
x y & -\left(1+x^{2}\right) & y \\
\left(1+y^{2}\right) & -x y & -x
\end{array}\right]\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

- Special cases
- Pure rotation / pure translation / time to collision

