Linear filtering

Motivation: Image denoising

• How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a *weighted average* of its neighborhood
- The weights are called the *filter kernel*
- What are the weights for the average of a 3x3 neighborhood?

"box filter"

Defining convolution

Let *f* be the image and *g* be the kernel. The output of convolving *f* with *g* is denoted *f* * *g*.

$$(f * g)[m, n] = \sum_{k, l} f[m - k, n - l]g[k, l]$$

Convention: kernel is "flipped"

Key properties

 Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b₁) * b₂) * b₃)
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],
 a * e = a

Dealing with edges

 If we convolve image *f* with filter *g*, what is the size of the output?

Dealing with edges

- If the filter window falls off the edge of the image, we need to pad the image
 - Zero pad (or clip filter)
 - Wrap around
 - Copy edge
 - Reflect across edge

Original

?

Original

Filtered (no change)

Original

?

Original

Shifted *left* By 1 pixel

Original

?

Original

Blur (with a box filter)

(Note that filter sums to 1)

Original

Source: D. Lowe

'

Original

Sharpening filter

- Accentuates differences with

local average

Sharpening

before

after

Sharpening

What does blurring take away?

Let's add it back in.

Original Original

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$

	0.003	0.013	0.022	0.013	0.003
	0.013	0.059	0.097	0.059	0.013
	0.022	0.097	0.159	0.097	0.022
	0.013	0.059	0.097	0.059	0.013
	0.003	0.013	0.022	0.013	0.003
-2 -2					

5 x 5,
$$\sigma = 1$$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Source: C. Rasmussen

Gaussian Kernel

Standard deviation σ: determines extent of smoothing

Source: K. Grauman

Choosing kernel width

• The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Gaussian filters

- Remove high-frequency components from the image (*low-pass filter*)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Source: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\left(\frac{x^2+y^2}{2\sigma^2}\right)}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y.

In this case the two functions are the (identical) 1D Gaussian.

1D Gaussian * 1D Gaussian = 2D Gaussian Image * 2D Gauss = Image * (1D Gauss * 1D Gauss) = (Image * 1D Gauss) * 1D Gauss

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Noise

Original

Salt and pepper noise

Impulse noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

 $f(x,y) = \overbrace{\widehat{f(x,y)}}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

3x3

5x5

7x7

What's wrong with the results?

Alternative idea: Median filtering

• A median filter operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Median filter

- Is median filtering linear?
- Let's try filtering

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

filters have width 5 :

Median filter

Source: M. Hebert

Gaussian vs. median filtering

Sharpening revisited

before

after

Sharpening

What does blurring take away?

Let's add it back in.

Original Original

Unsharp mask filter

Next Class: Frequency view of filtering

Review: Image filtering

- Convolution
- Box vs. Gaussian filter
- Separability
- Median filter