Application: Image Blending

(a)

(c)

(b)

(d)

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Blending

Alpha Blending / Feathering

Affect of Window Size

Affect of Window Size

${ }_{0}^{1}+$

Good Window Size

"Optimal" Window: smooth but not ghosted

What is the Optimal Window?

- To avoid seams
- window $=$ size of largest prominent feature
- To avoid ghosting
- window <=2*size of smallest prominent feature

Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)

What if the Frequency Spread is Wide

- Idea (Burt and Adelson)
- Compute $F_{\text {left }}=\operatorname{FFT}\left(I_{\text {left }}\right), F_{\text {right }}=\operatorname{FFT}\left(I_{\text {right }}\right)$
- Decompose Fourier image into octaves (bands)
- $F_{\text {left }}=F_{\text {left }}{ }^{1}+F_{\text {left }}{ }^{2}+\ldots$
- Feather corresponding octaves $F_{\text {left }}{ }^{i}$ with $F_{\text {right }}{ }^{i}$
- Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain
- Better implemented in spatial domain

Octaves in the Spatial Domain

Lowpass Images

- Bandpass Images

Pyramid Blending

Left pyramid

blend

Right pyramid

Pyramid Blending

(h)

(1)

Blending Regions

Laplacian Pyramid: Blending

- General Approach:

1. Build Laplacian pyramids $L A$ and $L B$ from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid $L S$ from $L A$ and $L B$ using nodes of $G R$ as weights:

- $L S(i, j)=G R(I, j,)^{*} L A(1, j)+(1-G R(I, j)) * L B(1, j)$

4. Collapse the $L S$ pyramid to get the final blended image
