Application: Image Blending

(a)

(c)

(d)

Laplacian pyramid blending (Burt and Adelson 1983b)

Blending

Alpha Blending / Feathering

Affect of Window Size

Affect of Window Size

Good Window Size

"Optimal" Window: smooth but not ghosted

What is the Optimal Window?

- To avoid seams
 - window = size of largest prominent feature
- To avoid ghosting
 - window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)

What if the Frequency Spread is Wide

- Idea (Burt and Adelson)
 - Compute $F_{left} = FFT(I_{left}), F_{right} = FFT(I_{right})$
 - Decompose Fourier image into octaves (bands)
 - $F_{left} = F_{left}^{1} + F_{left}^{2} + ...$
 - Feather corresponding octaves F_{left}^{i} with F_{right}^{i}
 - Can compute inverse FFT and feather in spatial domain
 - Sum feathered octave images in frequency domain
- Better implemented in *spatial domain*

Octaves in the Spatial Domain

Lowpass Images

Bandpass Images

Pyramid Blending

Left pyramid

blend

Right pyramid

Pyramid Blending

Blending Regions

Laplacian Pyramid: Blending

- General Approach:
 - 1. Build Laplacian pyramids *LA* and *LB* from images *A* and *B*
 - 2. Build a Gaussian pyramid *GR* from selected region *R*
 - 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)
 - 4. Collapse the *LS* pyramid to get the final blended image