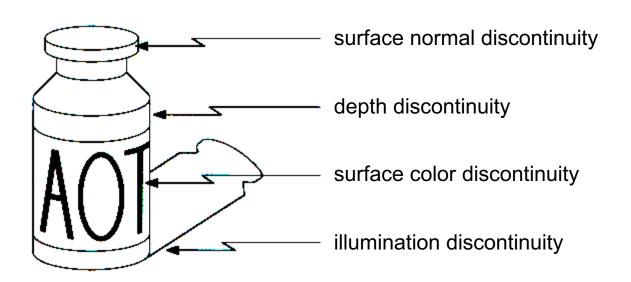
Edge Detection

CS 543 / ECE 549 – Saurabh Gupta Spring 2021, UIUC

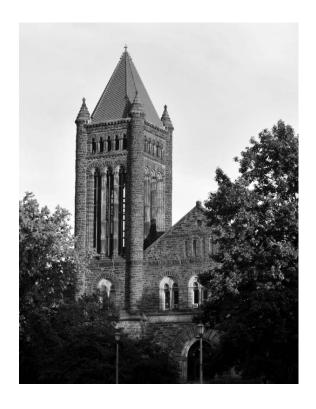
http://saurabhg.web.illinois.edu/teaching/ece549/sp2021/

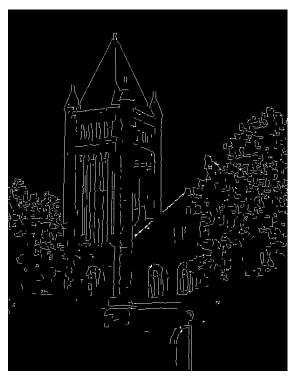
Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
- Intuitively, edges carry most of the semantic and shape information from the image



Edge detection



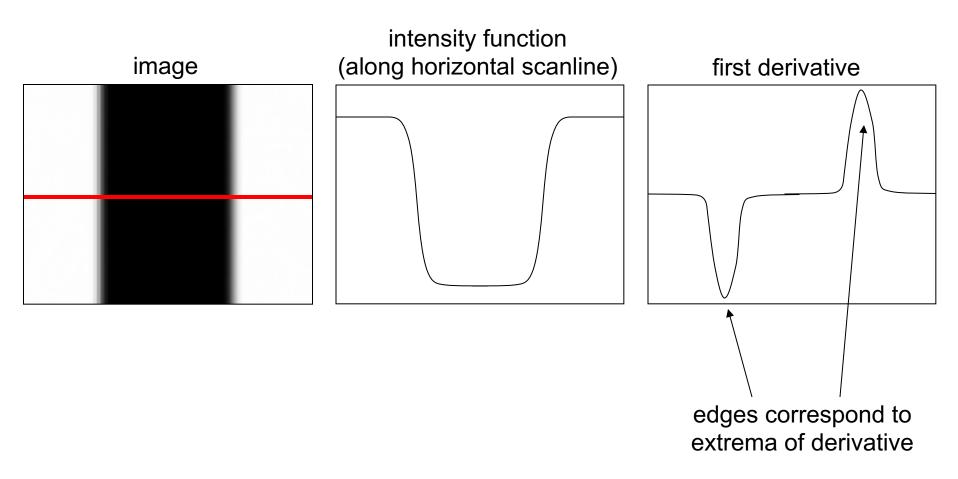


Ideal: artist's line drawing

Reality

Edge detection

An edge is a place of rapid change in the image intensity function



Source: L. Lazebnik

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement the above as convolution, what would be the associated filter?

Source: K. Grauman

Partial derivatives of an image

Which shows changes with respect to x?

Finite difference filters

Other approximations of derivative filters exist:

Prewitt

	-1	0	1
M_x	-1	0	1
	-1	0	1

	1	1	1
M_y	0	0	0
	-1	-1	-1

Sobel

	-1	0	1
M_x	-2	0	2
	-1	0	1

	1	2	1
y	0	0	0
	-1	-2	-1

Roberts

$_{M}$	0	1
x_{\parallel}	-1	0

 M_y

1	0
0	-1

Source: K. Grauman

Image gradient

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

Application: Gradient-domain image editing

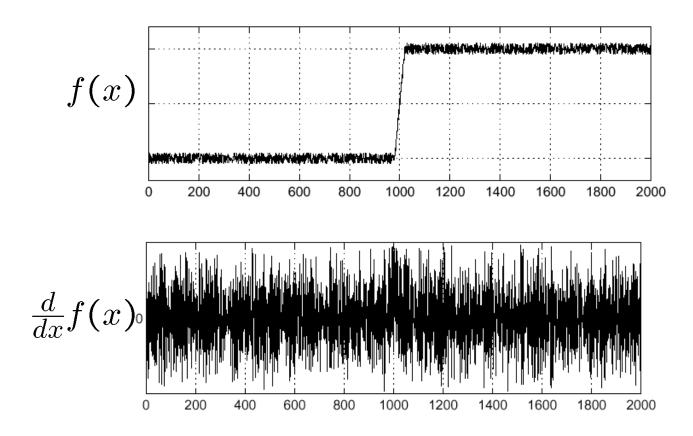
 Goal: solve for pixel values in the target region to match gradients of the source region while keeping background pixels the same

P. Perez, M. Gangnet, A. Blake, <u>Poisson Image Editing</u>, SIGGRAPH 2003

Source: L. Lazebnik

Effects of noise

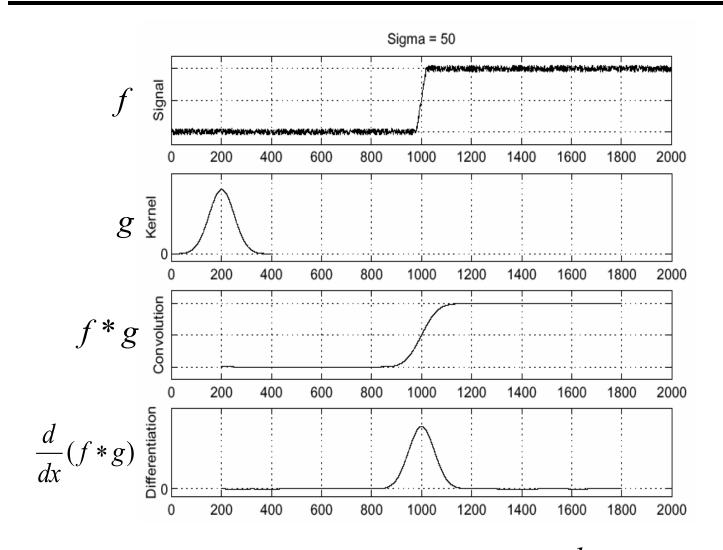
Consider a single row or column of the image



Where is the edge?

Source: S. Seitz

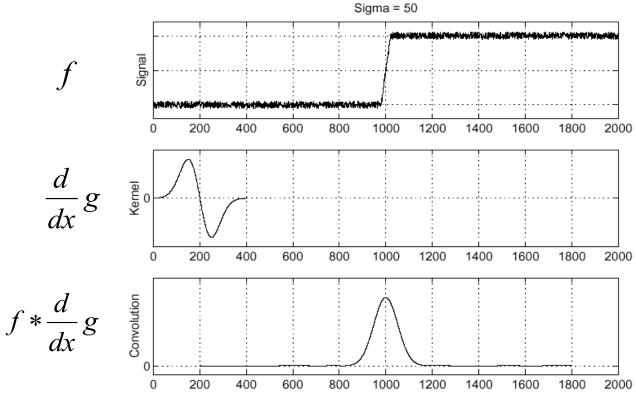
Solution: smooth first



• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

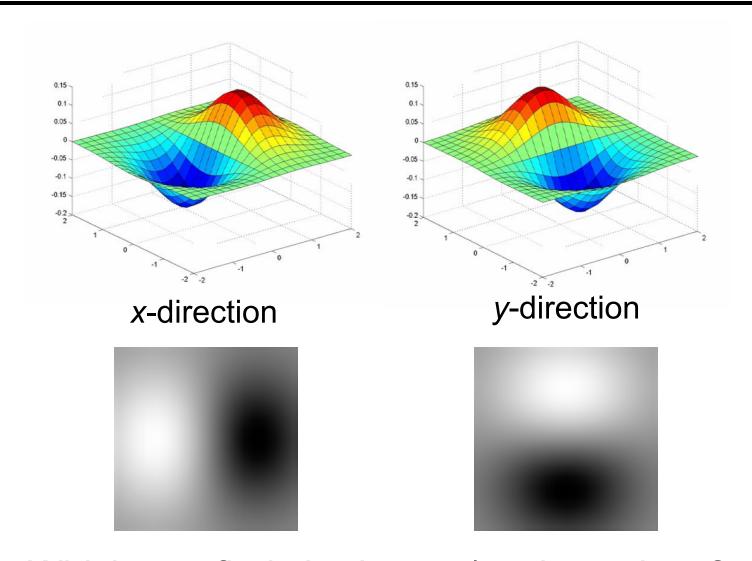
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:



Source: S. Seitz

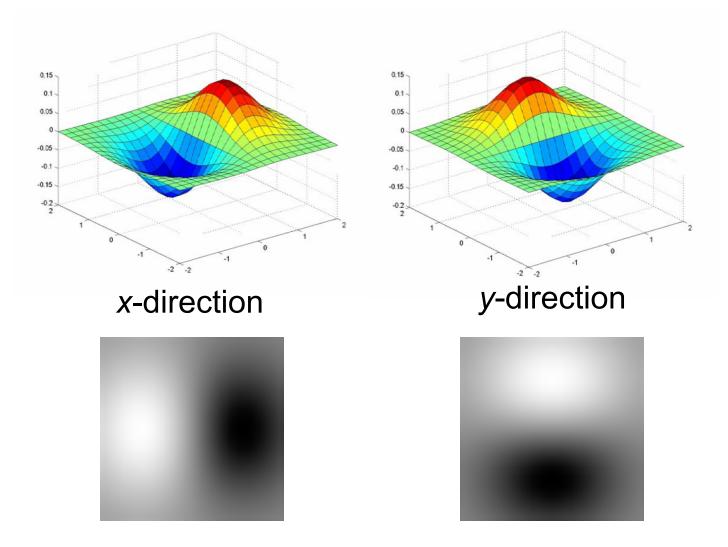
Derivative of Gaussian filters



Which one finds horizontal/vertical edges?

Source: L. Lazebnik

Derivative of Gaussian filters



Are these filters separable?

Recall: Separability of the Gaussian filter

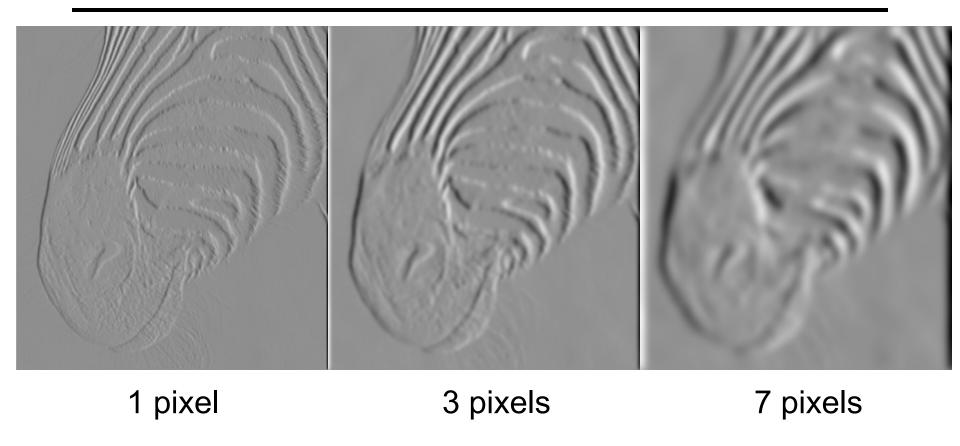
$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\left(\frac{x^2+y^2}{2\sigma^2}\right)}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y.

In this case the two functions are the (identical) 1D Gaussian.

Scale of Gaussian derivative filter



Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales"

Review: Smoothing vs. derivative filters

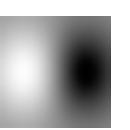
Smoothing filters

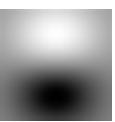
Gaussian: remove "high-frequency" components;
 "low-pass" filter

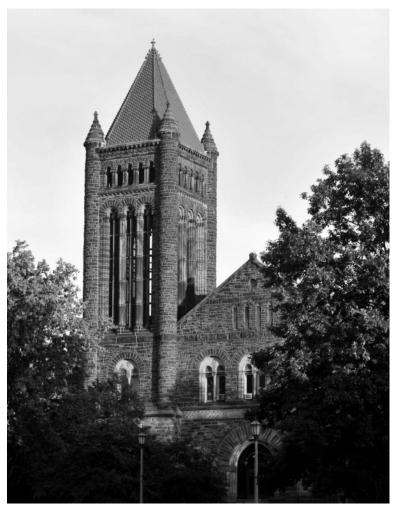
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

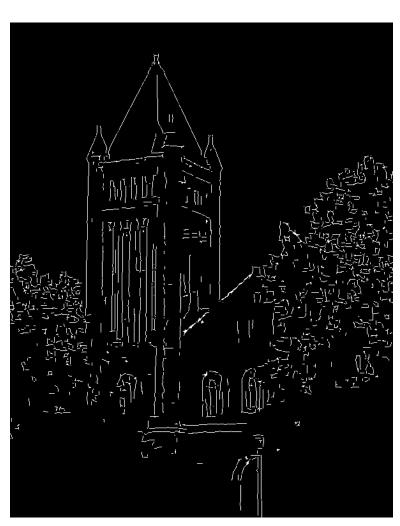
- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions



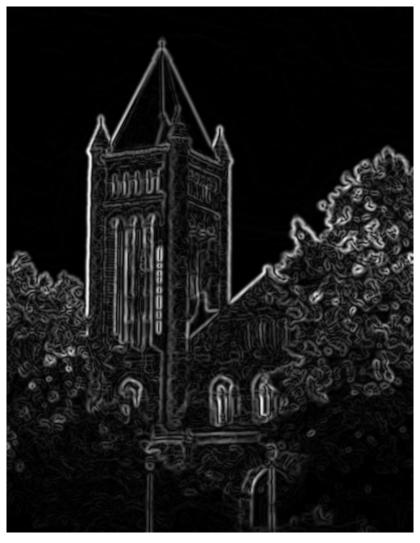




original image

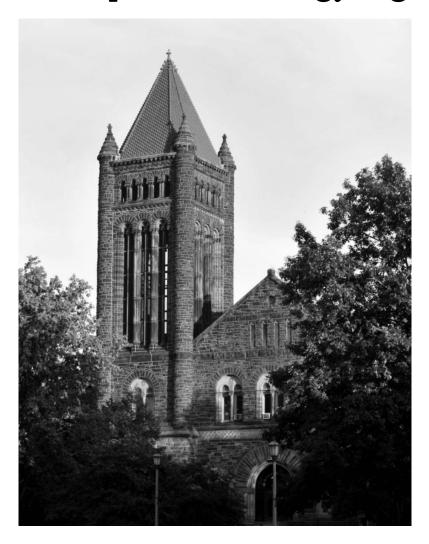


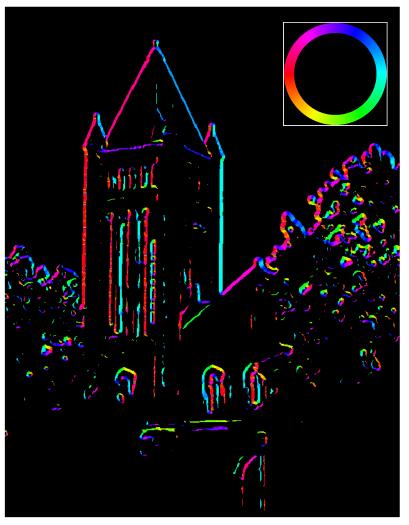
final output



norm of the gradient

 $\theta = \text{np.arctan2}(-\text{gy, gx})$



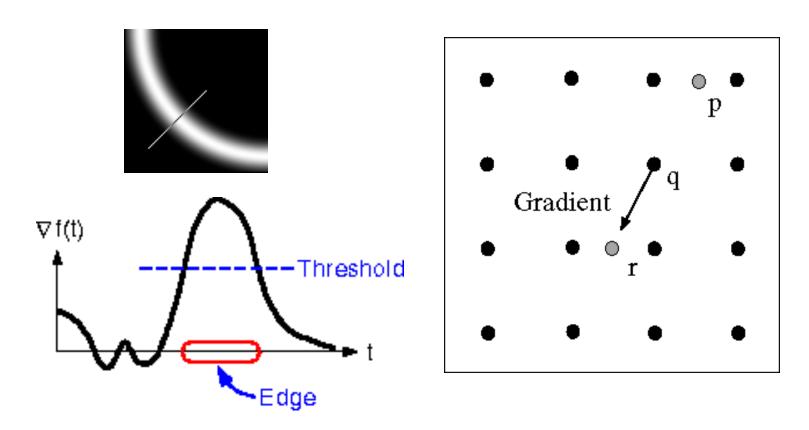


orientation of the gradient

How to turn these thick regions of the gradient into curves?

Norm of the gradient > threshold

Non-maximum suppression

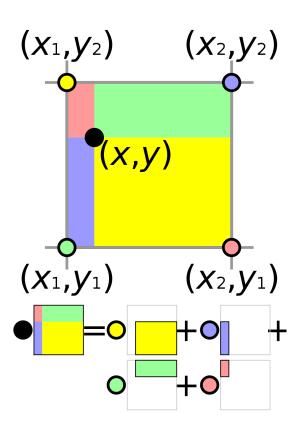


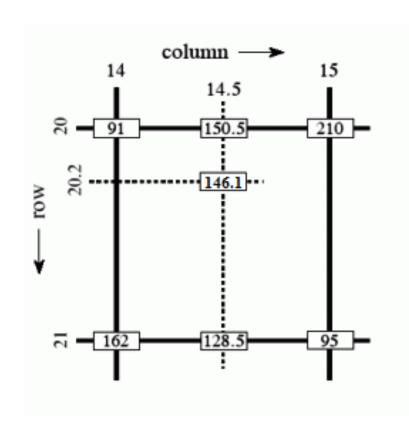
- For each location q above threshold, check that the gradient magnitude is higher than at neighbors p and r along the direction of the gradient
 - May need to interpolate to get the magnitudes at p and r

Source: L. Lazebnik

Bilinear Interpolation

$$f(x,y) \approx \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}$$





http://en.wikipedia.org/wiki/Bilinear interpolation

Sidebar: Interpolation options

imx2 = imresize(im, 2, interpolation_type)

'nearest'

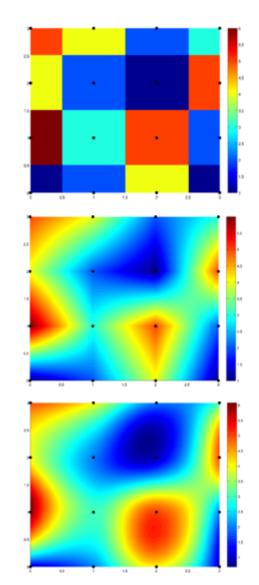
- Copy value from nearest known
- Very fast but creates blocky edges

'bilinear'

- Weighted average from four nearest known pixels
- Fast and reasonable results

'bicubic' (default)

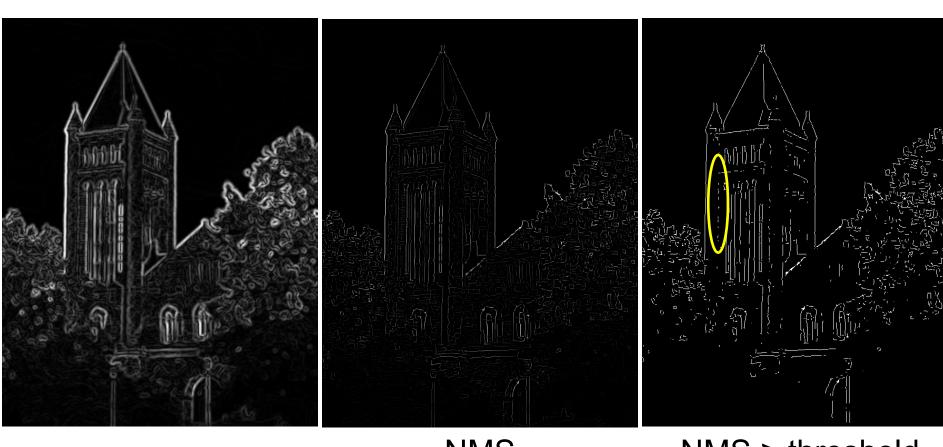
- Non-linear smoothing over larger area
- Slower, visually appealing, may create negative pixel values



Source: D. Hoeim

Examples from http://en.wikipedia.org/wiki/Bicubic interpolation

Non-maximum suppression

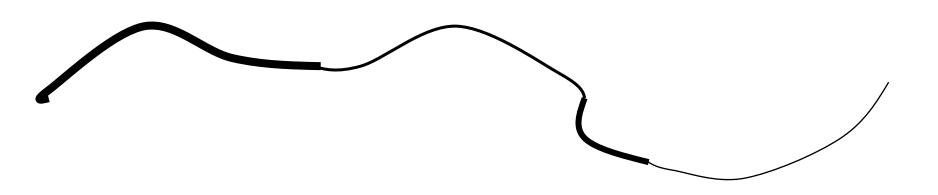


NMS NMS > threshold

Another problem: pixels along this edge didn't survive the thresholding

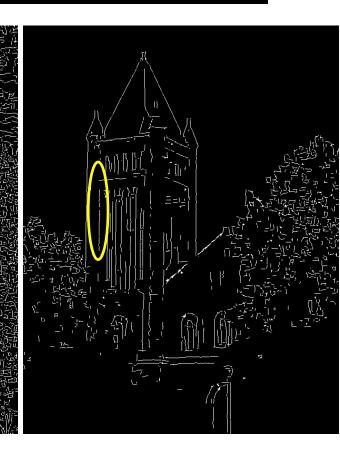
Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.



Source: Steve Seitz

Hysteresis



high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Hysteresis thresholding

original image

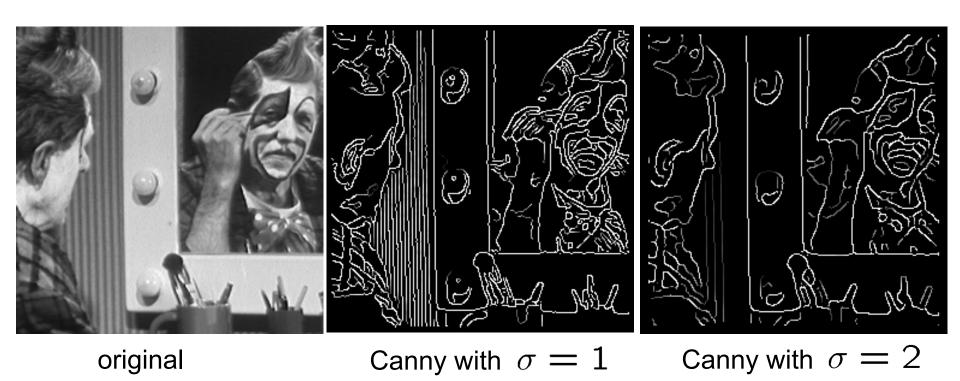
high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)



The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Recap: Canny edge detector

- 1. Compute x and y gradient images
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

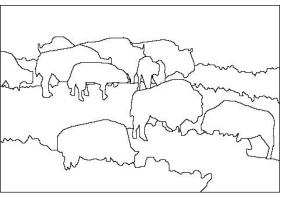
J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

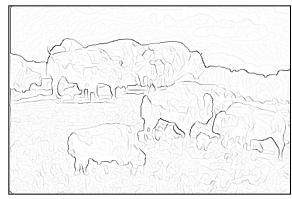
Source: L. Lazebnik

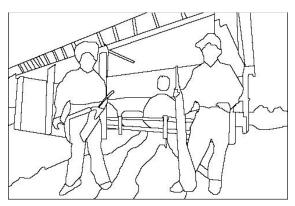
Image gradients vs. meaningful contours

image

human segmentation gradient magnitude







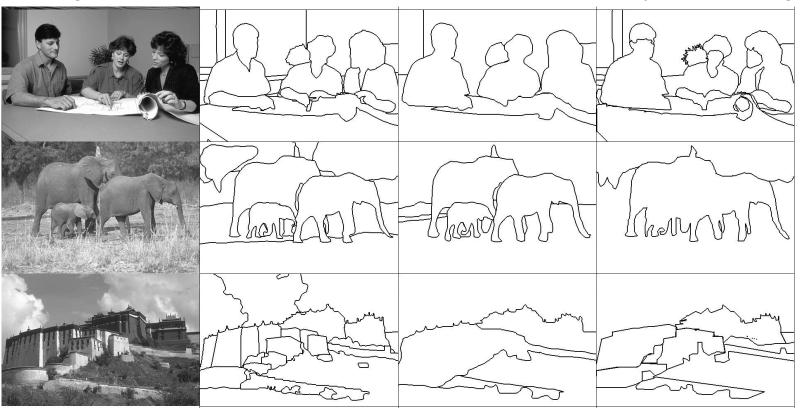
Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Source: L. Lazebnik

Do humans consistently segment images?

Divide each image into pieces, where each piece represents a distinguished thing in the image. It is important that all of the pieces have approximately equal importance. The number of things in each image is up to you. Something between 2 and 20 should be reasonable for any of our images.

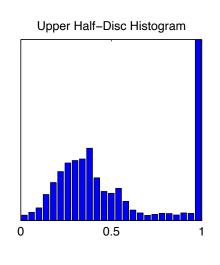


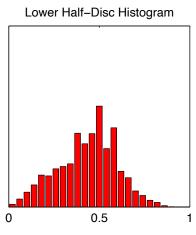
A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics

Aside: Datasets, Metrics and Benchmarks

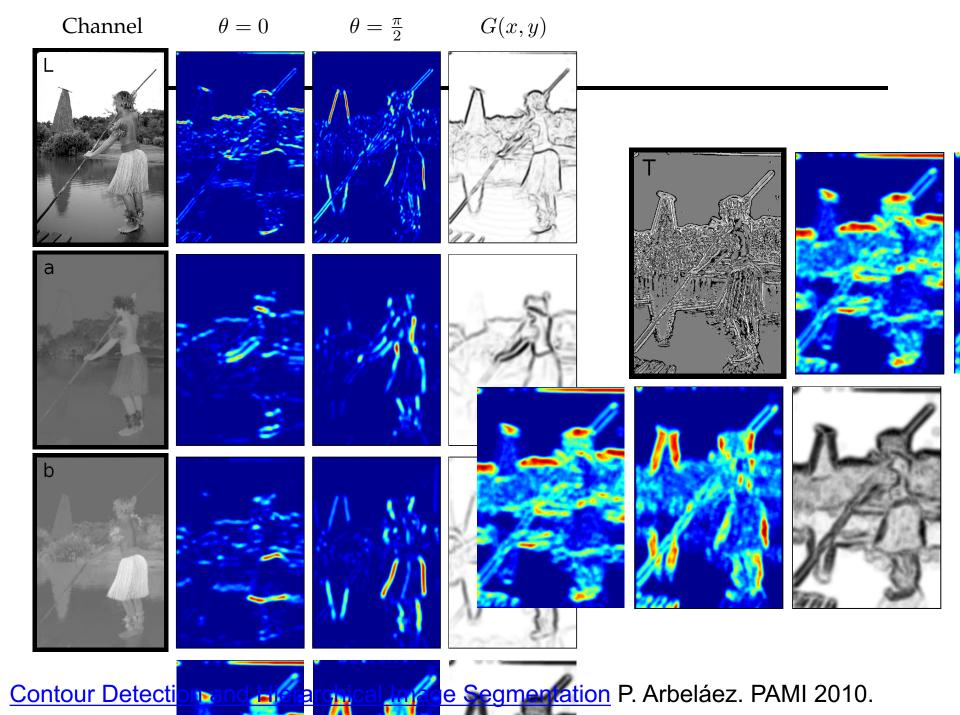
- Standard image sets
- Standard metrics
- Possible to quantitatively compare different methods

pB Boundary Detector

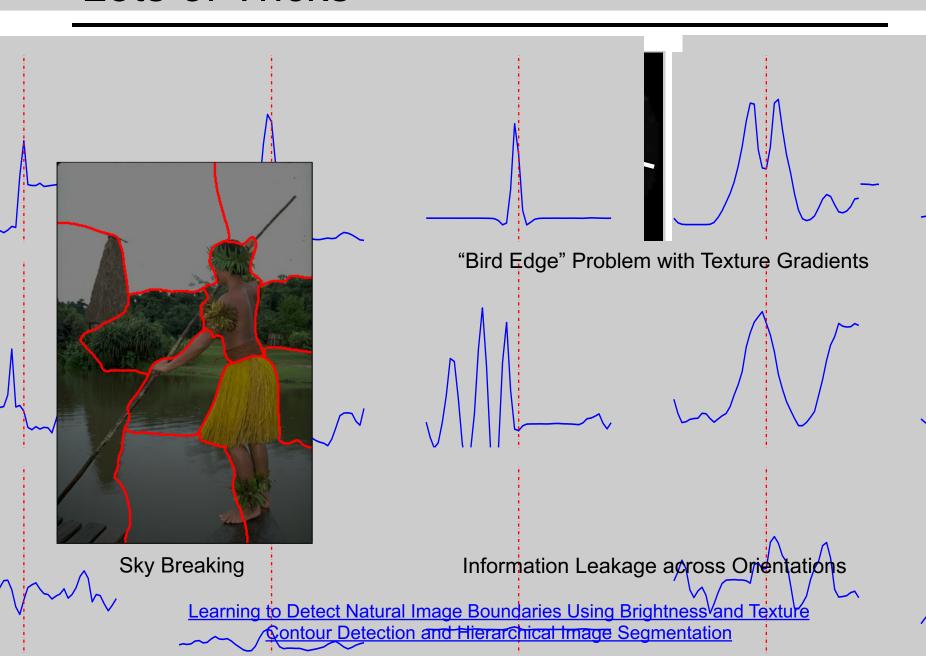




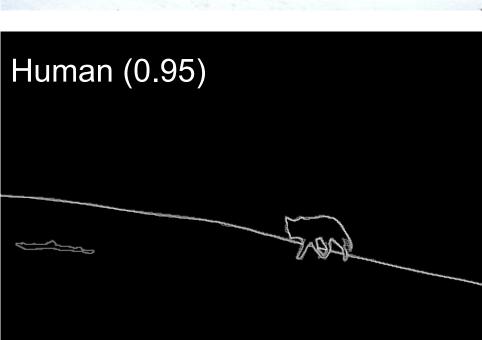
Contour Detection and Hierarchical Image Segmentation P. Arbeláez. PAMI 2010.

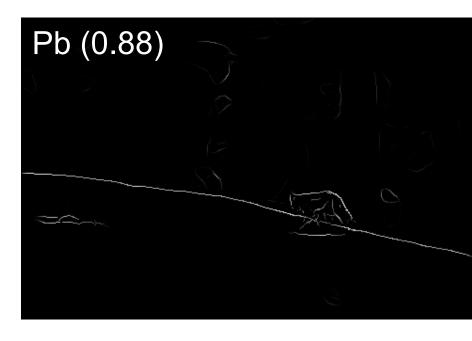


Lots of Tricks

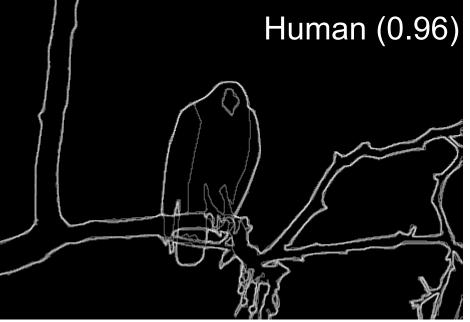


Results

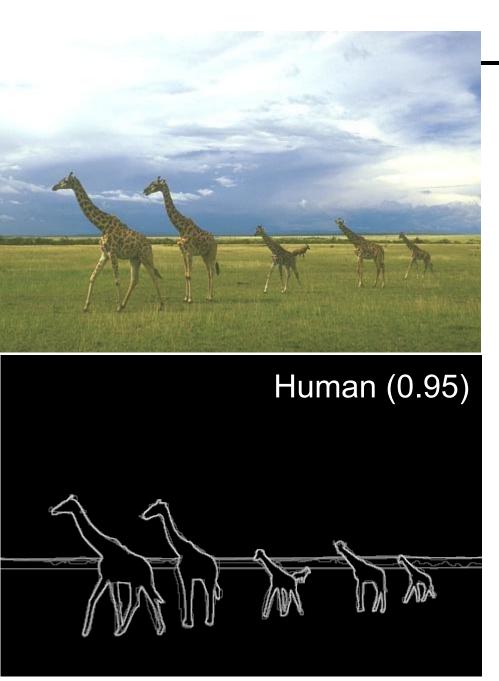


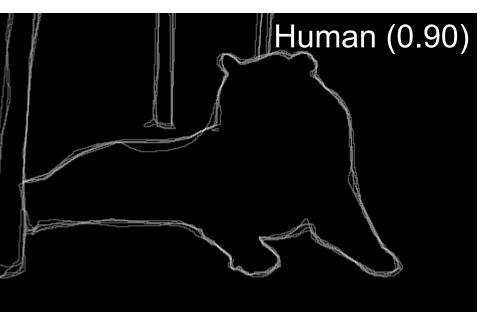


Results





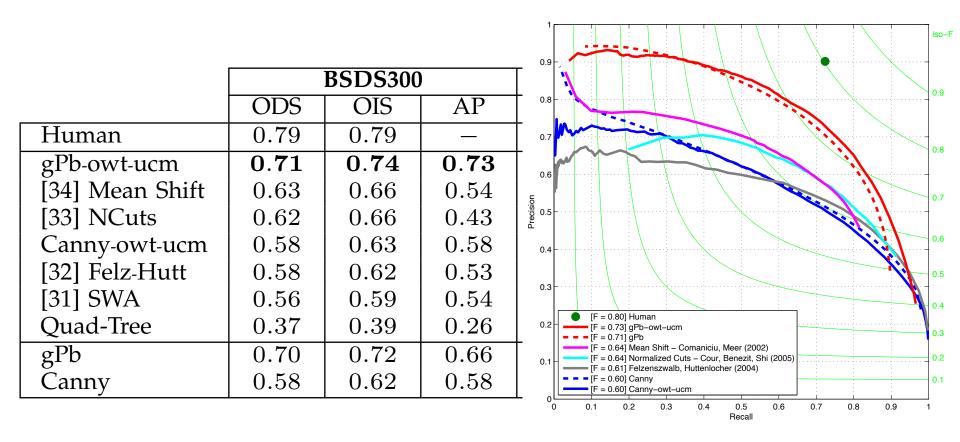




For more:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Empirical Research



Applications: Interactive Segmentation

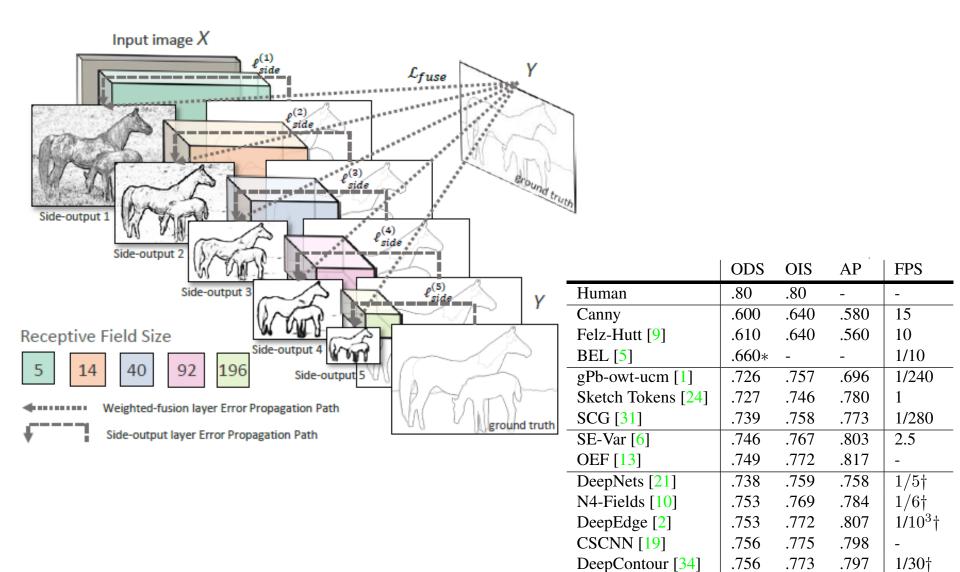


Applications: Pre-processing for Object Detection



J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for Object Recognition, IJCV 2013

Holistically nested edge detection



HED (ours)

.782

.804

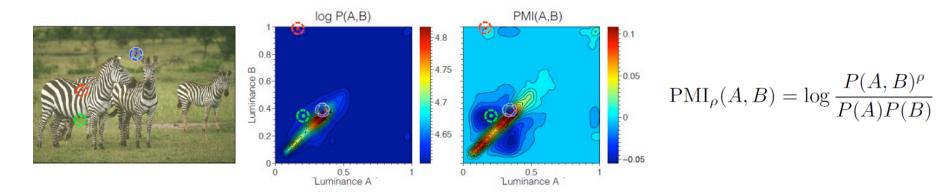
.833

2.5†,

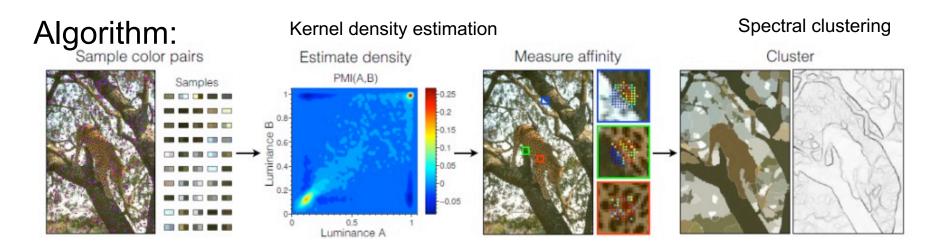
1/12

https://arxiv.org/pdf/1504.06375.pdf

Crisp Boundary Detection using Pointwise Mutual Information (Isola et al. ECCV 2014)



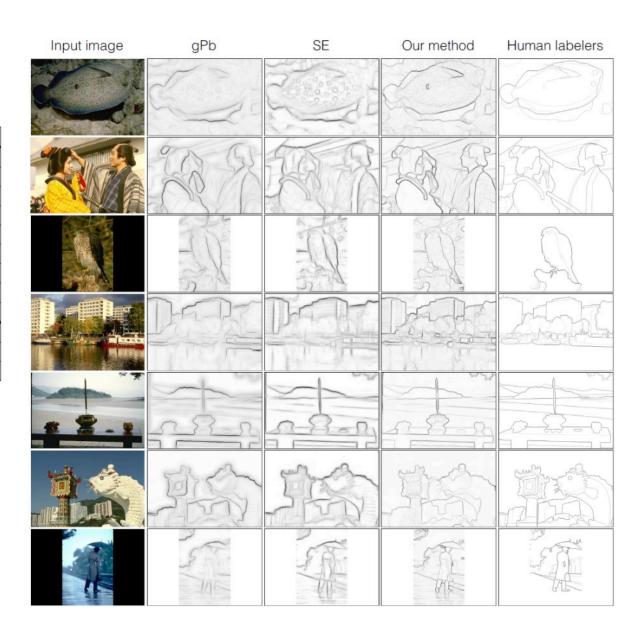
Pixel combinations that are unlikely to be together are edges



http://web.mit.edu/phillipi/www/publications/crisp boundaries.pdf

Crisp Boundary Detection using Pointwise Mutual Information

Algorithm	ODS	OIS	AP
Canny [14]	0.60	0.63	0.58
Mean Shift [36]	0.64	0.68	0.56
NCuts [37]	0.64	0.68	0.45
Felz-Hutt [38]	0.61	0.64	0.56
gPb [1]	0.71	0.74	0.65
gPb-owt-ucm [1]	0.73	0.76	0.73
SCG [9]	0.74	0.76	0.77
Sketch Tokens [7]	0.73	0.75	0.78
SE [8]	0.74	0.76	0.78
Our method – SS, color only	0.72	0.75	0.77
Our method – SS	0.73	0.76	0.79
Our method – MS	0.74	0.77	0.78



State of edge detection

Local edge detection is mostly solved

- Intensity gradient, color, texture
- HED on BSDS 500 is near human performance

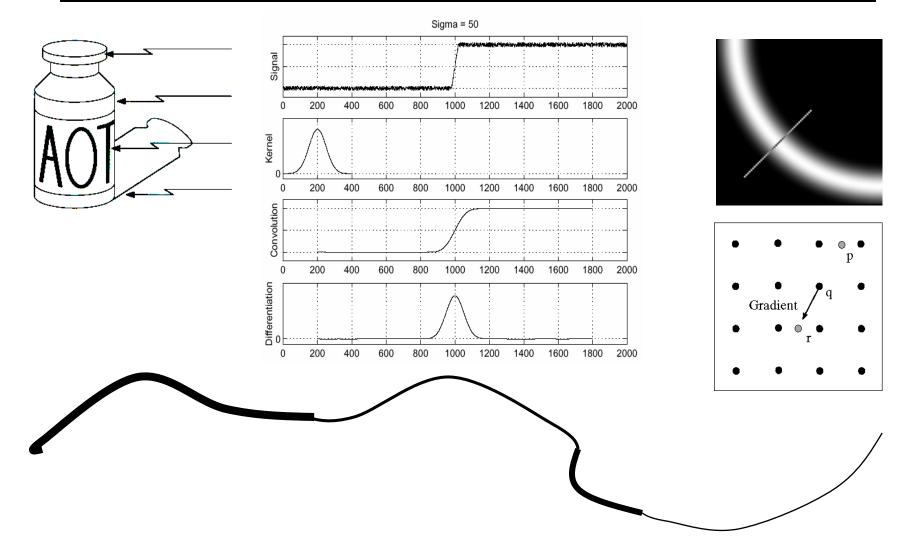
Some room for improvement by taking advantage of higher-level knowledge (e.g., objects)

Still hard to produce all objects within a small number of regions

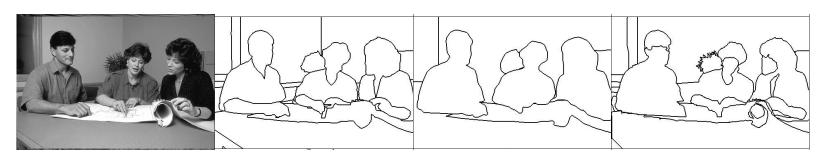
Are Edges an Input or an Output?

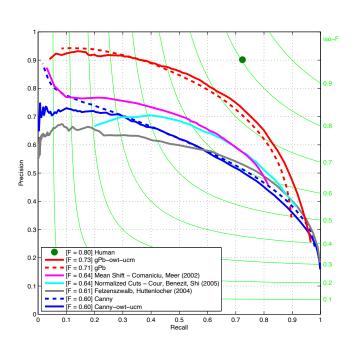
Source: Gregory, R. L. (1970). The Intelligent Eye. New York, NY: McGraw-Hill Paperbacks.

Recap



Recap





	BSDS300			
	ODS	OIS	AP	
Human	0.79	0.79	_	
gPb-owt-ucm	0.71	0.74	0.73	
[34] Mean Shift	0.63	0.66	0.54	
[33] NCuts	0.62	0.66	0.43	
Canny-owt-ucm	0.58	0.63	0.58	
[32] Felz-Hutt	0.58	0.62	0.53	
[31] SWA	0.56	0.59	0.54	
Quad-Tree	0.37	0.39	0.26	
gPb	0.70	0.72	0.66	
Canny	0.58	0.62	0.58	