SIFT keypoint detection

D. Lowe, Distinctive image features from scale-invariant keypoints, *IJCV* 60 (2), pp. 91-110, 2004

Slides from S. Lazebnik.
Keypoint detection with scale selection

• We want to extract keypoints with *characteristic scales* that are *covariant* w.r.t. the image transformation.

Source: L. Lazebnik
Basic idea

• Convolve the image with a “blob filter” at multiple scales and look for extrema of filter response in the resulting scale space.

Blob detection

Find maxima and minima of blob filter response in space and scale

Source: L. Lazebnik

Source: N. Snavely
Blob filter

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[
\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}
\]

Source: L. Lazebnik
Recall: Edge detection

Edge = maximum of derivative

Source: L. Lazebnik
Edge detection, Take 2

Edge = zero crossing of second derivative

Source: S. Seitz

Source: L. Lazebnik
From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is “matched” to the scale of the blob

Source: L. Lazebnik
Scale selection

• We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response.

• However, Laplacian response decays as scale increases:

![Graph showing the response of Laplacian to increasing scale](image)

Source: L. Lazebnik
Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases:

- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Source: L. Lazebnik
Effect of scale normalization

Original signal

Unnormalized Laplacian response

Scale-normalized Laplacian response

Source: L. Lazebnik
Blob detection in 2D

- **Scale-normalized** Laplacian of Gaussian:

\[
\nabla^2_{\text{norm}} g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)
\]

Source: L. Lazebnik
Blob detection in 2D

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

Source: L. Lazebnik
Blob detection in 2D

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle.
- The Laplacian is given by (up to scale):

 \[(x^2 + y^2 - 2\sigma^2) e^{-(x^2+y^2)/2\sigma^2}\]

- Therefore, the maximum response occurs at $\sigma = r / \sqrt{2}$.

Source: L. Lazebnik
Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

Source: L. Lazebnik
Scale-space blob detector: Example

Source: L. Lazebnik
Scale-space blob detector: Example

sigma = 11.9912

Source: L. Lazebnik
Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales
2. Find maxima of squared Laplacian response in scale-space

Source: L. Lazebnik
Scale-space blob detector: Example

Source: L. Lazebnik
Efficient implementation

- Approximating the Laplacian with a difference of Gaussians:

\[L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right) \]

\((\text{Laplacian})\)

\[\text{DoG} = G(x, y, k\sigma) - G(x, y, \sigma) \]

\((\text{Difference of Gaussians})\)

Source: L. Lazebnik
Efficient implementation

Source: L. Lazebnik
Eliminating edge responses

- Laplacian has strong response along edges

Source: L. Lazebnik
Eliminating edge responses

• Laplacian has strong response along edges

Solution: filter based on Harris response function over neighborhoods containing the “blobs”

Source: L. Lazebnik
From feature detection to feature description

- To recognize the same pattern in multiple images, we need to match appearance “signatures” in the neighborhoods of extracted keypoints
 - But corresponding neighborhoods can be related by a scale change or rotation
 - We want to normalize neighborhoods to make signatures invariant to these transformations

Source: L. Lazebnik
Finding a reference orientation

• Create histogram of local gradient directions in the patch

• Assign reference orientation at peak of smoothed histogram

Source: L. Lazebnik
SIFT features

- Detected features with characteristic scales and orientations:

Source: L. Lazebnik
From keypoint detection to feature description

Detection is **covariant**:

\[\text{features(\text{transform(image)})} = \text{transform(features(image))} \]

Description is **invariant**:

\[\text{features(\text{transform(image)})} = \text{features(image)} \]

Source: L. Lazebnik
SIFT descriptors

- Inspiration: complex neurons in the primary visual cortex

D. Lowe, *Distinctive image features from scale-invariant keypoints*, *IJCV* 60 (2), pp. 91-110, 2004

Source: L. Lazebnik
Properties of SIFT

Extraordinarily robust detection and description technique

- Can handle changes in viewpoint
 - Up to about 60 degree out-of-plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night
- Fast and efficient—can run in real time
- Lots of code available

Source: N. Snavely