Two-View Stereo

Slides from S. Lazebnik, S. Seitz, Y. Furukawa

Stereo

- What cues tell us about scene depth?

Slide from L. Lazebnik.

Stereograms

- Humans can fuse pairs of images to get a sensation of depth

Stereograms: Invented by Sir Charles Wheatstone, 1838

Slide from L. Lazebnik.

Stereograms

Slide from L. Lazebnik.

Stereograms

- Humans can fuse pairs of images to get a sensation of depth

Autostereograms: www.magiceye.com
Slide from L. Lazebnik.

Stereograms

- Humans can fuse pairs of images to get a sensation of depth

Autostereograms: www.magiceye.com
Slide from L. Lazebnik.

Problem formulation

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
image 1

image 2

Dense depth map

Basic stereo matching algorithm

- For each pixel in the first image
- Find corresponding epipolar line in the right image
- Examine all pixels on the epipolar line and pick the best match
- Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines
- When does this happen?

Slide from L. Lazebnik.

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same

[^0]
Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then epipolar lines fall along the horizontal scan lines of the images

Slide from L. Lazebnik.

Essential matrix for parallel images

Epipolar constraint:

$$
\boldsymbol{x}^{\prime T} \boldsymbol{E} \boldsymbol{x}=0, \quad \boldsymbol{E}=\left[\boldsymbol{t}_{\star}\right] \boldsymbol{R}
$$

$$
\boldsymbol{R}=\boldsymbol{I} \quad \boldsymbol{t}=(T, 0,0)
$$

$$
\boldsymbol{E}=\left[\boldsymbol{t}_{\times}\right] \boldsymbol{R}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

$\left(\begin{array}{lll}u^{\prime} & v^{\prime} & 1\end{array}\right)\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0\end{array}\right]\left(\begin{array}{l}u \\ v \\ 1\end{array}\right)=0 \quad\left(\begin{array}{lll}u^{\prime} & v^{\prime} & 1\end{array}\right)\left(\begin{array}{c}0 \\ -T \\ T v\end{array}\right)=0 \quad T v^{\prime}=T v$
The y-coordinates of corresponding points are the same!

Stereo image rectification

Slide from L. Lazebnik.

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between optical centers
C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo

Rectification example

Slide from L. Lazebnik.

Another rectification example

Rectified

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel in the first image
- Find corresponding epipolar line in the right image
- Examine all pixels on the epipolar line and pick the best match

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

Slide from L. Lazebnik.

Correspondence search

Norm. corr
Slide from L. Lazebnik.

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Triangulate the matches to get depth information

Depth from disparity

Disparity is inversely proportional to depth!
Slide from L. Lazebnik.

Depth from disparity

$$
\begin{gathered}
\frac{x}{f}=\frac{B_{1}}{z} \quad \frac{x^{\prime}}{f}=\frac{B_{2}}{z} \\
\frac{x-x^{\prime}}{f}=\frac{B_{1}-B_{2}}{z} \\
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
\end{gathered}
$$

Slide from L. Lazebnik.

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Compute disparity $x-x^{\prime}$ and set depth $(x)=B^{\star} f /\left(x-x^{\prime}\right)$

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities
Slide from L. Lazebnik.

Effect of window size

$\mathrm{W}=3$

$W=20$

- Smaller window
+ More detail
- More noise
- Larger window
+ Smoother disparity maps
- Less detail

Slide from L. Lazebnik.

Results with window search

Slide from L. Lazebnik.

Better methods exist...

Graph cuts

Ground truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/
Slide from L. Lazebnik.

How can we improve window-based matching?

- The similarity constraint is local (each reference window is matched independently)
- Need to enforce non-local correspondence constraints

Non-local constraints

- Uniqueness

- For any point in one image, there should be at most one matching point in the other image

Slide from L. Lazebnik.

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Slide from L. Lazebnik.

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Slide from L. Lazebnik.

Ordering constraint doesn't hold

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views
- Smoothness
- We expect disparity values to change slowly (for the most part)

Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently

Slide from L. Lazebnik.

"Shortest paths" for scan-line stereo

Can be implemented with dynamic programming Ohta \& Kanade '85, Cox et al. '96

Coherent stereo on 2D grid

- Scanline stereo generates streaking artifacts

- Can't use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid

Stereo matching as global optimization

$$
E(D)=\underbrace{\sum_{i}\left(W_{1}(i)-W_{2}(i+D(i))\right)^{2}}_{\text {data term }}+\lambda \underbrace{\sum_{\text {neighbors } i, j} \rho(D(i)-D(j))}_{\text {smoothness term }}
$$

- Energy functions of this form can be minimized using graph cuts
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001
Slide from L. Lazebnik.

Stereo matching as a prediction problem

Y. Zhong, Y. Dai, and H. Li, Self-Supervised Learning for Stereo Matching with Self-Improving Slide from L. Lazebnik. Ability, arXiv 2017

Review: Basic stereo matching algorithm

- For each pixel x in the reference image
- Find corresponding epipolar scanline in the other image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Compute disparity $x-x^{\prime}$ and set depth $(x)=B^{\star} f /\left(x-x^{\prime}\right)$

Depth from Triangulation

Active sensing simplifies the problem of estimating point correspondences

Kinect: Structured infrared light

XBOX360

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Apple TrueDepth

Speaker
Proximity sensor
Microphone
Flood Illuminator
7MP camera
https://www.cnet.com/new s/apple-face-id-truedepth-how-it-works/

Slide from L. Lazebnik.

Laser scanning

Digital Michelangelo Project
Levoy et al.
http://graphics.stanford.edu/projects/mich/

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

1.0 mm resolution (56 million triangles)

The Digital Michelangelo Project, Levoy et al.

Stereo error(distance)

Error in distance estimate increases quadratically with the distance

Multi-view stereo

Slide from L. Lazebnik.

Multi-view stereo: Basic idea

Multi-view stereo: Basic idea

Source: Y. Furukawa

Multi-view stereo: Basic idea

Source: Y. Furukawa

Multi-view stereo: Basic idea

Source: Y. Furukawa

Towards Internet-Scale Multi-View Stereo

$\underline{\text { YouTube video, CMVS software }}$

Y. Furukawa, B. Curless, S. Seitz and R. Szeliski, Towards Internet-scale Multi-view Stereo, CVPR 2010.

Applications

Source: N. Snavely

Applications

POWERED BY
(3) matterport

[^0]: Slide from L. Lazebnik.

