## Introduction to Recognition

Computer Vision
CS 543 / ECE 549
University of Illinois

#### Outline

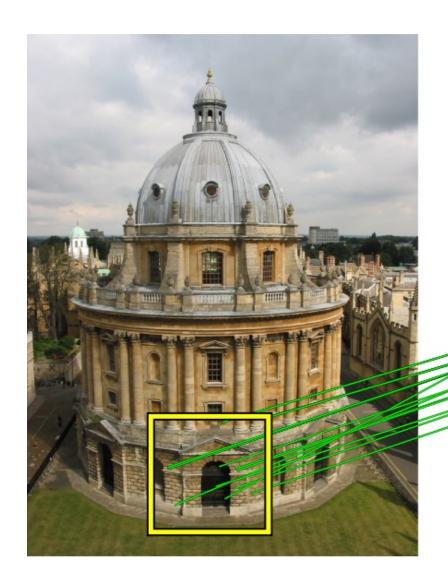
- Overview
  - Task descriptions
  - Basic approach
- Classifiers
- Features
- Basic Machine Learning Concepts
- Convolutional neural networks (CNNs)

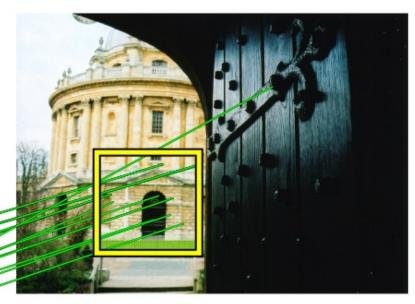
#### Recognition as 3D Matching



http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html

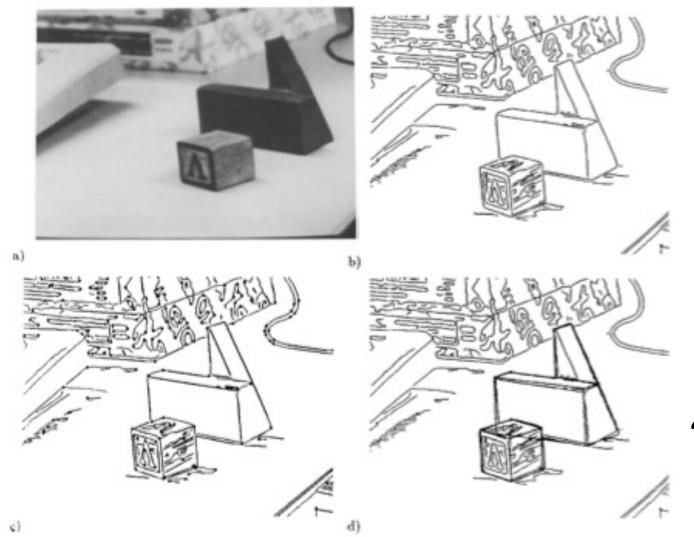
#### Recognition as 3D Matching





Recognizing solid objects by alignment with an image. Huttenlocher and Ullman IJCV 1990.

#### Recognition as 3D Matching



"Instance" Recognition

"Category-level" Recognition

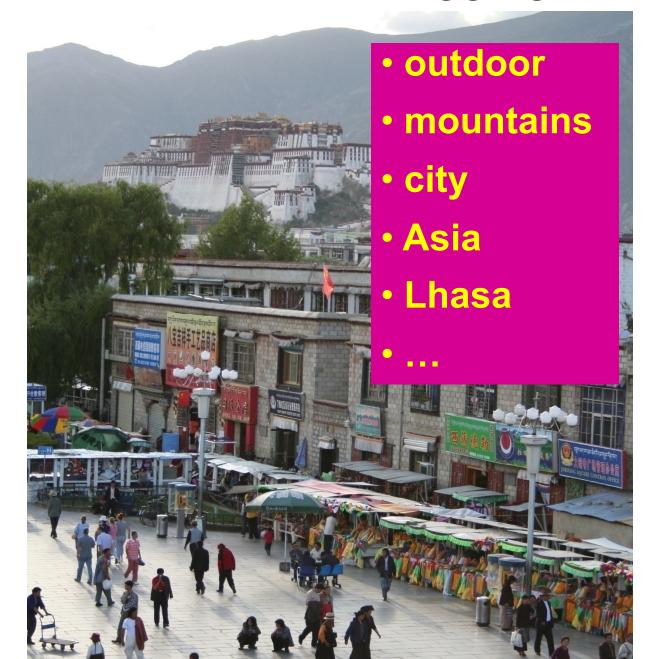
Fig. 8. The output of the recognizer: (a) grey-level image input, (b) Canny edges, (c) edge segments, (d) recovered instances.

Recognizing solid objects by alignment with an image. Huttenlocher and Ullman IJCV 1990.

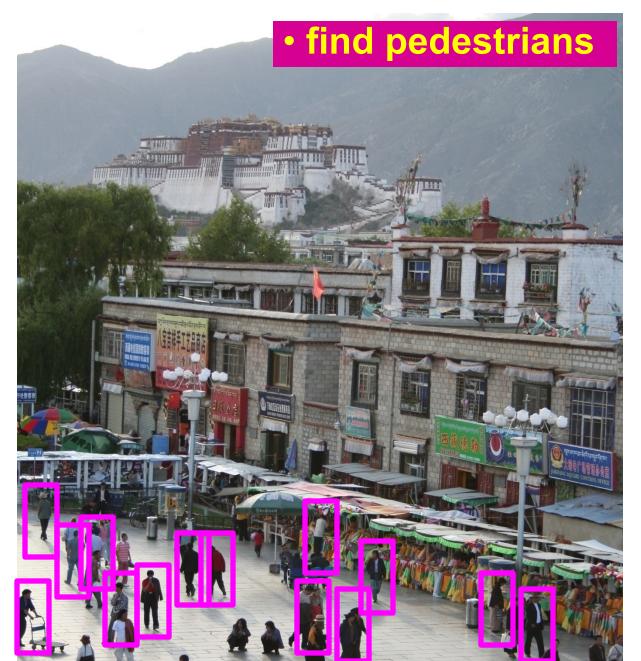
# Common recognition tasks



## Image classification and tagging



## Object detection



## Activity recognition



# Semantic segmentation



## Semantic segmentation



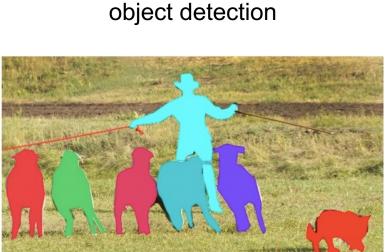
# Detection, semantic segmentation, instance segmentation



image classification

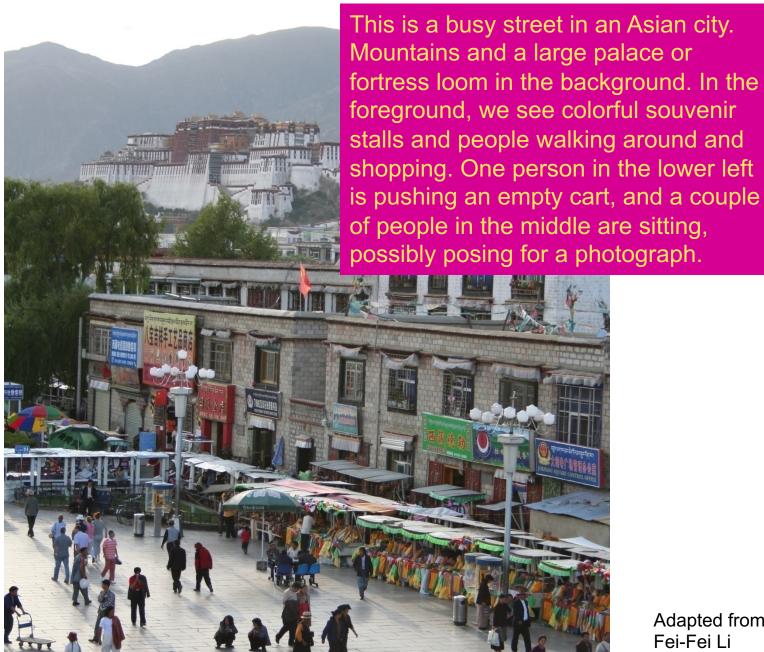


semantic segmentation



instance segmentation

## Image description

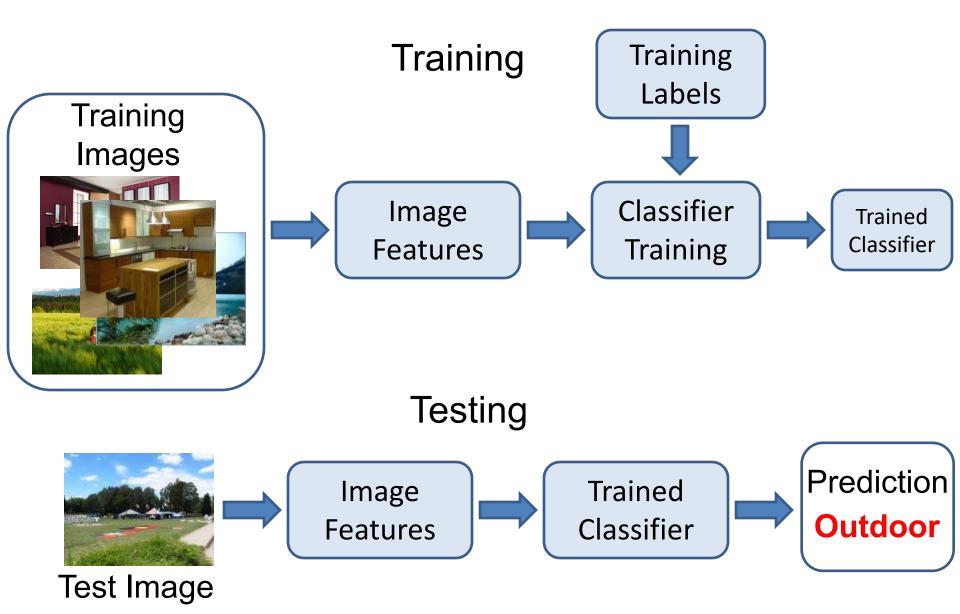


#### Many vision problems involve categorization

- Image: Classify as indoor/outdoor, which room, what objects are there, etc.
- Object Detection: classify location (bounding box or region) as object or non-object
- Semantic Segmentation: *classify* pixel into an object, material, part, etc.
- Action Recognition: classify a frame or sequence into an action type

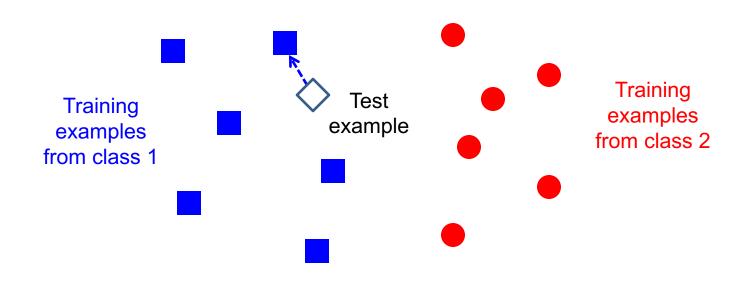
...

## Basic Approach: Supervised Learning



- Do you know about the following? (Pick all)
  - a) Nearest Neighbor Classifiers
  - b) Support Vector Machines
  - c) Kernelized Support Vector Machines
  - d) Decision Tress
  - e) Random Forests

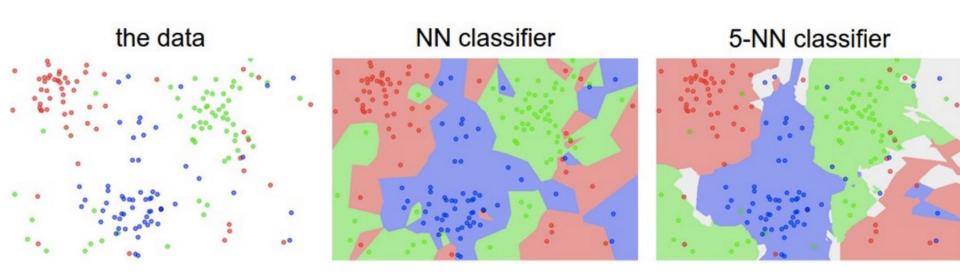
## Classifiers: Nearest neighbor



#### f(x) = label of the training example nearest to x

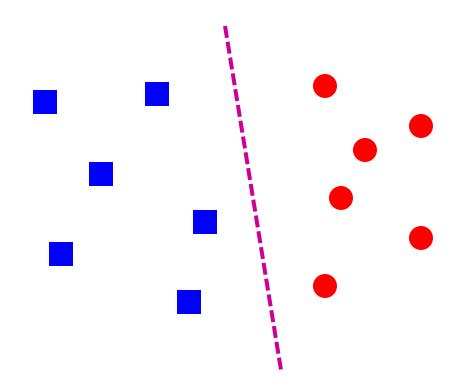
- All we need is a distance or similarity function for our inputs
- No training required!

## K-nearest neighbor classifier



• Which classifier is more robust to *outliers*?

#### Linear classifiers

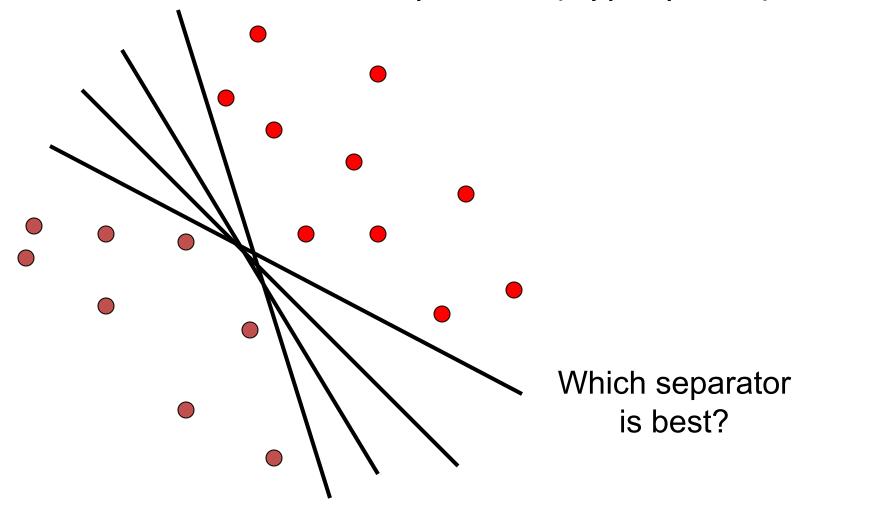


• Find a *linear function* to separate the classes:

$$f(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

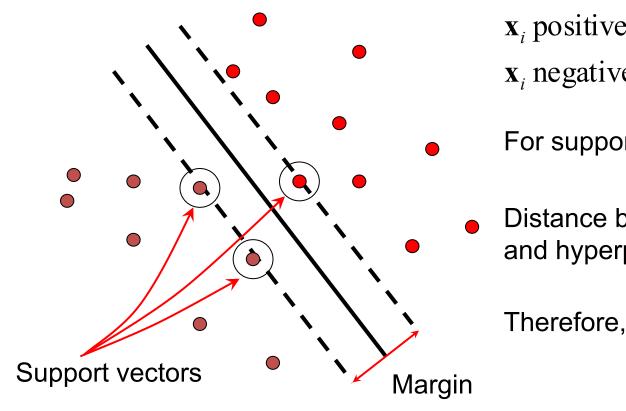
#### Linear classifiers

 When the data is linearly separable, there may be more than one separator (hyperplane)



## Support vector machines

 Find hyperplane that maximizes the margin between the positive and negative examples



$$\mathbf{x}_i$$
 positive  $(y_i = 1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ 

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

For support vectors,  $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ 

Distance between point  $|\mathbf{x}_i \cdot \mathbf{w} + b|$  and hyperplane:  $|\mathbf{w}|$ 

Therefore, the margin is  $2/||\mathbf{w}||$ 

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

### Finding the maximum margin hyperplane

- 1. Maximize margin  $2 / ||\mathbf{w}||$
- 2. Correctly classify all training data:

$$\mathbf{x}_i$$
 positive  $(y_i = 1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ 

$$\mathbf{x}_i$$
 negative  $(y_i = -1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ 

- Quadratic optimization problem:
- $\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{subject to} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

## SVM parameter learning

margin

• Separable data:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{subject to} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$

$$\text{Maximize} \qquad \text{Classify training data correctly}$$

Non-separable data:

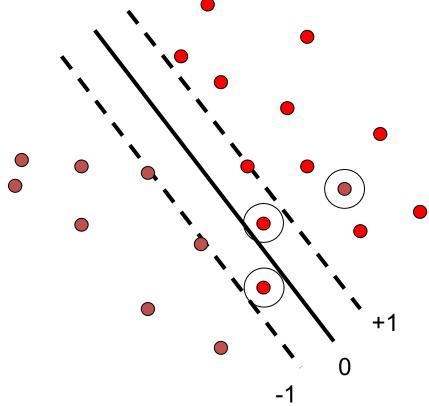
$$\min_{\mathbf{w},b} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))$$

$$\text{Maximize margin} \qquad \text{Minimize classification mistakes}$$

## SVM parameter learning

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max(0,1-y_i(\mathbf{w} \cdot \mathbf{x}_i + b))$$

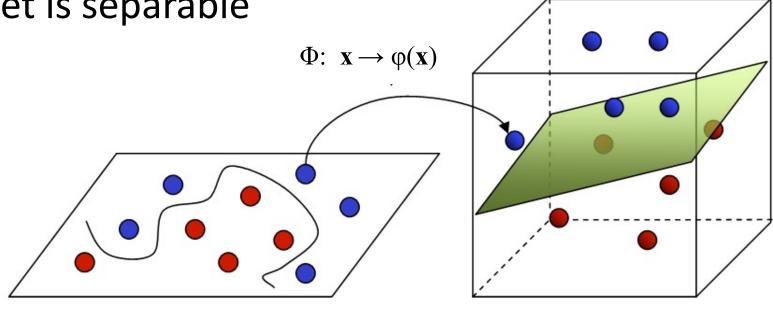




Demo: <a href="http://cs.stanford.edu/people/karpathy/svmjs/demo">http://cs.stanford.edu/people/karpathy/svmjs/demo</a>

#### Nonlinear SVMs

 General idea: the original input space can always be mapped to some higherdimensional feature space where the training set is separable



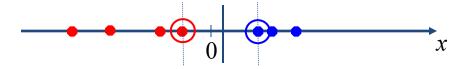
Input Space

Feature Space

Image source

#### Nonlinear SVMs

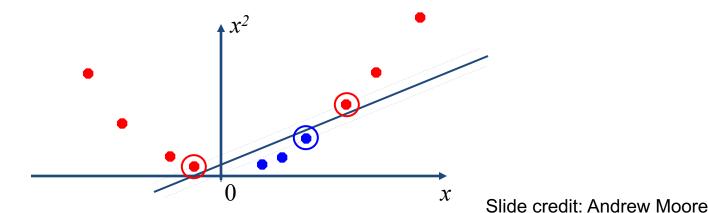
Linearly separable dataset in 1D:



Non-separable dataset in 1D:



• We can map the data to a higher-dimensional space:



#### The kernel trick

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable

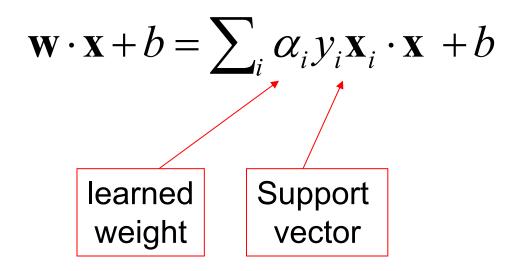
• The kernel trick: instead of explicitly computing the lifting transformation  $\varphi(\mathbf{x})$ , define a kernel function K such that

$$K(\mathbf{x}, \mathbf{y}) = \boldsymbol{\varphi}(\mathbf{x}) \cdot \boldsymbol{\varphi}(\mathbf{y})$$

 (to be valid, the kernel function must satisfy Mercer's condition)

#### The kernel trick

Linear SVM decision function:



#### The kernel trick

Linear SVM decision function:

$$\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$$

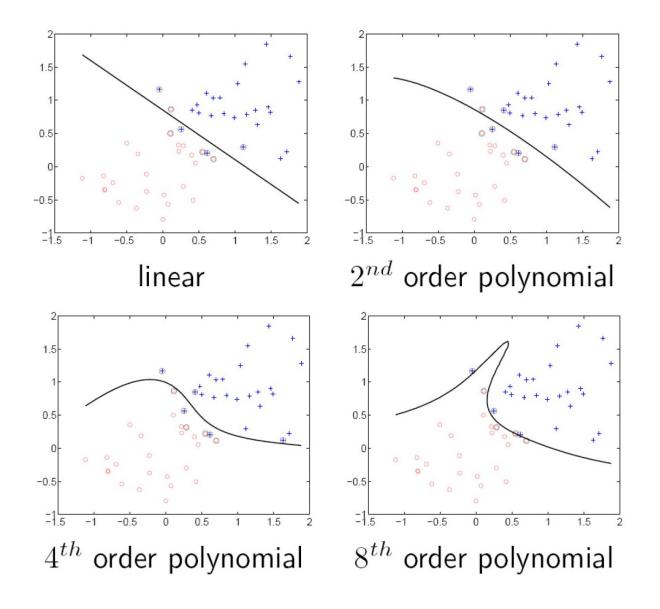
Kernel SVM decision function:

$$\sum_{i} \alpha_{i} y_{i} \varphi(\mathbf{x}_{i}) \cdot \varphi(\mathbf{x}) + b = \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

This gives a nonlinear decision boundary in the original feature space

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

# Polynomial kernel: $K(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x} \cdot \mathbf{y})^d$

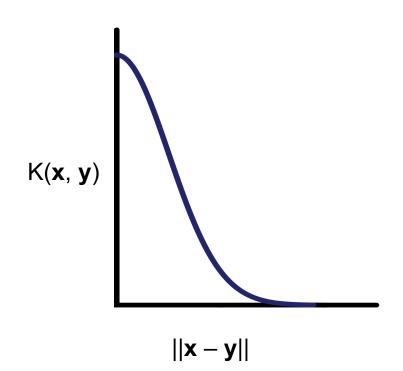


#### Gaussian kernel

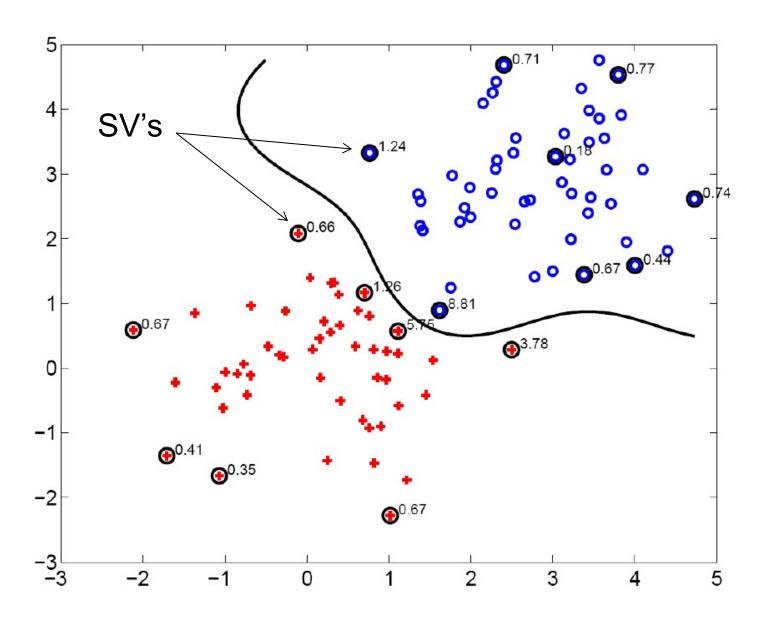
 Also known as the radial basis function (RBF) kernel:

(RBF) kernel:  

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{\sigma^2} \|\mathbf{x} - \mathbf{y}\|^2\right)$$



#### Gaussian kernel



#### Outline

- Overview
  - Task descriptions
  - Basic approach
- Classifiers
- Features
- Basic Machine Learning Concepts
- Convolutional neural networks (CNNs)

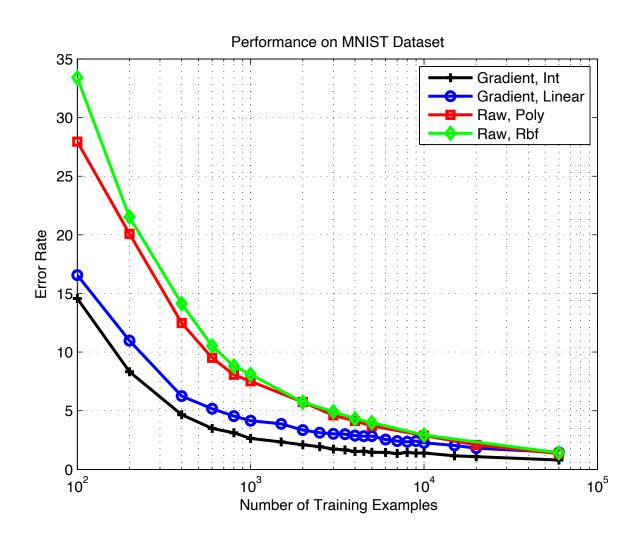
# Digit Classification Case Study

# The MNIST DATABASE of handwritten digits Yann LeCun & Corinna Cortes

- Has a training set of 60 K examples (6K examples for each digit), and a test set of 10K examples.
- Each digit is a 28 x 28 pixel grey level image. The digit itself occupies the central 20 x 20 pixels, and the center of mass lies at the center of the box.



#### Bias-Variance Trade-off



### Bias and Variance

#### Bias-Variance Trade-off

Performance as a function of model complexity (SVM)

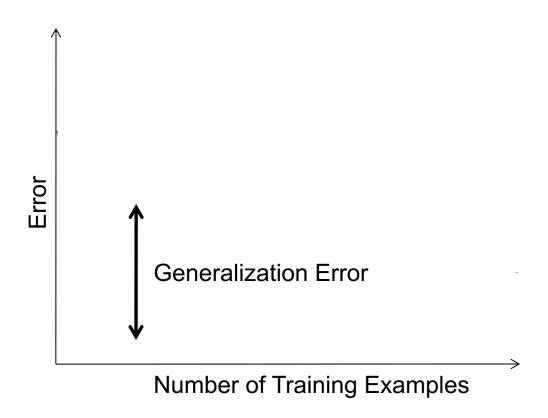
## **Model Selection**

### Bias-Variance Trade-off

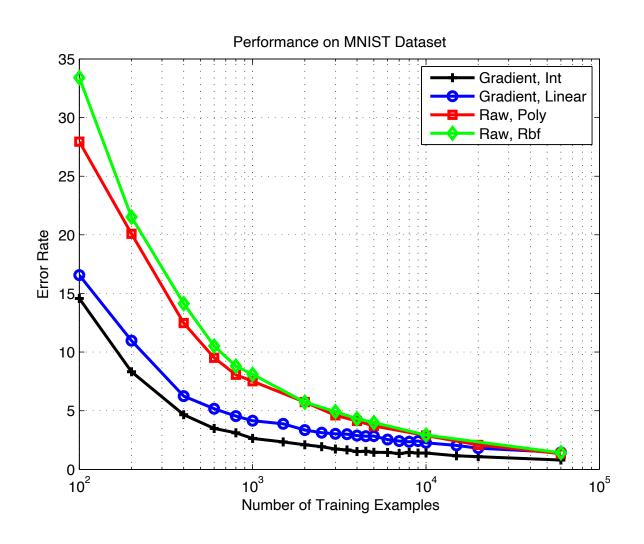
As a function of dataset size

## **Generalization Error**

Fixed classifier



# Features vs Classifiers



## What are the right features?

Depend on what you want to know!

- Object: shape
  - Local shape info, shading, shadows, texture
- Scene: geometric layout
  - linear perspective, gradients, line segments
- Material properties: albedo, feel, hardness
  - Color, texture
- Action: motion
  - Optical flow, tracked points

# Stuff vs Objects

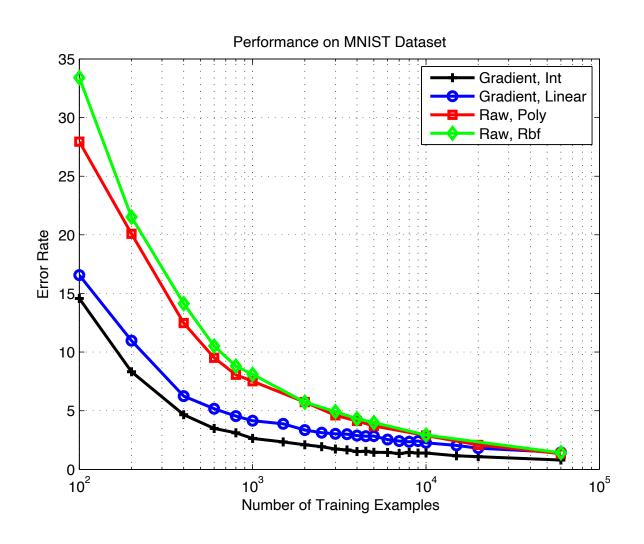
recognizing cloth fabric vs recognizing cups



### Feature Design Process

- 1. Start with a model
- 2. Look at errors on development set
- 3. Think of features that can improve performance
- 4. Develop new model, test whether new features help.
- 5. If not happy, go to step 1.
- 6. "Ablations": Simplify system, prune out features that don't help anymore in presence of other features.

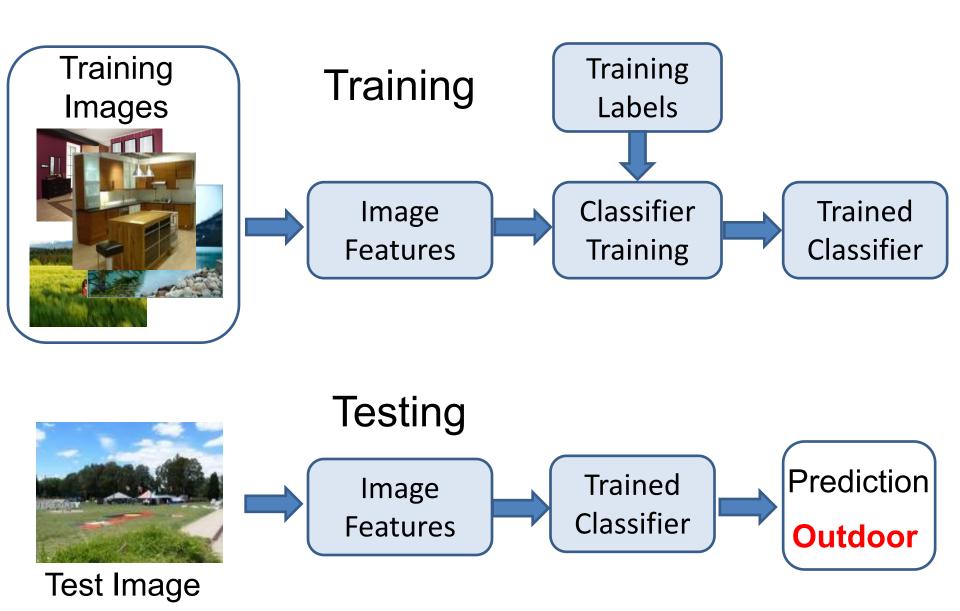
# Features vs Classifiers



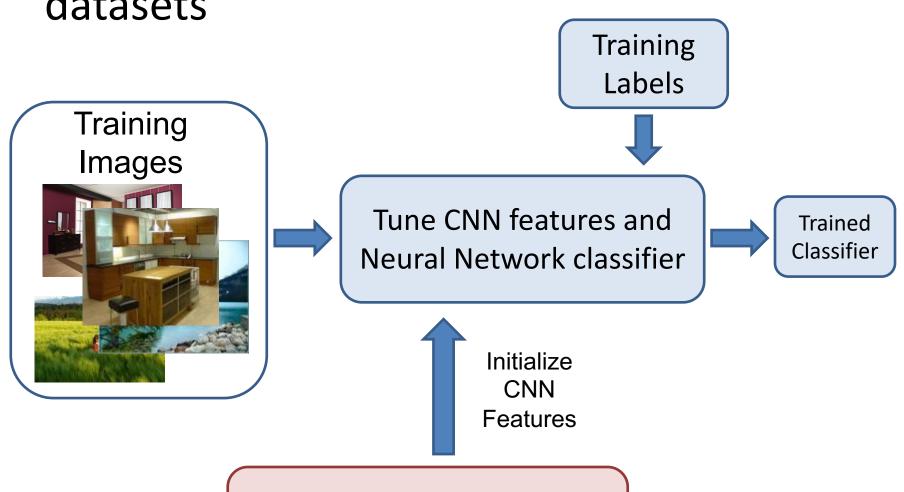
## "Classic" recognition pipeline



#### Categorization involves features and a classifier

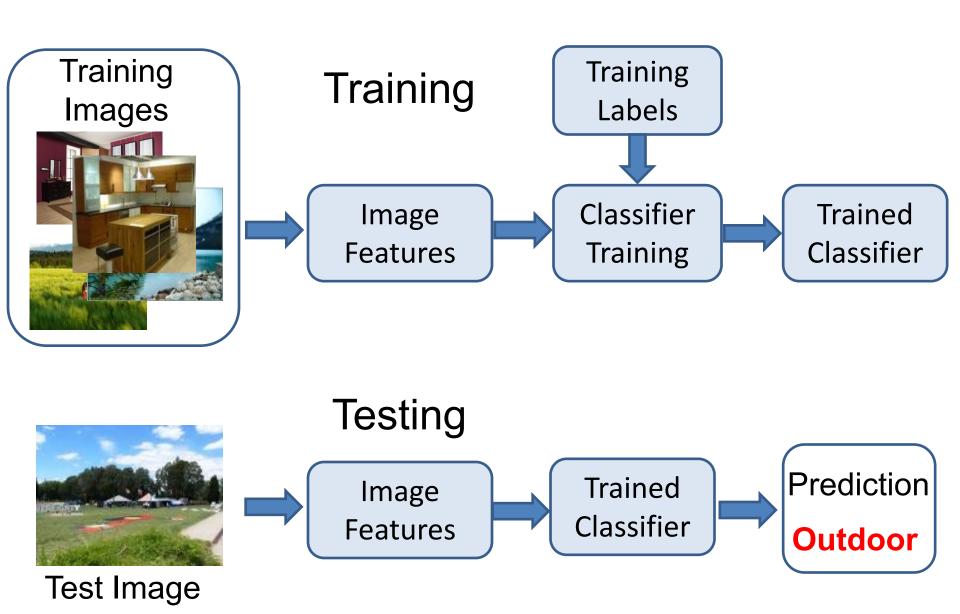


New training setup with moderate sized datasets

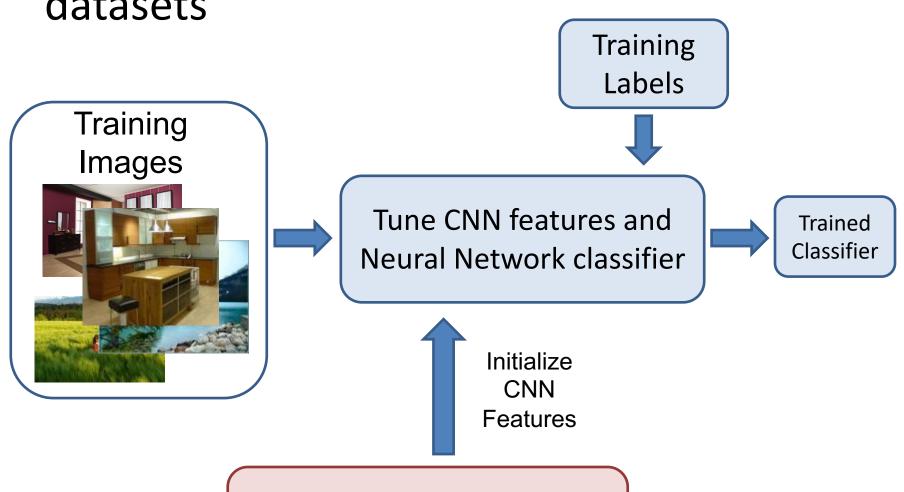


Dataset similar to task with millions of labeled examples

#### Categorization involves features and a classifier



New training setup with moderate sized datasets



Dataset similar to task with millions of labeled examples