
Convolutional neural networks

Slides from L. Lazebnik, Rob Fergus, Andrej Karpathy

Outline
• Building blocks for CNNs
• Motivation and history
• Alexnet
• Since Alexnet

Compare: Digit Classification using SVMs

Components of a CNN architecture
• Convolutional Layers
• Non-linearities
• Pooling
• Fully-connected Layers
• Normalization Layers

Rationale?

image

feature map

learned
weights

Neural networks for images

image

another feature map

another
set of

learned
weights

Neural networks for images

Convolution as feature extraction

image feature map

.

.

.

bank of K filters K feature maps

K feature maps

K filters

Convolutional layer

convolutional layerimage

image

L feature
maps in the

next layer

convolutional layer

Convolutional layer

F x F x K
filter

L filters

K feature maps

Convolutional layer
• Input
• Convolutional Hyper-Parameters

• Kernel Size
• Number of Filters
• Padding
• Stride

• Parameters
• Weights
• Biases

• Output Size

Components of a CNN architecture
• Convolutional Layers
• Non-linearities
• Pooling
• Fully-connected Layers
• Normalization Layers

Non-Linearities

Source: R. Fergus, Y. LeCun Source: Stanford 231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

Max
(or Avg)

Pooling Layers

Source: R. Fergus, Y. LeCun

K feature maps,
resolution 1/S

Pooling Layers

F x F pooling filter,
stride S

K feature maps

max
value

Usually: F=2 or 3, S=2

Components of a CNN architecture
• Convolutional Layers
• Non-linearities
• Pooling
• Fully-connected Layers
• Normalization Layers (in just a bit)

Putting it together

P(c | x) = exp(wc ⋅x)

exp(wk ⋅x)
k=1

C

∑

Softmax layer:

History: Neocognitron

https://en.wikipedia.org/wiki/Neocognitron

K. Fukushima, 1980s

https://en.wikipedia.org/wiki/Neocognitron

History: LeNet-5

• Average pooling
• Sigmoid or tanh nonlinearity
• Fully connected layers at the end
• Trained on MNIST digit dataset with

60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

ImageNet Challenge

Validation classification

Validation classification

Validation classification

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk

• ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC):
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

http://www.image-net.org/challenges/LSVRC/

AlexNet: ILSVRC 2012 winner

• Similar framework to LeNet but:
• Max pooling, ReLU nonlinearity
• More data and bigger model (7 hidden layers, 650K units, 60M params)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012-2014

Team Year Place Error (top-5) External data

XRCE 2011 25.8% no

SuperVision – Toronto
(7 layers)

2012 - 16.4% no

SuperVision 2012 1st 15.3% ImageNet 22k

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

AlexNet

Source: Justin Johnson, David Fouhey.

Input size Layer Output size
Layer C H / W filters kernel stride pad C H / W
conv1 3 227 64 11 4 2 64 56
pool1 64 56 3 2 0 64 27
conv2 64 27 192 5 1 2 192 27
pool2 192 27 3 2 0 192 13
conv3 192 13 384 3 1 1 384 13
conv4 384 13 256 3 1 1 256 13
conv5 256 13 256 3 1 1 256 13
pool5 256 13 3 2 0 256 6
flatten 256 6 9216

fc6 9216 4096 4096
fc7 4096 4096 4096
fc8 4096 1000 1000

Receptive Field

Source: https://distill.pub/2019/computing-receptive-fields/

Deep Nets with striding have large receptive fields

https://distill.pub/2019/computing-receptive-fields/

Receptive Field

Input size Layer Output size Receptive
Field

Effective
Stride

Effective
Padding

Layer C H / W filters kernel stride pad C H / W
conv1 3 227 64 11 4 2 64 56 11 4 2
pool1 64 56 3 2 0 64 27 19 8 2
conv2 64 27 192 5 1 2 192 27 51 8 18
pool2 192 27 3 2 0 192 13 67 16 34
conv3 192 13 384 3 1 1 384 13 99 16 50
conv4 384 13 256 3 1 1 256 13 131 16 66
conv5 256 13 256 3 1 1 256 13 163 16 66
pool5 256 13 3 2 0 256 6 195 32 66
flatten 256 6 9216 259 32 66
fc6 9216 4096 4096 259 32 66
fc7 4096 4096 4096 259 32 66
fc8 4096 1000 1000 259 32 66

Other Stats

Source: Justin Johnson, David Fouhey.

Input size Layer Output size
Layer C H / W filters kernel stride pad C H / W memory (KB) params (k) flop (M)
conv1 3 227 64 11 4 2 64 56 784 23 73
pool1 64 56 3 2 0 64 27 182 0 0
conv2 64 27 192 5 1 2 192 27 547 307 224
pool2 192 27 3 2 0 192 13 127 0 0
conv3 192 13 384 3 1 1 384 13 254 664 112
conv4 384 13 256 3 1 1 256 13 169 885 145
conv5 256 13 256 3 1 1 256 13 169 590 100
pool5 256 13 3 2 0 256 6 36 0 0
flatten 256 6 9216 36 0 0

fc6 9216 4096 4096 16 37,749 38
fc7 4096 4096 4096 16 16,777 17
fc8 4096 1000 1000 4 4,096 4

AlexNet

Source: Justin Johnson, David Fouhey.

0
5000
10000
15000
20000
25000
30000
35000
40000

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

fc
6

fc
7

fc
8

Params (K)

0

50

100

150

200

250

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

fc
6

fc
7

fc
8

MFLOP

0
100
200
300
400
500
600
700
800
900

co
nv
1

co
nv
2

co
nv
3

co
nv
4

co
nv
5

fc
6

fc
7

fc
8

Memory (KB)

Most of the memory
usage is in the early
convolution layers

Nearly all parameters are in
the fully-connected layers

Most floating-point
ops occur in the
convolution layers

Layer 1 Filters

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
ECCV 2014 (Best Paper Award winner)

http://arxiv.org/pdf/1311.2901v3.pdf

Layer 1: Top-9 Patches

ReLU vs tanh
3.1 ReLU Nonlinearity

Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

The standard way to model a neuron’s output f as
a function of its input x is with f(x) = tanh(x)
or f(x) = (1 + e�x)�1. In terms of training time
with gradient descent, these saturating nonlinearities
are much slower than the non-saturating nonlinearity
f(x) = max(0, x). Following Nair and Hinton [20],
we refer to neurons with this nonlinearity as Rectified
Linear Units (ReLUs). Deep convolutional neural net-
works with ReLUs train several times faster than their
equivalents with tanh units. This is demonstrated in
Figure 1, which shows the number of iterations re-
quired to reach 25% training error on the CIFAR-10
dataset for a particular four-layer convolutional net-
work. This plot shows that we would not have been
able to experiment with such large neural networks for
this work if we had used traditional saturating neuron
models.

We are not the first to consider alternatives to tradi-
tional neuron models in CNNs. For example, Jarrett
et al. [11] claim that the nonlinearity f(x) = |tanh(x)|
works particularly well with their type of contrast nor-
malization followed by local average pooling on the
Caltech-101 dataset. However, on this dataset the pri-
mary concern is preventing overfitting, so the effect
they are observing is different from the accelerated
ability to fit the training set which we report when us-
ing ReLUs. Faster learning has a great influence on the
performance of large models trained on large datasets.

3.2 Training on Multiple GPUs

A single GTX 580 GPU has only 3GB of memory, which limits the maximum size of the networks
that can be trained on it. It turns out that 1.2 million training examples are enough to train networks
which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs
are particularly well-suited to cross-GPU parallelization, as they are able to read from and write to
one another’s memory directly, without going through host machine memory. The parallelization
scheme that we employ essentially puts half of the kernels (or neurons) on each GPU, with one
additional trick: the GPUs communicate only in certain layers. This means that, for example, the
kernels of layer 3 take input from all kernel maps in layer 2. However, kernels in layer 4 take input
only from those kernel maps in layer 3 which reside on the same GPU. Choosing the pattern of
connectivity is a problem for cross-validation, but this allows us to precisely tune the amount of
communication until it is an acceptable fraction of the amount of computation.

The resultant architecture is somewhat similar to that of the “columnar” CNN employed by Cireşan
et al. [5], except that our columns are not independent (see Figure 2). This scheme reduces our top-1
and top-5 error rates by 1.7% and 1.2%, respectively, as compared with a net with half as many
kernels in each convolutional layer trained on one GPU. The two-GPU net takes slightly less time
to train than the one-GPU net2.

2The one-GPU net actually has the same number of kernels as the two-GPU net in the final convolutional
layer. This is because most of the net’s parameters are in the first fully-connected layer, which takes the last
convolutional layer as input. So to make the two nets have approximately the same number of parameters, we
did not halve the size of the final convolutional layer (nor the fully-conneced layers which follow). Therefore
this comparison is biased in favor of the one-GPU net, since it is bigger than “half the size” of the two-GPU
net.

3

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Dropout

N. Srivastava, G. Hinton et al., Dropout: A Simple Way to Prevent Neural Networks
from Overfitting, JMLR 2014

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Dropout

Present with

probability p

w

-

(a) At training time

Always

present

pw

-

(b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

Applying dropout to a neural network amounts to sampling a “thinned” network from
it. The thinned network consists of all the units that survived dropout (Figure 1b). A
neural net with n units, can be seen as a collection of 2n possible thinned neural networks.
These networks all share weights so that the total number of parameters is still O(n2), or
less. For each presentation of each training case, a new thinned network is sampled and
trained. So training a neural network with dropout can be seen as training a collection of 2n

thinned networks with extensive weight sharing, where each thinned network gets trained
very rarely, if at all.

At test time, it is not feasible to explicitly average the predictions from exponentially
many thinned models. However, a very simple approximate averaging method works well in
practice. The idea is to use a single neural net at test time without dropout. The weights
of this network are scaled-down versions of the trained weights. If a unit is retained with
probability p during training, the outgoing weights of that unit are multiplied by p at test
time as shown in Figure 2. This ensures that for any hidden unit the expected output (under
the distribution used to drop units at training time) is the same as the actual output at
test time. By doing this scaling, 2n networks with shared weights can be combined into
a single neural network to be used at test time. We found that training a network with
dropout and using this approximate averaging method at test time leads to significantly
lower generalization error on a wide variety of classification problems compared to training
with other regularization methods.

The idea of dropout is not limited to feed-forward neural nets. It can be more generally
applied to graphical models such as Boltzmann Machines. In this paper, we introduce
the dropout Restricted Boltzmann Machine model and compare it to standard Restricted
Boltzmann Machines (RBM). Our experiments show that dropout RBMs are better than
standard RBMs in certain respects.

This paper is structured as follows. Section 2 describes the motivation for this idea.
Section 3 describes relevant previous work. Section 4 formally describes the dropout model.
Section 5 gives an algorithm for training dropout networks. In Section 6, we present our
experimental results where we apply dropout to problems in di↵erent domains and compare
it with other forms of regularization and model combination. Section 7 analyzes the e↵ect of
dropout on di↵erent properties of a neural network and describes how dropout interacts with
the network’s hyperparameters. Section 8 describes the Dropout RBM model. In Section 9
we explore the idea of marginalizing dropout. In Appendix A we present a practical guide

1931

• Randomly drop units in training
• Prevents co-adaptation
• Thought to sample from an

exponential number of thinned
networks

• Acts as a regularizer

Fig. 1: The error rate on the MNIST test set for a variety of neural network architectures trained
with backpropagation using 50% dropout for all hidden layers. The lower set of lines also
use 20% dropout for the input layer. The best previously published result for this task using
backpropagation without pre-training or weight-sharing or enhancements of the training set is
shown as a horizontal line.

train a deep Boltzmann machine five times, the unrolled network got 103, 97, 94, 93 and 88
errors when fine-tuned using standard backpropagation and 83, 79, 78, 78 and 77 errors when
using 50% dropout of the hidden units. The mean of 79 errors is a record for methods that do
not use prior knowledge or enhanced training sets (For details see Appendix A).

We then applied dropout to TIMIT, a widely used benchmark for recognition of clean speech
with a small vocabulary. Speech recognition systems use hidden Markov models (HMMs) to
deal with temporal variability and they need an acoustic model that determines how well a frame
of coefficients extracted from the acoustic input fits each possible state of each hidden Markov
model. Recently, deep, pre-trained, feedforward neural networks that map a short sequence of
frames into a probability distribution over HMM states have been shown to outperform tradional
Gaussian mixture models on both TIMIT (6) and a variety of more realistic large vocabulary
tasks (7, 8).

Figure 2 shows the frame classification error rate on the core test set of the TIMIT bench-
mark when the central frame of a window is classified as belonging to the HMM state that is
given the highest probability by the neural net. The input to the net is 21 adjacent frames with an
advance of 10ms per frame. The neural net has 4 fully-connected hidden layers of 4000 units per

3

Fully
Connected

MNIST

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Outline
• Building blocks for CNNs
• Motivation and history
• Alexnet
• Since Alexnet

Components of a CNN architecture
• Convolutional Layers
• Non-linearities
• Pooling
• Fully-connected Layers
• Normalization Layers

Rationale?

Since Alexnet
• More efficient use of parameters

• No FC layers
• Smaller kernels

• Normalization layers
• LRN layers don’t improve performance as much
• Batch Normalization

• Deeper networks
• 7 layers -> 19 layers -> 150 layers
• Residual connections
• Batch normalization

• Self-attention

3.3 Local Response Normalization

ReLUs have the desirable property that they do not require input normalization to prevent them
from saturating. If at least some training examples produce a positive input to a ReLU, learning will
happen in that neuron. However, we still find that the following local normalization scheme aids
generalization. Denoting by aix,y the activity of a neuron computed by applying kernel i at position
(x, y) and then applying the ReLU nonlinearity, the response-normalized activity bix,y is given by
the expression

bix,y = aix,y/

0

@k + ↵

min(N�1,i+n/2)X

j=max(0,i�n/2)

(ajx,y)
2

1

A
�

where the sum runs over n “adjacent” kernel maps at the same spatial position, and N is the total
number of kernels in the layer. The ordering of the kernel maps is of course arbitrary and determined
before training begins. This sort of response normalization implements a form of lateral inhibition
inspired by the type found in real neurons, creating competition for big activities amongst neuron
outputs computed using different kernels. The constants k, n,↵, and � are hyper-parameters whose
values are determined using a validation set; we used k = 2, n = 5, ↵ = 10�4, and � = 0.75. We
applied this normalization after applying the ReLU nonlinearity in certain layers (see Section 3.5).

This scheme bears some resemblance to the local contrast normalization scheme of Jarrett et al. [11],
but ours would be more correctly termed “brightness normalization”, since we do not subtract the
mean activity. Response normalization reduces our top-1 and top-5 error rates by 1.4% and 1.2%,
respectively. We also verified the effectiveness of this scheme on the CIFAR-10 dataset: a four-layer
CNN achieved a 13% test error rate without normalization and 11% with normalization3.

3.4 Overlapping Pooling

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same kernel
map. Traditionally, the neighborhoods summarized by adjacent pooling units do not overlap (e.g.,
[17, 11, 4]). To be more precise, a pooling layer can be thought of as consisting of a grid of pooling
units spaced s pixels apart, each summarizing a neighborhood of size z ⇥ z centered at the location
of the pooling unit. If we set s = z, we obtain traditional local pooling as commonly employed
in CNNs. If we set s < z, we obtain overlapping pooling. This is what we use throughout our
network, with s = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates by 0.4% and
0.3%, respectively, as compared with the non-overlapping scheme s = 2, z = 2, which produces
output of equivalent dimensions. We generally observe during training that models with overlapping
pooling find it slightly more difficult to overfit.

3.5 Overall Architecture

Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net
contains eight layers with weights; the first five are convolutional and the remaining three are fully-
connected. The output of the last fully-connected layer is fed to a 1000-way softmax which produces
a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression
objective, which is equivalent to maximizing the average across training cases of the log-probability
of the correct label under the prediction distribution.

The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel
maps in the previous layer which reside on the same GPU (see Figure 2). The kernels of the third
convolutional layer are connected to all kernel maps in the second layer. The neurons in the fully-
connected layers are connected to all neurons in the previous layer. Response-normalization layers
follow the first and second convolutional layers. Max-pooling layers, of the kind described in Section
3.4, follow both response-normalization layers as well as the fifth convolutional layer. The ReLU
non-linearity is applied to the output of every convolutional and fully-connected layer.

The first convolutional layer filters the 224⇥224⇥3 input image with 96 kernels of size 11⇥11⇥3
with a stride of 4 pixels (this is the distance between the receptive field centers of neighboring

3We cannot describe this network in detail due to space constraints, but it is specified precisely by the code
and parameter files provided here: http://code.google.com/p/cuda-convnet/.

4

VGGNet: ILSVRC 2014 2nd place

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, ICLR 2015

Image source

https://arxiv.org/abs/1409.1556
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

VGGNet: ILSVRC 2014 2nd place
• Sequence of deeper networks

trained progressively
• Large receptive fields replaced

by successive layers of 3x3
convolutions (with ReLU in
between)

• One 7x7 conv layer with K
feature maps needs 49K2
weights, three 3x3 conv layers
need only 27K2 weights

• Experimented with 1x1
convolutions

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, ICLR 2015

https://arxiv.org/abs/1409.1556

Batch Normalization
• Multi-layer training can suffer from “covariate

shift”
• Distribution of hidden layer 2 input’s changes

over time.

S. Iofffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, arXiv 2015

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization

S. Iofffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, arXiv 2015

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X)

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X)

∂x
and

∂Norm(x,X)

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

that consist of an affine transformation followed by an
element-wise nonlinearity:

z = g(Wu + b)

whereW and b are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This for-
mulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = Wu+b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-
sian” (Hyvärinen & Oja, 2000); normalizing it is likely to
produce activations with a stable distribution.
Note that, since we normalizeWu+b, the bias b can be

ignored since its effect will be canceled by the subsequent
mean subtraction (the role of the bias is subsumed by β in
Alg. 1). Thus, z = g(Wu + b) is replaced with

z = g(BN(Wu))

where the BN transform is applied independently to each
dimension of x = Wu, with a separate pair of learned
parameters γ(k), β(k) per dimension.
For convolutional layers, we additionally want the nor-

malization to obey the convolutional property – so that
different elements of the same feature map, at different
locations, are normalized in the same way. To achieve
this, we jointly normalize all the activations in a mini-
batch, over all locations. In Alg. 1, we let B be the set of
all values in a feature map across both the elements of a
mini-batch and spatial locations – so for a mini-batch of
size m and feature maps of size p × q, we use the effec-
tive mini-batch of size m′ = |B| = m · p q. We learn a
pair of parameters γ(k) and β(k) per feature map, rather
than per activation. Alg. 2 is modified similarly, so that
during inference the BN transform applies the same linear
transformation to each activation in a given feature map.

3.3 Batch Normalization enables higher
learning rates

In traditional deep networks, too-high learning rate may
result in the gradients that explode or vanish, as well as
getting stuck in poor local minima. Batch Normaliza-
tion helps address these issues. By normalizing activa-
tions throughout the network, it prevents small changes
to the parameters from amplifying into larger and subop-
timal changes in activations in gradients; for instance, it
prevents the training from getting stuck in the saturated
regimes of nonlinearities.
Batch Normalization also makes training more resilient

to the parameter scale. Normally, large learning rates may
increase the scale of layer parameters, which then amplify

the gradient during backpropagation and lead to the model
explosion. However, with Batch Normalization, back-
propagation through a layer is unaffected by the scale of
its parameters. Indeed, for a scalar a,

BN(Wu) = BN((aW)u)

and we can show that

∂BN((aW)u)
∂u = ∂BN(Wu)

∂u

∂BN((aW)u)
∂(aW) = 1

a · ∂BN(Wu)
∂W

The scale does not affect the layer Jacobian nor, con-
sequently, the gradient propagation. Moreover, larger
weights lead to smaller gradients, and Batch Normaliza-
tion will stabilize the parameter growth.
We further conjecture that Batch Normalization may

lead the layer Jacobians to have singular values close to 1,
which is known to be beneficial for training (Saxe et al.,
2013). Consider two consecutive layers with normalized
inputs, and the transformation between these normalized
vectors: ẑ = F (x̂). If we assume that x̂ and ẑ are Gaussian
and uncorrelated, and that F (x̂) ≈ J x̂ is a linear transfor-
mation for the given model parameters, then both x̂ and ẑ
have unit covariances, and I = Cov[̂z] = JCov[x̂]JT =
JJT . Thus, JJT = I , and so all singular values of J
are equal to 1, which preserves the gradient magnitudes
during backpropagation. In reality, the transformation is
not linear, and the normalized values are not guaranteed to
be Gaussian nor independent, but we nevertheless expect
Batch Normalization to help make gradient propagation
better behaved. The precise effect of Batch Normaliza-
tion on gradient propagation remains an area of further
study.

3.4 Batch Normalization regularizes the
model

When training with Batch Normalization, a training ex-
ample is seen in conjunction with other examples in the
mini-batch, and the training network no longer produc-
ing deterministic values for a given training example. In
our experiments, we found this effect to be advantageous
to the generalization of the network. Whereas Dropout
(Srivastava et al., 2014) is typically used to reduce over-
fitting, in a batch-normalized network we found that it can
be either removed or reduced in strength.

4 Experiments
4.1 Activations over time
To verify the effects of internal covariate shift on train-
ing, and the ability of Batch Normalization to combat it,
we considered the problem of predicting the digit class on
the MNIST dataset (LeCun et al., 1998a). We used a very
simple network, with a 28x28 binary image as input, and

5

that consist of an affine transformation followed by an
element-wise nonlinearity:

z = g(Wu + b)

whereW and b are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This for-
mulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = Wu+b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-
sian” (Hyvärinen & Oja, 2000); normalizing it is likely to
produce activations with a stable distribution.
Note that, since we normalizeWu+b, the bias b can be

ignored since its effect will be canceled by the subsequent
mean subtraction (the role of the bias is subsumed by β in
Alg. 1). Thus, z = g(Wu + b) is replaced with

z = g(BN(Wu))

where the BN transform is applied independently to each
dimension of x = Wu, with a separate pair of learned
parameters γ(k), β(k) per dimension.
For convolutional layers, we additionally want the nor-

malization to obey the convolutional property – so that
different elements of the same feature map, at different
locations, are normalized in the same way. To achieve
this, we jointly normalize all the activations in a mini-
batch, over all locations. In Alg. 1, we let B be the set of
all values in a feature map across both the elements of a
mini-batch and spatial locations – so for a mini-batch of
size m and feature maps of size p × q, we use the effec-
tive mini-batch of size m′ = |B| = m · p q. We learn a
pair of parameters γ(k) and β(k) per feature map, rather
than per activation. Alg. 2 is modified similarly, so that
during inference the BN transform applies the same linear
transformation to each activation in a given feature map.

3.3 Batch Normalization enables higher
learning rates

In traditional deep networks, too-high learning rate may
result in the gradients that explode or vanish, as well as
getting stuck in poor local minima. Batch Normaliza-
tion helps address these issues. By normalizing activa-
tions throughout the network, it prevents small changes
to the parameters from amplifying into larger and subop-
timal changes in activations in gradients; for instance, it
prevents the training from getting stuck in the saturated
regimes of nonlinearities.
Batch Normalization also makes training more resilient

to the parameter scale. Normally, large learning rates may
increase the scale of layer parameters, which then amplify

the gradient during backpropagation and lead to the model
explosion. However, with Batch Normalization, back-
propagation through a layer is unaffected by the scale of
its parameters. Indeed, for a scalar a,

BN(Wu) = BN((aW)u)

and we can show that

∂BN((aW)u)
∂u = ∂BN(Wu)

∂u

∂BN((aW)u)
∂(aW) = 1

a · ∂BN(Wu)
∂W

The scale does not affect the layer Jacobian nor, con-
sequently, the gradient propagation. Moreover, larger
weights lead to smaller gradients, and Batch Normaliza-
tion will stabilize the parameter growth.
We further conjecture that Batch Normalization may

lead the layer Jacobians to have singular values close to 1,
which is known to be beneficial for training (Saxe et al.,
2013). Consider two consecutive layers with normalized
inputs, and the transformation between these normalized
vectors: ẑ = F (x̂). If we assume that x̂ and ẑ are Gaussian
and uncorrelated, and that F (x̂) ≈ J x̂ is a linear transfor-
mation for the given model parameters, then both x̂ and ẑ
have unit covariances, and I = Cov[̂z] = JCov[x̂]JT =
JJT . Thus, JJT = I , and so all singular values of J
are equal to 1, which preserves the gradient magnitudes
during backpropagation. In reality, the transformation is
not linear, and the normalized values are not guaranteed to
be Gaussian nor independent, but we nevertheless expect
Batch Normalization to help make gradient propagation
better behaved. The precise effect of Batch Normaliza-
tion on gradient propagation remains an area of further
study.

3.4 Batch Normalization regularizes the
model

When training with Batch Normalization, a training ex-
ample is seen in conjunction with other examples in the
mini-batch, and the training network no longer produc-
ing deterministic values for a given training example. In
our experiments, we found this effect to be advantageous
to the generalization of the network. Whereas Dropout
(Srivastava et al., 2014) is typically used to reduce over-
fitting, in a batch-normalized network we found that it can
be either removed or reduced in strength.

4 Experiments
4.1 Activations over time
To verify the effects of internal covariate shift on train-
ing, and the ability of Batch Normalization to combat it,
we considered the problem of predicting the digit class on
the MNIST dataset (LeCun et al., 1998a). We used a very
simple network, with a 28x28 binary image as input, and

5

At test time:
Use 𝜇 and 𝜎 obtained from training
set (typically done via running
average).

Single biggest source of
bugs in my code!!

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization
• Multi-layer training can suffer from “covariate

shift”

S. Iofffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, arXiv 2015

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

that consist of an affine transformation followed by an
element-wise nonlinearity:

z = g(Wu + b)

whereW and b are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This for-
mulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = Wu+b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-
sian” (Hyvärinen & Oja, 2000); normalizing it is likely to
produce activations with a stable distribution.
Note that, since we normalizeWu+b, the bias b can be

ignored since its effect will be canceled by the subsequent
mean subtraction (the role of the bias is subsumed by β in
Alg. 1). Thus, z = g(Wu + b) is replaced with

z = g(BN(Wu))

where the BN transform is applied independently to each
dimension of x = Wu, with a separate pair of learned
parameters γ(k), β(k) per dimension.
For convolutional layers, we additionally want the nor-

malization to obey the convolutional property – so that
different elements of the same feature map, at different
locations, are normalized in the same way. To achieve
this, we jointly normalize all the activations in a mini-
batch, over all locations. In Alg. 1, we let B be the set of
all values in a feature map across both the elements of a
mini-batch and spatial locations – so for a mini-batch of
size m and feature maps of size p × q, we use the effec-
tive mini-batch of size m′ = |B| = m · p q. We learn a
pair of parameters γ(k) and β(k) per feature map, rather
than per activation. Alg. 2 is modified similarly, so that
during inference the BN transform applies the same linear
transformation to each activation in a given feature map.

3.3 Batch Normalization enables higher
learning rates

In traditional deep networks, too-high learning rate may
result in the gradients that explode or vanish, as well as
getting stuck in poor local minima. Batch Normaliza-
tion helps address these issues. By normalizing activa-
tions throughout the network, it prevents small changes
to the parameters from amplifying into larger and subop-
timal changes in activations in gradients; for instance, it
prevents the training from getting stuck in the saturated
regimes of nonlinearities.
Batch Normalization also makes training more resilient

to the parameter scale. Normally, large learning rates may
increase the scale of layer parameters, which then amplify

the gradient during backpropagation and lead to the model
explosion. However, with Batch Normalization, back-
propagation through a layer is unaffected by the scale of
its parameters. Indeed, for a scalar a,

BN(Wu) = BN((aW)u)

and we can show that

∂BN((aW)u)
∂u = ∂BN(Wu)

∂u

∂BN((aW)u)
∂(aW) = 1

a · ∂BN(Wu)
∂W

The scale does not affect the layer Jacobian nor, con-
sequently, the gradient propagation. Moreover, larger
weights lead to smaller gradients, and Batch Normaliza-
tion will stabilize the parameter growth.
We further conjecture that Batch Normalization may

lead the layer Jacobians to have singular values close to 1,
which is known to be beneficial for training (Saxe et al.,
2013). Consider two consecutive layers with normalized
inputs, and the transformation between these normalized
vectors: ẑ = F (x̂). If we assume that x̂ and ẑ are Gaussian
and uncorrelated, and that F (x̂) ≈ J x̂ is a linear transfor-
mation for the given model parameters, then both x̂ and ẑ
have unit covariances, and I = Cov[̂z] = JCov[x̂]JT =
JJT . Thus, JJT = I , and so all singular values of J
are equal to 1, which preserves the gradient magnitudes
during backpropagation. In reality, the transformation is
not linear, and the normalized values are not guaranteed to
be Gaussian nor independent, but we nevertheless expect
Batch Normalization to help make gradient propagation
better behaved. The precise effect of Batch Normaliza-
tion on gradient propagation remains an area of further
study.

3.4 Batch Normalization regularizes the
model

When training with Batch Normalization, a training ex-
ample is seen in conjunction with other examples in the
mini-batch, and the training network no longer produc-
ing deterministic values for a given training example. In
our experiments, we found this effect to be advantageous
to the generalization of the network. Whereas Dropout
(Srivastava et al., 2014) is typically used to reduce over-
fitting, in a batch-normalized network we found that it can
be either removed or reduced in strength.

4 Experiments
4.1 Activations over time
To verify the effects of internal covariate shift on train-
ing, and the ability of Batch Normalization to combat it,
we considered the problem of predicting the digit class on
the MNIST dataset (LeCun et al., 1998a). We used a very
simple network, with a 28x28 binary image as input, and

5

that consist of an affine transformation followed by an
element-wise nonlinearity:

z = g(Wu + b)

whereW and b are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This for-
mulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = Wu+b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-
sian” (Hyvärinen & Oja, 2000); normalizing it is likely to
produce activations with a stable distribution.
Note that, since we normalizeWu+b, the bias b can be

ignored since its effect will be canceled by the subsequent
mean subtraction (the role of the bias is subsumed by β in
Alg. 1). Thus, z = g(Wu + b) is replaced with

z = g(BN(Wu))

where the BN transform is applied independently to each
dimension of x = Wu, with a separate pair of learned
parameters γ(k), β(k) per dimension.
For convolutional layers, we additionally want the nor-

malization to obey the convolutional property – so that
different elements of the same feature map, at different
locations, are normalized in the same way. To achieve
this, we jointly normalize all the activations in a mini-
batch, over all locations. In Alg. 1, we let B be the set of
all values in a feature map across both the elements of a
mini-batch and spatial locations – so for a mini-batch of
size m and feature maps of size p × q, we use the effec-
tive mini-batch of size m′ = |B| = m · p q. We learn a
pair of parameters γ(k) and β(k) per feature map, rather
than per activation. Alg. 2 is modified similarly, so that
during inference the BN transform applies the same linear
transformation to each activation in a given feature map.

3.3 Batch Normalization enables higher
learning rates

In traditional deep networks, too-high learning rate may
result in the gradients that explode or vanish, as well as
getting stuck in poor local minima. Batch Normaliza-
tion helps address these issues. By normalizing activa-
tions throughout the network, it prevents small changes
to the parameters from amplifying into larger and subop-
timal changes in activations in gradients; for instance, it
prevents the training from getting stuck in the saturated
regimes of nonlinearities.
Batch Normalization also makes training more resilient

to the parameter scale. Normally, large learning rates may
increase the scale of layer parameters, which then amplify

the gradient during backpropagation and lead to the model
explosion. However, with Batch Normalization, back-
propagation through a layer is unaffected by the scale of
its parameters. Indeed, for a scalar a,

BN(Wu) = BN((aW)u)

and we can show that

∂BN((aW)u)
∂u = ∂BN(Wu)

∂u

∂BN((aW)u)
∂(aW) = 1

a · ∂BN(Wu)
∂W

The scale does not affect the layer Jacobian nor, con-
sequently, the gradient propagation. Moreover, larger
weights lead to smaller gradients, and Batch Normaliza-
tion will stabilize the parameter growth.
We further conjecture that Batch Normalization may

lead the layer Jacobians to have singular values close to 1,
which is known to be beneficial for training (Saxe et al.,
2013). Consider two consecutive layers with normalized
inputs, and the transformation between these normalized
vectors: ẑ = F (x̂). If we assume that x̂ and ẑ are Gaussian
and uncorrelated, and that F (x̂) ≈ J x̂ is a linear transfor-
mation for the given model parameters, then both x̂ and ẑ
have unit covariances, and I = Cov[̂z] = JCov[x̂]JT =
JJT . Thus, JJT = I , and so all singular values of J
are equal to 1, which preserves the gradient magnitudes
during backpropagation. In reality, the transformation is
not linear, and the normalized values are not guaranteed to
be Gaussian nor independent, but we nevertheless expect
Batch Normalization to help make gradient propagation
better behaved. The precise effect of Batch Normaliza-
tion on gradient propagation remains an area of further
study.

3.4 Batch Normalization regularizes the
model

When training with Batch Normalization, a training ex-
ample is seen in conjunction with other examples in the
mini-batch, and the training network no longer produc-
ing deterministic values for a given training example. In
our experiments, we found this effect to be advantageous
to the generalization of the network. Whereas Dropout
(Srivastava et al., 2014) is typically used to reduce over-
fitting, in a batch-normalized network we found that it can
be either removed or reduced in strength.

4 Experiments
4.1 Activations over time
To verify the effects of internal covariate shift on train-
ing, and the ability of Batch Normalization to combat it,
we considered the problem of predicting the digit class on
the MNIST dataset (LeCun et al., 1998a). We used a very
simple network, with a 28x28 binary image as input, and

5

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization
• Multi-layer training can suffer from “covariate

shift”
• Accelerates training
• Regularizes the model
• Less sensitive to initialization
• See also: How Does Batch Normalization

Help Optimization?

S. Iofffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, arXiv 2015

https://arxiv.org/pdf/1805.11604.pdf
https://arxiv.org/pdf/1502.03167.pdf

ResNet: ILSVRC 2015 winner

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385

ResNet: ILSVRC 2015 winner

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385

Source (?)

http://www.inference.vc/deep-learning-is-easy/

Simply	stacking	layers?

0 1 2 3 4 5 6
0

5

10

20

iter. (1e4)

er
ro

r
(%

)

plain-20
plain-32
plain-44
plain-56

CIFAR-10

20-layer
32-layer
44-layer
56-layer

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

plain-18
plain-34

ImageNet-1000

34-layer

18-layer

• “Overly	deep”	plain	nets	have	higher	training	error
• A	general	phenomenon,	observed	in	many	datasets

solid:	test/val
dashed:	train

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

Slide from Kaiming He.

7x7	conv,	64,	/2

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	128,	/2

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	256,	/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	512,	/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

fc	1000

a	shallower
model

(18	layers)

a	deeper
counterpart
(34	layers)

7x7	conv,	64,	/2

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	128,	/2

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	256,	/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	512,	/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

fc	1000

“extra”	
layers

• Richer	solution	space

• A	deeper	model	should	not	have	higher	
training	error

• A	solution	by	construction:
• original	layers:	copied	from	a	

learned	shallower	model
• extra	layers:	set	as	identity
• at	least	the	same	training	error

• Optimization	difficulties:	solvers	cannot	
find	the	solution	when	going	deeper…

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

Slide from Kaiming He.

Deep	Residual	Learning

• Plaint	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

any	two
stacked	layers

0

a(0)

weight	layer

weight	layer

relu

relu

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)

Slide from Kaiming He.

Deep	Residual	Learning

• Residual net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)
hope the	2	weight	layers	fit	b(0)

let	a 0 = b 0 + 0
weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)

Slide from Kaiming He.

Deep	Residual	Learning

• b 0 is	a	residual mapping	w.r.t.	identity

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

• If	identity	were	optimal,
easy	to	set	weights	as	0

• If	optimal	mapping	is	closer	to	identity,
easier	to	find	small	fluctuations

weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)

Slide from Kaiming He.

CIFAR-10	experiments

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r
(%

)

plain-20
plain-32
plain-44
plain-56

20-layer
32-layer
44-layer
56-layer

CIFAR-10	plain	nets

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

ResNet-20
ResNet-32
ResNet-44
ResNet-56
ResNet-110

CIFAR-10	ResNets

56-layer
44-layer
32-layer
20-layer

110-layer

• Deep	ResNets	can	be	trained	without	difficulties
• Deeper	ResNets	have	lower	training	error,	and	also	lower	test	error

solid:	test
dashed:	train

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

Slide from Kaiming He.

ResNet

• Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K
operations

• Using 1x1 convolutions to reduce
256 to 64 feature maps, followed
by 3x3 convolutions, followed by
1x1 convolutions to expand back
to 256 maps:
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K

Deeper residual module
(bottleneck)

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385

ResNet
Architectures for ImageNet:

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385

ImageNet	experiments

3.57

6.7 7.3

11.7

16.4

25.8
28.2

ILSVRC'15	
ResNet

ILSVRC'14	
GoogleNet

ILSVRC'14
VGG

ILSVRC'13 ILSVRC'12	
AlexNet

ILSVRC'11 ILSVRC'10

ImageNet	Classification	top-5	error	(%)

shallow8	layers

19	layers22	layers

152	layers

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

8	layers

Slide from Kaiming He.

Summary: ILSVRC 2012-2015
Team Year Place Error (top-5) External data

SuperVision – Toronto
(AlexNet, 7 layers)

2012 - 16.4% no

SuperVision 2012 1st 15.3% ImageNet 22k

Clarifai – NYU (7 layers) 2013 - 11.7% no

Clarifai 2013 1st 11.2% ImageNet 22k

VGG – Oxford (16 layers) 2014 2nd 7.32% no

GoogLeNet (19 layers) 2014 1st 6.67% no

ResNet (152 layers) 2015 1st 3.57%

Human expert* 5.1%

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Other Things
• Training data augmentation
• Averaging classifier outputs over multiple

crops/flips
• Ensembles of networks

• Officially, starting with 2015, image classification
is not part of ILSVRC challenge, but people
continue to benchmark on the data

Attention (Vision Transformers)

A. Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale.

https://arxiv.org/pdf/2010.11929.pdf

Attention

Source: http://peterbloem.nl/blog/transformers
See also: Attention is all you need

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762

Attention (with key, query and value)

Source: http://peterbloem.nl/blog/transformers
See also: Attention is all you need

http://peterbloem.nl/blog/transformers
https://arxiv.org/abs/1706.03762

Representing Positions

See also: Attention is all you need

• Positional Embeddings
• Learn embeddings for different positions

• Positional Encodings
• Explicitly encode positions using sin, cos terms

https://arxiv.org/abs/1706.03762

Attention (Vision Transformers)

A. Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale.

https://arxiv.org/pdf/2010.11929.pdf

Learned Representations are Useful in General

1. Features extracted from CNNs trained on
ImageNet were effective for many CV tasks.

2. Furthermore, learned network weights serve
as an excellent starting point for other tasks.

J. Donahue, Y. Jia et al. DeCAF: A Deep Convolutional Activation Feature for Generi
c Visual Recognition. ICML 2014

https://arxiv.org/abs/1310.1531

How to use a trained network for a new task?DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

DeCAF5 DeCAF6 DeCAF7

LogReg 63.29± 6.6 84.30± 1.6 84.87± 0.6
LogReg with Dropout - 86.08± 0.8 85.68± 0.6
SVM 77.12± 1.1 84.77± 1.2 83.24± 1.2
SVM with Dropout - 86.91± 0.7 85.51± 0.9

Yang et al. (2009) 84.3
Jarrett et al. (2009) 65.5

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Num Train per Category

M
e

a
n

 A
cc

u
ra

cy
 p

e
r

C
a

te
g

o
ry

LogReg DeCAF6 w/ Dropout
SVM DeCAF6 w/ Dropout
Yang et al. (2009)

Figure 4. Left: average accuracy per class on Caltech-101 with 30 training samples per class across three hidden layers of the network
and two classifiers. Our result from the training protocol/classifier combination with the best validation accuracy – SVM with Layer 6
(+ dropout) features – is shown in bold. Right: average accuracy per class on Caltech-101 at varying training set sizes.

DeCAF5 the layer before DeCAF6. DeCAF5 is the first
set of activations that has been fully propagated through
the convolutional layers of the network. We chose not to
evaluate features from any earlier in the network, as the
earlier convolutional layers are unlikely to contain a richer
semantic representation than the later features which form
higher-level hypotheses from the low to mid-level local in-
formation in the activations of the convolutional layers. Be-
cause we are investigating the use of the network’s hidden
layer activations as features, all of its weights are frozen
to those learned on the Berg et al. (2012) dataset.7 All im-
ages are preprocessed using the procedure described for the
ILSVRC images in Section 3, taking features on the center
224⇥ 224 crop of the 256⇥ 256 resized image.

We present results on multiple datasets to evaluate the
strength of DeCAF for basic object recognition, domain
adaptation, fine-grained recognition, and scene recogni-
tion. These tasks each differ somewhat from that for which
the architecture was trained, together representing much of
the contemporary visual recognition spectrum.

4.1. Object recognition

To analyze the ability of the deep features to transfer to
basic-level object category recognition, we evaluate them
on the Caltech-101 dataset (Fei-Fei et al., 2004). In addi-
tion to directly evaluating linear classifier performance on
DeCAF6 and DeCAF7, we also report results using a reg-
ularization technique called “dropout” proposed by Hinton
et al. (2012). At training time, this technique works by ran-
domly setting half of the activations (here, our features) in a
given layer to 0. At test time, all activations are multiplied
by 0.5. Dropout was used successfully by Krizhevsky et al.
(2012) in layers 6 and 7 of their network; hence we study
the effect of the technique when applied to the features de-
rived from these layers.

7We also experimented with the equivalent feature using ran-
domized weights and found it to have performance comparable to
traditional hand-designed features.

In each evaluation, the classifier, a logistic regression (Lo-
gReg) or support vector machine (SVM), is trained on a
random set of 30 samples per class (including the back-
ground class), and tested on the rest of the data, with pa-
rameters cross-validated for each split on a 25 train/5 vali-
dation subsplit of the training data. The results in Figure 4,
left, are reported in terms of mean accuracy per category
averaged over five data splits.

Our top-performing method (based on validation accuracy)
trains a linear SVM on DeCAF6 with dropout, with test set
accuracy of 86.9%. The DeCAF5 features perform substan-
tially worse than either the DeCAF6 or DeCAF7 features,
and hence we do not evaluate them further in this paper.
The DeCAF7 features generally have accuracy about 1-2%
lower than the DeCAF6 features on this task. The dropout
regularization technique uniformly improved results by 0-
2% for each classifier/feature combination. When trained
on DeCAF, the SVM and logistic regression classifiers per-
form roughly equally well on this task.

We compare our performance against the current state-of-
the-art on this benchmark from Yang et al. (2009), a method
employing a combination of 5 traditional hand-engineered
image features followed by a multi-kernel based classifier.
Our top-performing method training a linear SVM on a sin-
gle feature outperforms this method by 2.6%. Our method
also outperforms by over 20% the two-layer convolutional
network of Jarrett et al. (2009), demonstrating the impor-
tance of the depth of the network used for our feature.
Note that unlike our method, these approaches from the
literature do not implicitly leverage an outside large-scale
image database like ImageNet. The performance edge of
our method over these approaches demonstrates the impor-
tance of multi-task learning when performing object recog-
nition with sparse data like that available in the Caltech-101
benchmark.

We also show how performance of the two DeCAF6 with
dropout methods above vary with the number of train-
ing cases per category, plotted in Figure 4, right, trained

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

Amazon! Webcam Dslr! Webcam

SURF DeCAF6 DeCAF7 SURF DeCAF6 DeCAF7

Logistic Reg. (S) 9.63± 1.4 48.58± 1.3 53.56± 1.5 24.22± 1.8 88.77± 1.2 87.38± 2.2
SVM (S) 11.05± 2.3 52.22± 1.7 53.90± 2.2 38.80± 0.7 91.48± 1.5 89.15± 1.7

Logistic Reg. (T) 24.33± 2.1 72.56± 2.1 74.19± 2.8 24.33± 2.1 72.56± 2.1 74.19± 2.8
SVM (T) 51.05± 2.0 78.26± 2.6 78.72± 2.3 51.05± 2.0 78.26± 2.6 78.72± 2.3

Logistic Reg. (ST) 19.89± 1.7 75.30± 2.0 76.32± 2.0 36.55± 2.2 92.88± 0.6 91.91± 2.0
SVM (ST) 23.19± 3.5 80.66± 2.3 79.12± 2.1 46.32± 1.1 94.79± 1.2 92.96± 2.0

Daume III (2007) 40.26± 1.1 82.14± 1.9 81.65± 2.4 55.07± 3.0 91.25± 1.1 89.52± 2.2
Hoffman et al. (2013) 37.66± 2.2 80.06± 2.7 80.37± 2.0 53.65± 3.3 93.25± 1.5 91.45± 1.5
Gong et al. (2012) 39.80± 2.3 75.21± 1.2 77.55± 1.9 39.12± 1.3 88.40± 1.0 88.66± 1.9

Chopra et al. (2013) 58.85 78.21

Table 1. DeCAF dramatically outperforms the baseline SURF feature available with the Office dataset as well as the deep adaptive
method of Chopra et al. (2013). We report average multi class accuracy using both non-adaptive and adaptive classifiers, changing only
the input feature from SURF to DeCAF. Most surprisingly, in the case of Dslr!Webcam the domain shift is largely non-existent with
DeCAF.

pipeline to get the features for classification. We computed
DeCAF6 and trained a multi-class logistic regression on top
of the features.

Our second approach, we tested DeCAF in a pose-
normalized setting using the deformable part descriptors
(DPD) method (Zhang et al., 2013). Inspired by the de-
formable parts model (Felzenszwalb et al., 2010), DPD ex-
plicitly utilizes the part localization to do semantic pool-
ing. Specifically, after training a weakly-supervised DPM
on bird images, the pool weight for each part of each com-
ponent is calculated by using the key-point annotations to
get cross-component semantic part correspondence. The fi-
nal pose-normalized representation is computed by pooling
the image features of predicted part boxes using the pool-
ing weights. Based on the DPD implementation provided
by the authors, we applied DeCAF in the same pre-trained
DPM model and part predictions and used the same pool-
ing weights. Figure 6 shows the DPM detections and visu-
alization of pooled DPD features on a sample test image.
As our first approach, we resized each predicted part box
to 256 ⇥ 256 and computed DeCAF6 to replace the KDES
image features (Bo et al., 2010) used in DPD paper.

Our performance as well as those from the literature are
listed in Table 2. DeCAF together with a simple logistic re-
gression already obtains a significant performance increase
over existing approaches, indicating that such features, al-
though not specifically designed to model subcategory-
level differences, captures such information well. In addi-
tion, explicitly taking more structured information such as
part locations still helps, and provides another significant
performance increase, obtaining an accuracy of 64.96%,

(a) DPM detections (b) Parts (c) DPD

Figure 6. Pipeline of deformable part descriptor (DPD) on a sam-
ple test images. It uses DPM for part localization and then use
learned pooling weights for final pose-normalized representation.

Method Accuracy

DeCAF6 58.75
DPD + DeCAF6 64.96

DPD (Zhang et al., 2013) 50.98
POOF (Berg & Belhumeur, 2013) 56.78

Table 2. Accuracy on the Caltech-UCSD bird dataset.

compared to the 50.98% accuracy reported in (Zhang et al.,
2013). It also outperforms POOF (Berg & Belhumeur,
2013), which is the best part-based approach for fine-
grained categorization published so far.

To the best of our knowledge, this is the best accuracy re-
ported so far in the literature.

We note again that in all the experiments above, no fine-
tuning is carried out on the CNN layers since our main

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

Amazon! Webcam Dslr! Webcam

SURF DeCAF6 DeCAF7 SURF DeCAF6 DeCAF7

Logistic Reg. (S) 9.63± 1.4 48.58± 1.3 53.56± 1.5 24.22± 1.8 88.77± 1.2 87.38± 2.2
SVM (S) 11.05± 2.3 52.22± 1.7 53.90± 2.2 38.80± 0.7 91.48± 1.5 89.15± 1.7

Logistic Reg. (T) 24.33± 2.1 72.56± 2.1 74.19± 2.8 24.33± 2.1 72.56± 2.1 74.19± 2.8
SVM (T) 51.05± 2.0 78.26± 2.6 78.72± 2.3 51.05± 2.0 78.26± 2.6 78.72± 2.3

Logistic Reg. (ST) 19.89± 1.7 75.30± 2.0 76.32± 2.0 36.55± 2.2 92.88± 0.6 91.91± 2.0
SVM (ST) 23.19± 3.5 80.66± 2.3 79.12± 2.1 46.32± 1.1 94.79± 1.2 92.96± 2.0

Daume III (2007) 40.26± 1.1 82.14± 1.9 81.65± 2.4 55.07± 3.0 91.25± 1.1 89.52± 2.2
Hoffman et al. (2013) 37.66± 2.2 80.06± 2.7 80.37± 2.0 53.65± 3.3 93.25± 1.5 91.45± 1.5
Gong et al. (2012) 39.80± 2.3 75.21± 1.2 77.55± 1.9 39.12± 1.3 88.40± 1.0 88.66± 1.9

Chopra et al. (2013) 58.85 78.21

Table 1. DeCAF dramatically outperforms the baseline SURF feature available with the Office dataset as well as the deep adaptive
method of Chopra et al. (2013). We report average multi class accuracy using both non-adaptive and adaptive classifiers, changing only
the input feature from SURF to DeCAF. Most surprisingly, in the case of Dslr!Webcam the domain shift is largely non-existent with
DeCAF.

pipeline to get the features for classification. We computed
DeCAF6 and trained a multi-class logistic regression on top
of the features.

Our second approach, we tested DeCAF in a pose-
normalized setting using the deformable part descriptors
(DPD) method (Zhang et al., 2013). Inspired by the de-
formable parts model (Felzenszwalb et al., 2010), DPD ex-
plicitly utilizes the part localization to do semantic pool-
ing. Specifically, after training a weakly-supervised DPM
on bird images, the pool weight for each part of each com-
ponent is calculated by using the key-point annotations to
get cross-component semantic part correspondence. The fi-
nal pose-normalized representation is computed by pooling
the image features of predicted part boxes using the pool-
ing weights. Based on the DPD implementation provided
by the authors, we applied DeCAF in the same pre-trained
DPM model and part predictions and used the same pool-
ing weights. Figure 6 shows the DPM detections and visu-
alization of pooled DPD features on a sample test image.
As our first approach, we resized each predicted part box
to 256 ⇥ 256 and computed DeCAF6 to replace the KDES
image features (Bo et al., 2010) used in DPD paper.

Our performance as well as those from the literature are
listed in Table 2. DeCAF together with a simple logistic re-
gression already obtains a significant performance increase
over existing approaches, indicating that such features, al-
though not specifically designed to model subcategory-
level differences, captures such information well. In addi-
tion, explicitly taking more structured information such as
part locations still helps, and provides another significant
performance increase, obtaining an accuracy of 64.96%,

(a) DPM detections (b) Parts (c) DPD

Figure 6. Pipeline of deformable part descriptor (DPD) on a sam-
ple test images. It uses DPM for part localization and then use
learned pooling weights for final pose-normalized representation.

Method Accuracy

DeCAF6 58.75
DPD + DeCAF6 64.96

DPD (Zhang et al., 2013) 50.98
POOF (Berg & Belhumeur, 2013) 56.78

Table 2. Accuracy on the Caltech-UCSD bird dataset.

compared to the 50.98% accuracy reported in (Zhang et al.,
2013). It also outperforms POOF (Berg & Belhumeur,
2013), which is the best part-based approach for fine-
grained categorization published so far.

To the best of our knowledge, this is the best accuracy re-
ported so far in the literature.

We note again that in all the experiments above, no fine-
tuning is carried out on the CNN layers since our main

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

interest is to analyze how DeCAF generalizes to different
tasks. To obtain the best possible result one may want to
perform a full back-propagation. However, the fact that we
see a significant performance increase without fine-tuning
suggests that DeCAF may serve as a good off-the-shelf vi-
sual representation without heavy computation.

4.4. Scene recognition

Finally, we evaluate DeCAF on the SUN-397 large-scale
scene recognition database (Xiao et al., 2010). Unlike ob-
ject recognition, wherein the goal is to identify and classify
an object which is usually the primary focus of the image,
the goal of a scene recognition task is to classify the scene

of the entire image. In the SUN-397 database, there are 397
semantic scene categories including abbey, diner, mosque,
and stadium. Because DeCAF is learned on ILSVRC, an
object recognition database, we are applying it to a task for
which it was not designed. Hence we might expect this
task to be very challenging for these features, unless they
are highly generic representations of the visual world.

Based on the success of using dropout with DeCAF6 and
DeCAF7 for the object recognition task detailed in Sec-
tion 4.1, we train and evaluate linear classifiers on these
dropped-out features on the SUN-397 database. Table 3
gives the classification accuracy results averaged across 5
splits of 50 training images and 50 test images. Parameters
are fixed for all methods, but we select the top-performing
method by cross-validation, training on 42 images and test-
ing on the remaining 8 in each split.

Our top-performing method in terms of cross-validation ac-
curacy was to use DeCAF7 with the SVM classifier, result-
ing in 40.94% test performance. Comparing against the
method of Xiao et al. (2010), the current state-of-the-art
method, we see a performance improvement of 2.9% us-
ing only DeCAF. Note that, like the state-of-the-art method
used as a baseline in Section 4.1, this method uses a large
set of traditional vision features and combines them with a
multi-kernel learning method. The fact that a simple linear
classifier on top of our single image feature outperforms
the multi-kernel learning baseline built on top of many tra-
ditional features demonstrates the ability of DeCAF to gen-
eralize to other tasks and its representational power as com-
pared to traditional hand-engineered features.

5. Discussion
In this work, we analyze the use of deep features applied in
a semi-supervised multi-task framework. In particular, we
demonstrate that by leveraging an auxiliary large labeled
object database to train a deep convolutional architecture,
we can learn features that have sufficient representational
power and generalization ability to perform semantic visual

DeCAF6 DeCAF7

LogReg 40.94± 0.3 40.84± 0.3
SVM 39.36± 0.3 40.66± 0.3

Xiao et al. (2010) 38.0

Table 3. Average accuracy per class on SUN-397 with 50 training
samples and 50 test samples per class, across two hidden layers
of the network and two classifiers. Our result from the training
protocol/classifier combination with the best validation accuracy
– Logistic Regression with DeCAF7 – is shown in bold.

discrimination tasks using simple linear classifiers, reliably
outperforming current state-of-the-art approaches based on
sophisticated multi-kernel learning techniques with tradi-
tional hand-engineered features. Our visual results demon-
strate the generality and semantic knowledge implicit in
these features, showing that the features tend to cluster im-
ages into interesting semantic categories on which the net-
work was never explicitly trained. Our numerical results
consistently and robustly demonstrate that our multi-task
feature learning framework can substantially improve the
performance of a wide variety of existing methods across
a spectrum of visual recognition tasks, including domain
adaptation, fine-grained part-based recognition, and large-
scale scene recognition. The ability of a visual recogni-
tion system to achieve high classification accuracy on tasks
with sparse labeled data has proven to be an elusive goal in
computer vision research, but our multi-task deep learning
framework and fast open-source implementation are signif-
icant steps in this direction. While our current experiments
focus on contemporary recognition challenges, we expect
our feature to be very useful in detection, retrieval, and cat-
egory discovery settings as well.

6. Acknowledgements
The authors would like to thank Alex Krizhevsky for his
valuable help in reproducing the ILSVRC-2012 results, as
well as for providing an open source implementation of
GPU-based CNN training. The authors also thank NSF,
DoD, Toyota, and the Berkeley Vision and Learning Cen-
ter sponsors for their support to our research group.

References
Ando, R. and Zhang, T. A framework for learning predictive

structures from multiple tasks and unlabeled data. JMLR, 6,
2005.

Argyriou, Andreas, Evgeniou, Theodoros, and Pontil, Massimil-
iano. Multi-task feature learning. In NIPS, 2006.

Bay, H., Tuytelaars, T., and Gool, L. Van. SURF: Speeded up
robust features. In ECCV, 2006.

Berg, A., Deng, J., and Fei-Fei, L. ImageNet large scale vi-

Caltech 101

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

DeCAF5 DeCAF6 DeCAF7

LogReg 63.29± 6.6 84.30± 1.6 84.87± 0.6
LogReg with Dropout - 86.08± 0.8 85.68± 0.6
SVM 77.12± 1.1 84.77± 1.2 83.24± 1.2
SVM with Dropout - 86.91± 0.7 85.51± 0.9

Yang et al. (2009) 84.3
Jarrett et al. (2009) 65.5

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Num Train per Category

M
e

a
n

 A
cc

u
ra

cy
 p

e
r

C
a

te
g

o
ry

LogReg DeCAF6 w/ Dropout
SVM DeCAF6 w/ Dropout
Yang et al. (2009)

Figure 4. Left: average accuracy per class on Caltech-101 with 30 training samples per class across three hidden layers of the network
and two classifiers. Our result from the training protocol/classifier combination with the best validation accuracy – SVM with Layer 6
(+ dropout) features – is shown in bold. Right: average accuracy per class on Caltech-101 at varying training set sizes.

DeCAF5 the layer before DeCAF6. DeCAF5 is the first
set of activations that has been fully propagated through
the convolutional layers of the network. We chose not to
evaluate features from any earlier in the network, as the
earlier convolutional layers are unlikely to contain a richer
semantic representation than the later features which form
higher-level hypotheses from the low to mid-level local in-
formation in the activations of the convolutional layers. Be-
cause we are investigating the use of the network’s hidden
layer activations as features, all of its weights are frozen
to those learned on the Berg et al. (2012) dataset.7 All im-
ages are preprocessed using the procedure described for the
ILSVRC images in Section 3, taking features on the center
224⇥ 224 crop of the 256⇥ 256 resized image.

We present results on multiple datasets to evaluate the
strength of DeCAF for basic object recognition, domain
adaptation, fine-grained recognition, and scene recogni-
tion. These tasks each differ somewhat from that for which
the architecture was trained, together representing much of
the contemporary visual recognition spectrum.

4.1. Object recognition

To analyze the ability of the deep features to transfer to
basic-level object category recognition, we evaluate them
on the Caltech-101 dataset (Fei-Fei et al., 2004). In addi-
tion to directly evaluating linear classifier performance on
DeCAF6 and DeCAF7, we also report results using a reg-
ularization technique called “dropout” proposed by Hinton
et al. (2012). At training time, this technique works by ran-
domly setting half of the activations (here, our features) in a
given layer to 0. At test time, all activations are multiplied
by 0.5. Dropout was used successfully by Krizhevsky et al.
(2012) in layers 6 and 7 of their network; hence we study
the effect of the technique when applied to the features de-
rived from these layers.

7We also experimented with the equivalent feature using ran-
domized weights and found it to have performance comparable to
traditional hand-designed features.

In each evaluation, the classifier, a logistic regression (Lo-
gReg) or support vector machine (SVM), is trained on a
random set of 30 samples per class (including the back-
ground class), and tested on the rest of the data, with pa-
rameters cross-validated for each split on a 25 train/5 vali-
dation subsplit of the training data. The results in Figure 4,
left, are reported in terms of mean accuracy per category
averaged over five data splits.

Our top-performing method (based on validation accuracy)
trains a linear SVM on DeCAF6 with dropout, with test set
accuracy of 86.9%. The DeCAF5 features perform substan-
tially worse than either the DeCAF6 or DeCAF7 features,
and hence we do not evaluate them further in this paper.
The DeCAF7 features generally have accuracy about 1-2%
lower than the DeCAF6 features on this task. The dropout
regularization technique uniformly improved results by 0-
2% for each classifier/feature combination. When trained
on DeCAF, the SVM and logistic regression classifiers per-
form roughly equally well on this task.

We compare our performance against the current state-of-
the-art on this benchmark from Yang et al. (2009), a method
employing a combination of 5 traditional hand-engineered
image features followed by a multi-kernel based classifier.
Our top-performing method training a linear SVM on a sin-
gle feature outperforms this method by 2.6%. Our method
also outperforms by over 20% the two-layer convolutional
network of Jarrett et al. (2009), demonstrating the impor-
tance of the depth of the network used for our feature.
Note that unlike our method, these approaches from the
literature do not implicitly leverage an outside large-scale
image database like ImageNet. The performance edge of
our method over these approaches demonstrates the impor-
tance of multi-task learning when performing object recog-
nition with sparse data like that available in the Caltech-101
benchmark.

We also show how performance of the two DeCAF6 with
dropout methods above vary with the number of train-
ing cases per category, plotted in Figure 4, right, trained

Caltech 101

Domain Adaptation

Fine-grained Classification

Scene Classification

J. Donahue, Y. Jia et al. DeCAF: A Deep Convolutional Activation Feature for Generi
c Visual Recognition. ICML 2014

https://arxiv.org/abs/1310.1531

Kitch
en

Bed
roo

m

Pati
o

How to use a trained network for a new task?

Classifier
layer

Trained on ImageNet

Copy over

How to use a trained network for a new task?

• Take the vector of activations from one
of the fully connected (FC) layers and
treat it as an off-the-shelf feature
• Train a new classifier layer on top of the FC

layer
• Fine-tune the whole network

FC
vector

Classifier
layer

