Convolutional neural networks

Slides from L. Lazebnik, Rob Fergus, Andrej Karpathy

Outline

- Building blocks for CNNs
- Motivation and history
- Alexnet
- Since Alexnet

Compare: Digit Classification using SVMs

Components of a CNN architecture

- Convolutional Layers
- Non-linearities
- Pooling
- Fully-connected Layers
- Normalization Layers

Neural networks for images

image

Neural networks for images

image

Convolution as feature extraction

bank of K filters

K feature maps

image

feature map

Convolutional layer

Convolutional layer

image

convolutional layer

Convolutional layer

- Input
- Convolutional Hyper-Parameters
 - Kernel Size
 - Number of Filters
 - Padding
 - Stride
- Parameters
 - Weights
 - Biases
- Output Size

Components of a CNN architecture

- Convolutional Layers
- Non-linearities
- Pooling
- Fully-connected Layers
- Normalization Layers

Non-Linearities

Source: R. Fergus, Y. LeCun

Source: Stanford 231n

Pooling Layers

Max (or Avg)

Source: R. Fergus, Y. LeCun

Pooling Layers

F x F pooling filter, stride S Usually: F=2 or 3, S=2

Components of a CNN architecture

- Convolutional Layers
- Non-linearities
- Pooling
- Fully-connected Layers
- Normalization Layers (in just a bit)

Putting it together

History: Neocognitron

K. Fukushima, 1980s

https://en.wikipedia.org/wiki/Neocognitron

History: LeNet-5

- Average pooling
- Sigmoid or tanh nonlinearity
- Fully connected layers at the end
- Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document</u> recognition, Proc. IEEE 86(11): 2278–2324, 1998.

ImageNet Challenge

IM¹GENET

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon MTurk
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

AlexNet: ILSVRC 2012 winner

- Similar framework to LeNet but:
 - Max pooling, ReLU nonlinearity
 - More data and bigger model (7 hidden layers, 650K units, 60M params)
 - GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week
 - Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep</u> <u>Convolutional Neural Networks</u>, NIPS 2012

ImageNet Challenge 2012-2014

Team	Year	Place	Error (top-5)	External data
XRCE	2011		25.8%	no
SuperVision – Toronto (7 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k

AlexNet

	Inpu	t size		Lay	er		Output size	
Layer	С	н / W	filters	kernel	stride	pad	С	H / W
conv1	3	227	64	11	4	2	64	56
pool1	64	56		3	2	0	64	27
conv2	64	27	192	5	1	2	192	27
pool2	192	27		3	2	0	192	13
conv3	192	13	384	3	1	1	384	13
conv4	384	13	256	3	1	1	256	13
conv5	256	13	256	3	1	1	256	13
pool5	256	13		3	2	0	256	6
flatten	256	6					9216	
fc6	9216		4096				4096	
fc7	4096		4096				4096	
fc8	4096		1000				1000	

Source: Justin Johnson, David Fouhey.

Receptive Field

Deep Nets with striding have large receptive fields

Receptive Field

	Inpu	t size		Laye	er		Output size		Receptive Field	Effective Stride	Effective Padding
Layer	С	н / w	filters	kernel	stride	pad	С	н / w			
conv1	3	227	64	11	4	2	64	56	11	4	2
pool1	64	56		3	2	0	64	27	19	8	2
conv2	64	27	192	5	1	2	192	27	51	8	18
pool2	192	27		3	2	0	192	13	67	16	34
conv3	192	13	384	3	1	1	384	13	99	16	50
conv4	384	13	256	3	1	1	256	13	131	16	66
conv5	256	13	256	3	1	1	256	13	163	16	66
pool5	256	13		3	2	0	256	6	195	32	66
flatten	256	6					9216		259	32	66
fc6	9216		4096				4096		259	32	66
fc7	4096		4096				4096		259	32	66
fc8	4096		1000				1000		259	32	66

Other Stats

	Inpu	t size		Laye	ər		Output size				
Layer	С	н / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	2	64	56	784	23	73
pool1	64	56		3	2	0	64	27	182	0	0
conv2	64	27	192	5	1	2	192	27	547	307	224
pool2	192	27		3	2	0	192	13	127	0	0
conv3	192	13	384	3	1	1	384	13	254	664	112
conv4	384	13	256	3	1	1	256	13	169	885	145
conv5	256	13	256	3	1	1	256	13	169	590	100
pool5	256	13		3	2	0	256	6	36	0	0
flatten	256	6					9216		36	0	0
fc6	9216		4096				4096		16	37,749	38
fc7	4096		4096				4096		16	16,777	17
fc8	4096		1000				1000		4	4,096	4

Source: Justin Johnson, David Fouhey.

AlexNet

Most of the **memory usage** is in the early convolution layers

Memory (KB)

Nearly all **parameters** are in the fully-connected layers

Most **floating-point ops** occur in the convolution layers

MFLOP

Params (K)

Source: Justin Johnson, David Fouhey.

Layer 1 Filters

M. Zeiler and R. Fergus, <u>Visualizing and Understanding Convolutional Networks</u>, ECCV 2014 (Best Paper Award winner)

Layer 1: Top-9 Patches

ReLU vs tanh

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep</u> <u>Convolutional Neural Networks</u>, NIPS 2012

Dropout

from Overfitting, JMLR 2014

Outline

- Building blocks for CNNs
- Motivation and history
- Alexnet
- Since Alexnet

Components of a CNN architecture

- Convolutional Layers
- Non-linearities
- Pooling
- Fully-connected Layers
- Normalization Layers

Since Alexnet

- More efficient use of parameters
 - No FC layers
 - Smaller kernels
- Normalization layers
 - LRN layers don't improve performance as much
 - Batch Normalization
- Deeper networks
 - 7 layers -> 19 layers -> 150 layers
 - Residual connections
 - Batch normalization
- Self-attention

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

VGGNet: ILSVRC 2014 2nd place

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

VGGNet: ILSVRC 2014 2nd place

		ConvNet C	onfiguration		
Α	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×22	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max	pool	-	
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
	9	max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
		FC-	4096		
		FC-	4096		
		FC-	1000		
		soft	-max		

Table 2: Number of parame	eters (in millions).
---------------------------	----------------------

Network	A,A-LRN	В	C	D	E			
Number of parameters	133	133	134	138	144			

- Sequence of deeper networks trained progressively
- Large receptive fields replaced by successive layers of 3x3 convolutions (with ReLU in between)

- One 7x7 conv layer with K feature maps needs 49K² weights, three 3x3 conv layers need only 27K² weights
- Experimented with 1x1 convolutions

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

- Multi-layer training can suffer from "covariate shift"
- Distribution of hidden layer 2 input's changes over time.

S. lofffe and C. Szegedy, <u>Batch Normalization: Accelerating Deep Network Training by</u> <u>Reducing Internal Covariate Shift</u>, arXiv 2015

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

At test time:

Use μ and σ obtained from training set (typically done via running average).

$$z = g(Wu + b) \longrightarrow z = g(BN(Wu))$$

Single biggest source of bugs in my code!!

S. lofffe and C. Szegedy, <u>Batch Normalization: Accelerating Deep Network Training by</u> <u>Reducing Internal Covariate Shift</u>, arXiv 2015

Multi-layer training can suffer from "covariate shift"

S. lofffe and C. Szegedy, <u>Batch Normalization: Accelerating Deep Network Training by</u> <u>Reducing Internal Covariate Shift</u>, arXiv 2015

$$z = g(Wu + b) \longrightarrow z = g(BN(Wu))$$

- Multi-layer training can suffer from "covariate shift"
- Accelerates training
- Regularizes the model
- Less sensitive to initialization
- See also: <u>How Does Batch Normalization</u> <u>Help Optimization?</u>

S. lofffe and C. Szegedy, <u>Batch Normalization: Accelerating Deep Network Training by</u> <u>Reducing Internal Covariate Shift</u>, arXiv 2015

ResNet: ILSVRC 2015 winner

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016 (Best Paper)

ResNet: ILSVRC 2015 winner

AlexNet, 8 layers (ILSVRC 2012)	VGG, 19 layers (ILSVRC 2014)	ResNet, 152 layers (ILSVRC 2015)	

K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016 (Best Paper)

Source (?)

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

a deeper counterpart (34 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Deep Residual Learning

• Plaint net

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Deep Residual Learning

H(x) is any desired mapping, hope the 2 weight layers fit H(x)hope the 2 weight layers fit F(x)let H(x) = F(x) + x

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Deep Residual Learning

• F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

ResNet

Deeper residual module (bottleneck)

- Directly performing 3x3 convolutions with 256 feature maps at input and output: 256 x 256 x 3 x 3 ~ 600K operations
- Using 1x1 convolutions to reduce 256 to 64 feature maps, followed by 3x3 convolutions, followed by 1x1 convolutions to expand back to 256 maps: 256 x 64 x 1 x 1 ~ 16K 64 x 64 x 3 x 3 ~ 36K64 x 256 x 1 x 1 ~ 16KTotal: ~70K

K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016 (Best Paper)

ResNet

Architectures for ImageNet:

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112		7×7, 64, stride 2						
				3×3 max pool, stric	le 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1		ave	erage pool, 1000-d fc,	softmax				
FLO	OPs	1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^{9}			

K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016 (Best Paper)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Summary: ILSVRC 2012-2015

Team	Year	Place	Error (top-5)	External data
SuperVision – Toronto (AlexNet, 7 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k
Clarifai – NYU (7 layers)	2013	-	11.7%	no
Clarifai	2013	1st	11.2%	ImageNet 22k
VGG – Oxford (16 layers)	2014	2nd	7.32%	no
GoogLeNet (19 layers)	2014	1st	6.67%	no
ResNet (152 layers)	2015	1st	3.57%	
Human expert*			5.1%	

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Other Things

- Training data augmentation
- Averaging classifier outputs over multiple crops/flips
- Ensembles of networks
- Officially, starting with 2015, image classification is not part of ILSVRC challenge, but people continue to benchmark on the data

Attention (Vision Transformers)

A. Dosovitskiy et al., <u>An Image is Worth 16x16 Words: Transformers for Image</u> <u>Recognition at Scale</u>.

Attention

Source: <u>http://peterbloem.nl/blog/transformers</u> See also: <u>Attention is all you need</u>

Attention (with key, query and value)

Source: <u>http://peterbloem.nl/blog/transformers</u> See also: <u>Attention is all you need</u>

Representing Positions

- Positional Embeddings
 - Learn embeddings for different positions
- Positional Encodings
 - Explicitly encode positions using sin, cos terms

Attention (Vision Transformers)

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^*$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We report mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported in Touvron et al. (2020).

A. Dosovitskiy et al., <u>An Image is Worth 16x16 Words: Transformers for Image</u> <u>Recognition at Scale</u>.

Learned Representations are Useful in General

- 1. Features extracted from CNNs trained on ImageNet were effective for many CV tasks.
- 2. Furthermore, learned network weights serve as an excellent starting point for other tasks.

J. Donahue, Y. Jia et al. <u>DeCAF: A Deep Convolutional Activation Feature for Generi</u> <u>c Visual Recognition</u>. ICML 2014

How to use a trained network for a new task?

	DeCAF ₅	DeCAF ₆	DeCAF ₇
LogReg	63.29 ± 6.6	84.30 ± 1.6	84.87 ± 0.6
LogReg with Dropout	-	86.08 ± 0.8	85.68 ± 0.6
SVM	77.12 ± 1.1	84.77 ± 1.2	83.24 ± 1.2
SVM with Dropout	-	86.91 ± 0.7	85.51 ± 0.9
Yang et al. (2009)		84.3	
Jarrett et al. (2009)		65.5	

Caltech 101

	$\texttt{Amazon} \rightarrow \texttt{Webcam}$		
	SURF	DeCAF ₆	DeCAF ₇
Logistic Reg. (S) SVM (S)	9.63 ± 1.4 11.05 ± 2.3	$\begin{array}{c} 48.58 \pm 1.3 \\ 52.22 \pm 1.7 \end{array}$	53.56 ± 1.5 53.90 ± 2.2
Logistic Reg. (T) SVM (T)	$\begin{array}{c} 24.33 \pm 2.1 \\ 51.05 \pm 2.0 \end{array}$	72.56 ± 2.1 78.26 ± 2.6	74.19 ± 2.8 78.72 ± 2.3
Logistic Reg. (ST) SVM (ST)	$\begin{array}{c} 19.89 \pm 1.7 \\ 23.19 \pm 3.5 \end{array}$	75.30 ± 2.0 80.66 ± 2.3	76.32 ± 2.0 79.12 ± 2.1
Daume III (2007) Hoffman et al. (2013) Gong et al. (2012)	$\begin{array}{c} 40.26 \pm 1.1 \\ 37.66 \pm 2.2 \\ 39.80 \pm 2.3 \end{array}$	$\begin{array}{c} \textbf{82.14} \pm \textbf{1.9} \\ 80.06 \pm 2.7 \\ 75.21 \pm 1.2 \end{array}$	81.65 ± 2.4 80.37 ± 2.0 77.55 ± 1.9
Chopra et al. (2013)		58.85	

Domain Adaptation

Caltech 101

Method	Accuracy
DeCAF ₆	58.75
DPD + DeCAF ₆	64.96
DPD (Zhang et al., 2013)	50.98
POOF (Berg & Belhumeur, 2013)	56.78

Fine-grained Classification

	$DeCAF_6$	DeCAF ₇	
LogReg SVM	$ \begin{array}{r} 40.94 \pm 0.3 \\ 39.36 \pm 0.3 \\ \end{array} $	$\begin{array}{c} 40.84 \pm 0.3 \\ 40.66 \pm 0.3 \end{array}$	
Xiao et al. (2010)	38.0		

Scene Classification

J. Donahue, Y. Jia et al. <u>DeCAF: A Deep Convolutional Activation Feature for Generi</u> <u>c Visual Recognition</u>. ICML 2014

How to use a trained network for a new task?

How to use a trained network for a new task?

- Take the vector of activations from one of the fully connected (FC) layers and treat it as an off-the-shelf feature
 - Train a new classifier layer on top of the FC layer
- *Fine-tune* the whole network