
From image classification to object detection

Object detection

Image source

Image classification

Slides from L. Lazebnik

https://medium.com/ilenze-com/object-detection-using-deep-learning-for-advanced-users-part-1-183bbbb08b19


What are the challenges of object detection?
• Images may contain more than one class, 

multiple instances from the same class
• Bounding box localization
• Evaluation

Image source

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088


Outline
• Task definition and evaluation
• Generic object detection before deep learning

• Sliding windows
• HoG, DPMs (Components, Parts)
• Region Classification Methods

• Deep detection approaches
• R-CNN
• Fast R-CNN
• Faster R-CNN
• SSD



Object detection evaluation
• At test time, predict bounding boxes, class labels, 

and confidence scores
• For each detection, determine whether it is a true or 

false positive
• PASCAL criterion: Area(GT ∩ Det) / Area(GT ∪ Det) > 0.5
• For multiple detections of the same ground truth 

box, only one considered a true positive

cat

dog

cat: 0.8

dog: 0.6

dog: 0.55

Ground truth (GT)



Object detection evaluation
• At test time, predict bounding boxes, class labels, 

and confidence scores
• For each detection, determine whether it is a true or 

false positive
• For each class, plot Recall-Precision curve and 

compute Average Precision (area under the curve)
• Take mean of  AP over classes to get mAP

Precision: 
true positive detections / 
total detections
Recall:
true positive detections / 
total positive test instances



PASCAL VOC Challenge (2005-2012)

• 20 challenge classes:
• Person
• Animals: bird, cat, cow, dog, horse, sheep 
• Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train 
• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

• Dataset size (by 2012): 11.5K training/validation images, 
27K bounding boxes, 7K segmentations 

http://host.robots.ox.ac.uk/pascal/VOC/

http://host.robots.ox.ac.uk/pascal/VOC/


Progress on PASCAL detection
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Newer benchmark: COCO

http://cocodataset.org/#home

http://cocodataset.org/


COCO detection metrics

• Leaderboard: http://cocodataset.org/#detection-leaderboard
• Current best mAP: ~52%

• Official COCO challenges no longer include detection
• More emphasis on instance segmentation and dense segmentation

http://cocodataset.org/


Detection before deep learning



Conceptual approach: Sliding window detection

• Slide a window across the image and evaluate a 
detection model at each location
• Thousands of windows to evaluate: efficiency and low false positive 

rates are essential
• Difficult to extend to a large range of scales, aspect ratios

Detection



Histograms of oriented gradients (HOG)
• Partition image into blocks and compute histogram of 

gradient orientations in each block

Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 
CVPR 2005

http://lear.inrialpes.fr/pubs/2005/DT05


Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector 

machine

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 
CVPR 2005

positive training examples

negative training examples

http://lear.inrialpes.fr/pubs/2005/DT05


Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector 

machine
• At test time, convolve feature map with template
• Find local maxima of response
• For multi-scale detection, repeat over multiple levels of a 

HOG pyramid

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 
CVPR 2005

TemplateHOG feature map Detector response map

http://lear.inrialpes.fr/pubs/2005/DT05


Discriminative part-based models
• Single rigid template usually not enough to 

represent a category
• Many objects (e.g. humans) are articulated, or 

have parts that can vary in configuration 

• Many object categories look very different from 
different viewpoints, or from instance to instance

Slide by N. Snavely



Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Root 
filter

Part 
filters

Deformation 
weights

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Discriminative part-based models

Multiple components

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Progress on PASCAL detection
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Conceptual approach: Proposal-driven detection

• Generate and evaluate a few hundred region 
proposals
• Proposal mechanism can take advantage of low-level perceptual 

organization cues
• Proposal mechanism can be category-specific or category-

independent, hand-crafted or trained
• Classifier can be slower but more powerful



Multiscale Combinatorial Grouping
• Use hierarchical segmentation: start with small 

superpixels and merge based on diverse cues

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014
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Figure 2. Multiscale Combinatorial Grouping. Starting from a multiresolution image pyramid, we perform hierarchical segmentation
at each scale independently. We align these multiple hierarchies and combine them into a single multiscale segmentation hierarchy. Our
grouping component then produces a ranked list of object candidates by efficiently exploring the combinatorial space of these regions.

As an example, in the gPb-ucm algorithm of [4], bright-
ness, color and texture gradients at three fixed disk sizes are
first computed. These local contour cues are globalized us-
ing spectral graph-partitioning, resulting in the gPb contour
detector. Hierarchical segmentation is then performed by
iteratively merging adjacent regions based on the average
gPb strength on their common boundary. This algorithm
produces therefore a tree of regions at multiple levels of ho-
mogeneity in brightness, color and texture, and the bound-
ary strength of its UCM can be interpreted as a measure of
contrast.

Coarse-to-fine is a powerful processing strategy in com-
puter vision. We exploit it in two different ways to develop
an efficient, scalable and high-performance segmentation
algorithm: (1) To speed-up spectral graph partitioning and
(2) To create aligned segmentation hierarchies.

3.1. Fast Downsampled Eigenvector Computation
The normalized cuts criterion is a key globalization

mechanism of recent high-performance contour detectors
such as [4, 21]; Although powerful, such spectral graph par-
titioning has a significant computational cost and memory
footprint that limit its scalability. In this section, we present
an efficient normalized cuts algorithm which in practice
preserves full performance for contour detection, has low
memory requirements and provides a 20⇥ speed-up.

Given a symmetric affinity matrix A, we would like to
compute the k smallest eigenvectors of the Laplacian of A.
Directly computing such eigenvectors can be very costly
even with sophisticated solvers, due to the large size of A.
We therefore present a technique for approximating them
much more efficiently by taking advantage of the multiscale
nature of our problem: A models affinities between pixels
in an image, and images naturally lend themselves to mul-
tiscale or pyramid-like representations and algorithms.

Our algorithm is inspired by two observations: 1) if A
is bistochastic (the rows and columns of A sum to 1) then

the eigenvectors of the Laplacian A are equal to the eigen-
vectors of the Laplacian of A2, and 2) because of the scale-
similar nature of images, the eigenvectors of a “downsam-
pled” version of A in which every other pixel has been re-
moved should be similar to the eigenvectors of A. Let us
define pixel decimate (A), which takes an affinity ma-
trix A and returns the indices of rows/columns in A corre-
sponding to a decimated version of the image from which
A was constructed. That is, if i = pixel decimate (A),
then A [i, i] is a decimated matrix in which alternating rows
and columns of the image have been removed. Computing
the eigenvectors of A [i, i] works poorly, as decimation dis-
connects pixels in the affinity matrix, but the eigenvectors
of the decimated squared affinity matrix A2

[i, i] are sim-
ilar to those of A, because by squaring the matrix before
decimation we intuitively allow each pixel to propagate in-
formation to all of its neighbors in the graph, maintaining
connections even after decimation. Our algorithm works by
efficiently computing A2

[i, i] as A [:, i]T A [:, i] (the naive
approach of first squaring A and then decimating it is in-
tractable), computing the eigenvectors of A2

[i, i], and then
“upsampling” those eigenvectors back to the space of the
original image by multiplying by A [:, i]. This squaring-
and-decimation procedure can be applied recursively sev-
eral times, improving efficiency while sacrificing accuracy.

Pseudocode for our algorithm, which we call “DNCuts”
(downsampled normalized cuts) is given in Alg. 1, where A
is our affinity matrix and D is the number of times that our
squaring-and-decimation operation is applied. Our algo-
rithm repeatedly applies our joint squaring-and-decimation
procedure, computes the smallest k eigenvectors of the
final “downsampled” matrix AD by using a standard
sparse eigensolver ncuts(AD, K), and repeatedly “upsam-
ples” those eigenvectors. Because our A is not bistochastic
and decimation is not an orthonormal operation, we must do
some normalization throughout the algorithm (line 5) and
whiten the resulting eigenvectors (line 10). We found that

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/resources/MCG_CVPR2014.pdf


Region Proposals for Detection (Eval)

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/resources/MCG_CVPR2014.pdf


Region Proposals for Detection

• Feature extraction: color SIFT, codebook of 
size 4K, spatial pyramid with four levels = 
360K dimensions

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for 
Object Recognition, IJCV 2013

http://koen.me/research/selectivesearch/


Another proposal method: EdgeBoxes

• Box score: number of edges 
in the box minus number of 
edges that overlap the box 
boundary

• Uses a trained edge detector
• Uses efficient data structures 

(incl. integral images) for fast 
evaluation

• Gets 75% recall with 800 
boxes (vs. 1400 for Selective 
Search), is 40 times faster

C. Zitnick and P. Dollar, Edge Boxes: Locating Object Proposals from Edges, 
ECCV 2014 

http://research.microsoft.com/pubs/220569/ZitnickDollarECCV14edgeBoxes.pdf


R-CNN: Region proposals + CNN features

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region 
through ConvNet

Classify regions with SVMs

Region proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and 
Semantic Segmentation, CVPR 2014. 

Source: R. Girshick

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


R-CNN details

• Regions: ~2000 Selective Search proposals
• Network: AlexNet pre-trained on ImageNet (1000 

classes), fine-tuned on PASCAL (21 classes)
• Final detector: warp proposal regions, extract fc7 network 

activations (4096 dimensions), classify with linear SVM
• Bounding box regression to refine box locations
• Performance: mAP of 53.7% on PASCAL 2010 

(vs. 35.1% for Selective Search and 33.4% for Deformable 
Part Models)



R-CNN pros and cons
• Pros

• Accurate!
• Any deep architecture can immediately be “plugged in”

• Cons
• Not a single end-to-end system

• Fine-tune network with softmax classifier (log loss)
• Train post-hoc linear SVMs (hinge loss)
• Train post-hoc bounding-box regressions (least squares)

• Training is slow (84h), takes a lot of disk space
• 2000 CNN passes per image

• Inference (detection) is slow (47s / image with VGG16)



Fast R-CNN

ConvNet

Forward whole image through ConvNet

Conv5 feature map of image

RoI Pooling layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Region 
proposals

Linear Bounding-box regressors

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf


RoI pooling
• “Crop and resample” a fixed-size feature 

representing a region of interest out of the 
outputs of the last conv layer
• Use nearest-neighbor interpolation of coordinates, max pooling

RoI
pooling 

layer

Conv feature map

FC layers 
…

Region of Interest 
(RoI)

RoI
feature

Source: R. Girshick, K. He



RoI pooling illustration

Image source

https://deepsense.ai/region-of-interest-pooling-explained/


Prediction
• For each RoI, network predicts probabilities 

for C+1 classes (class 0 is background) and 
four bounding box offsets for C classes

R. Girshick, Fast R-CNN, ICCV 2015

http://arxiv.org/pdf/1504.08083.pdf


Fast R-CNN training

ConvNet

Linear +
softmax

FCs

Linear

Log loss + smooth L1 loss

Trainable

Multi-task loss

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf


Multi-task loss
• Loss for ground truth class 𝑦, predicted class probabilities 

𝑃(𝑦), ground truth box 𝑏, and predicted box (𝑏:

𝐿 𝑦, 𝑃, 𝑏, &𝑏 = −log 𝑃(𝑦) + 𝜆𝕀[𝑦 ≥ 1]𝐿!"#(𝑏, &𝑏)

• Regression loss: smooth L1 loss on top of log space offsets 
relative to proposal 

𝐿!"# 𝑏, &𝑏 = 5
$%{',),*,+}

smooth-!(𝑏$ − &𝑏$)

softmax loss regression loss



Bounding box regression

Region proposal
(a.k.a default box, 
prior, reference, 
anchor)

Ground truth box

Predicted 
box

Target offset 
to predict*

Predicted 
offset

Loss

*Typically in transformed, 
normalized coordinates



Fast R-CNN results

Fast R-CNN R-CNN 
Train time (h) 9.5 84
- Speedup 8.8x 1x
Test time / 
image

0.32s 47.0s

Test speedup 146x 1x
mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

Source: R. Girshick

(vs. 53.7% for 
AlexNet)



Faster R-CNN

CNN

feature map

Region 
proposals

CNN

feature map

Region Proposal 
Network

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks, NIPS 2015

share features

http://arxiv.org/pdf/1506.01497.pdf


Region proposal network (RPN)
• Slide a small window (3x3) over the conv5 layer 

• Predict object/no object
• Regress bounding box coordinates with reference to anchors 

(3 scales x 3 aspect ratios)



One network, four losses

image

CNN

feature map

Region Proposal 
Network

proposals

RoI pooling

Classification  
loss

Bounding-box 
regression loss

…

Classification  
loss

Bounding-box 
regression loss

Source: R. Girshick, K. He



Faster R-CNN results



Object detection progress
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Streamlined detection architectures
• The Faster R-CNN pipeline separates 

proposal generation and region classification:

• Is it possible do detection in one shot?

Conv feature 
map of the 

entire image

Region 
Proposals

RoI
features

RPN

RoI
pooling

Classification + 
Regression

Detections

Conv feature 
map of the 

entire image
Detections

Classification + 
Regression



SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

• Similarly to RPN, use anchors and directly predict 
class-specific bounding boxes.

http://arxiv.org/pdf/1512.02325.pdf


SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

http://arxiv.org/pdf/1512.02325.pdf


SSD: Results (PASCAL 2007)
• More accurate and faster than YOLO and 

Faster R-CNN



Multi-resolution prediction
• SSD predicts boxes of different size from different 

conv maps, but each level of resolution has its 
own predictors and higher-level context does not 
get propagated back to lower-level feature maps

• Can we have a more elegant multi-resolution 
prediction architecture?



Feature Pyramid Networks

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie, 
Feature Pyramid Networks for Object Detection, CVPR 2017.

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition

systems for detecting objects at different scales. But recent

deep learning object detectors have avoided pyramid rep-

resentations, in part because they are compute and memory

intensive. In this paper, we exploit the inherent multi-scale,

pyramidal hierarchy of deep convolutional networks to con-

struct feature pyramids with marginal extra cost. A top-

down architecture with lateral connections is developed for

building high-level semantic feature maps at all scales. This

architecture, called a Feature Pyramid Network (FPN),

shows significant improvement as a generic feature extrac-

tor in several applications. Using FPN in a basic Faster

R-CNN system, our method achieves state-of-the-art single-

model results on the COCO detection benchmark without

bells and whistles, surpassing all existing single-model en-

tries including those from the COCO 2016 challenge win-

ners. In addition, our method can run at 6 FPS on a GPU

and thus is a practical and accurate solution to multi-scale

object detection. Code will be made publicly available.

1. Introduction
Recognizing objects at vastly different scales is a fun-

damental challenge in computer vision. Feature pyramids

built upon image pyramids (for short we call these featur-

ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 25]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [19, 20]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[15, 11, 29] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [33] and COCO [21] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [16, 35]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are

semantically strong, including the high-resolution levels.
Nevertheless, featurizing each level of an image pyra-

mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep
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Feature pyramid networks

• Improve predictive power of 
lower-level feature maps by 
adding contextual 
information from higher-
level feature maps

• Predict different sizes of 
bounding boxes from 
different levels of the 
pyramid (but share 
parameters of predictors)

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid 
networks for object detection, CVPR 2017.

http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf


RetinaNet
• Combine feature pyramid network with focal loss to 

reduce the standard cross-entropy loss for well-
classified examples

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, 
ICCV 2017.

https://arxiv.org/pdf/1708.02002.pdf


Review: R-CNN

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region 
through ConvNet

Classify regions with SVMs

Region proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and 
Semantic Segmentation, CVPR 2014. 

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


Review: Fast R-CNN

ConvNet

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Region 
proposals

Linear Bounding-box regressors

R. Girshick, Fast R-CNN, ICCV 2015

http://arxiv.org/pdf/1504.08083.pdf


Review: Faster R-CNN

CNN

feature map

Region 
proposals

CNN

feature map

Region Proposal 
Network

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks, NIPS 2015

share features

http://arxiv.org/pdf/1506.01497.pdf


Review: RPN
• Slide a small window (3x3) over the conv5 layer 

• Predict object/no object
• Regress bounding box coordinates with reference to anchors 

(3 scales x 3 aspect ratios)



Review: SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

http://arxiv.org/pdf/1512.02325.pdf


Summary: Object detection with CNNs
• R-CNN: region proposals + CNN on 

cropped, resampled regions
• Fast R-CNN: region proposals + RoI pooling 

on top of a conv feature map
• Faster R-CNN: RPN + RoI pooling
• Next generation of detectors

• Direct prediction of BB offsets, class scores on 
top of conv feature maps

• Get better context by combining feature maps at 
multiple resolutions



Instance segmentation

Evaluation
• Average Precision like 

detection, except region IoU
as opposed to box IoU.

B. Hariharan et al., Simultaneous Detection and 
Segmentation, ECCV 2014

http://home.bharathh.info/pubs/pdfs/BharathECCV2014.pdf


Mask R-CNN
• Mask R-CNN = Faster R-CNN + FCN on RoIs

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

Mask branch: separately predict segmentation 
for each possible class

Classification+regression
branch

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


RoIAlign vs. RoIPool
• RoIPool: nearest neighbor quantization

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


RoIAlign vs. RoIPool
• RoIPool: nearest neighbor quantization
• RoIAlign: bilinear interpolation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Mask R-CNN
• From RoIAlign features, predict class label, 

bounding box, and segmentation mask

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

Feature Pyramid Networks 
(FPN) architecture

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Mask R-CNN

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Example results



Example results



Instance segmentation results on COCO

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

AP at different IoU
thresholds

AP for different 
size instances

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Unifying Semantic and Instance Segm.

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár, 
Panoptic Segmentation, CVPR 2019.

Panoptic Segmentation

Alexander Kirillov1,2 Kaiming He1 Ross Girshick1 Carsten Rother2 Piotr Dollár1

1Facebook AI Research (FAIR) 2HCI/IWR, Heidelberg University, Germany

Abstract

We propose and study a task we name panoptic segmen-
tation (PS). Panoptic segmentation unifies the typically dis-

tinct tasks of semantic segmentation (assign a class label to

each pixel) and instance segmentation (detect and segment

each object instance). The proposed task requires gener-

ating a coherent scene segmentation that is rich and com-

plete, an important step toward real-world vision systems.

While early work in computer vision addressed related im-

age/scene parsing tasks, these are not currently popular,

possibly due to lack of appropriate metrics or associated

recognition challenges. To address this, we propose a novel

panoptic quality (PQ) metric that captures performance for

all classes (stuff and things) in an interpretable and unified

manner. Using the proposed metric, we perform a rigorous

study of both human and machine performance for PS on

three existing datasets, revealing interesting insights about

the task. The aim of our work is to revive the interest of the

community in a more unified view of image segmentation.

1. Introduction
In the early days of computer vision, things – countable

objects such as people, animals, tools – received the dom-
inant share of attention. Questioning the wisdom of this
trend, Adelson [1] elevated the importance of studying sys-
tems that recognize stuff – amorphous regions of similar
texture or material such as grass, sky, road. This dichotomy
between stuff and things persists to this day, reflected in
both the division of visual recognition tasks and in the spe-
cialized algorithms developed for stuff and thing tasks.

Studying stuff is most commonly formulated as a task
known as semantic segmentation, see Figure 1b. As stuff
is amorphous and uncountable, this task is defined as sim-
ply assigning a class label to each pixel in an image (note
that semantic segmentation treats thing classes as stuff).
In contrast, studying things is typically formulated as the
task of object detection or instance segmentation, where the
goal is to detect each object and delineate it with a bound-
ing box or segmentation mask, respectively, see Figure 1c.
While seemingly related, the datasets, details, and metrics

(a) image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 1: For a given (a) image, we show ground truth for: (b)
semantic segmentation (per-pixel class labels), (c) instance seg-
mentation (per-object mask and class label), and (d) the proposed
panoptic segmentation task (per-pixel class+instance labels). The
PS task: (1) encompasses both stuff and thing classes, (2) uses a
simple but general format, and (3) introduces a uniform evaluation
metric for all classes. Panoptic segmentation generalizes both se-
mantic and instance segmentation and we expect the unified task
will present novel challenges and enable innovative new methods.

for these two visual recognition tasks vary substantially.
The schism between semantic and instance segmentation

has led to a parallel rift in the methods for these tasks. Stuff
classifiers are usually built on fully convolutional nets [30]
with dilations [52, 5] while object detectors often use object
proposals [15] and are region-based [37, 14]. Overall algo-
rithmic progress on these tasks has been incredible in the
past decade, yet, something important may be overlooked
by focussing on these tasks in isolation.

A natural question emerges: Can there be a reconcilia-

tion between stuff and things? And what is the most effec-
tive design of a unified vision system that generates rich and
coherent scene segmentations? These questions are particu-
larly important given their relevance in real-world applica-
tions, such as autonomous driving or augmented reality.

Interestingly, while semantic and instance segmentation
dominate current work, in the pre-deep learning era there
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Keypoint prediction
• Given K keypoints, train model to predict K 

m x m one-hot maps 


