From image classification to object detection

Object detection

Slides from L. Lazebnik

Image source

What are the challenges of object detection?

- Images may contain more than one class, multiple instances from the same class
- Bounding box localization
- Evaluation

Outline

- Task definition and evaluation
- Generic object detection before deep learning
 - Sliding windows
 - HoG, DPMs (Components, Parts)
 - Region Classification Methods
- Deep detection approaches
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
 - SSD

Object detection evaluation

- At test time, predict bounding boxes, class labels, and confidence scores
- For each detection, determine whether it is a true or false positive
 - PASCAL criterion: Area(GT ∩ Det) / Area(GT ∪ Det) > 0.5
 - For multiple detections of the same ground truth box, only one considered a true positive

Object detection evaluation

- At test time, predict bounding boxes, class labels, and confidence scores
- For each detection, determine whether it is a true or false positive
- For each class, plot Recall-Precision curve and compute Average Precision (area under the curve)
- Take mean of AP over classes to get mAP

Precision:

true positive detections / total detections **Recall:**

true positive detections / total positive test instances

PASCAL VOC Challenge (2005-2012)

- 20 challenge classes:
 - Person
 - Animals: bird, cat, cow, dog, horse, sheep
 - Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train
 - Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
- Dataset size (by 2012): 11.5K training/validation images, 27K bounding boxes, 7K segmentations

http://host.robots.ox.ac.uk/pascal/VOC/

Progress on PASCAL detection

PASCAL VOC

year

Newer benchmark: COCO

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

Object segmentation
Recognition in context
Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances
80 object categories
91 stuff categories
5 captions per image
250,000 people with keypoints

http://cocodataset.org/#home

COCO detection metrics

Average Precision (AP)	:
AP	% AP at IoU=.50:.05:.95 (primary challenge metric)
AP ^{IOU=.50}	% AP at IoU=.50 (PASCAL VOC metric)
AP ^{IOU=.75}	% AP at IoU=.75 (strict metric)
AP Across Scales:	
AP ^{small}	% AP for small objects: area < 32^2
AP ^{medium}	% AP for medium objects: 32^2 < area < 96^2
AP ^{large}	% AP for large objects: area > 96^2
Average Recall (AR):	
AR ^{max=1}	% AR given 1 detection per image
AR ^{max=10}	% AR given 10 detections per image
AR ^{max=100}	% AR given 100 detections per image
AR Across Scales:	
AR ^{small}	% AR for small objects: area < 32^2
AR ^{medium}	% AR for medium objects: 32^2 < area < 96^2
AR ^{large}	% AR for large objects: area > 96^2

- Leaderboard: <u>http://cocodataset.org/#detection-leaderboard</u>
 - Current best mAP: ~52%
- Official COCO challenges no longer include detection
 - More emphasis on instance segmentation and dense segmentation

Detection before deep learning

Conceptual approach: Sliding window detection

- Slide a window across the image and evaluate a detection model at each location
 - Thousands of windows to evaluate: efficiency and low false positive rates are essential
 - Difficult to extend to a large range of scales, aspect ratios

Histograms of oriented gradients (HOG)

 Partition image into blocks and compute histogram of gradient orientations in each block

Image credit: N. Snavely

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Pedestrian detection with HOG

 Train a pedestrian template using a linear support vector machine

positive training examples

negative training examples

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Pedestrian detection with HOG

- Train a pedestrian template using a linear support vector machine
- At test time, convolve feature map with template
- Find local maxima of response
- For multi-scale detection, repeat over multiple levels of a HOG *pyramid*

Template

Detector response map

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

- Single rigid template usually not enough to represent a category
 - Many objects (e.g. humans) are articulated, or have parts that can vary in configuration

 Many object categories look very different from different viewpoints, or from instance to instance

Slide by N. Snavely

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection with</u> <u>Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010

Multiple components

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection with</u> <u>Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection with</u> <u>Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010

Progress on PASCAL detection

PASCAL VOC

Conceptual approach: Proposal-driven detection

- Generate and evaluate a few hundred region proposals
 - Proposal mechanism can take advantage of low-level *perceptual organization* cues
 - Proposal mechanism can be category-specific or categoryindependent, hand-crafted or trained
 - Classifier can be slower but more powerful

Multiscale Combinatorial Grouping

 Use hierarchical segmentation: start with small superpixels and merge based on diverse cues

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014

Region Proposals for Detection (Eval)

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014

Region Proposals for Detection

 Feature extraction: color SIFT, codebook of size 4K, spatial pyramid with four levels = 360K dimensions

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, <u>Selective Search for</u> <u>Object Recognition</u>, IJCV 2013

Another proposal method: EdgeBoxes

- Box score: number of edges in the box minus number of edges that overlap the box boundary
- Uses a trained edge detector
- Uses efficient data structures (incl. integral images) for fast evaluation
- Gets 75% recall with 800 boxes (vs. 1400 for Selective Search), is 40 times faster

C. Zitnick and P. Dollar, Edge Boxes: Locating Object Proposals from Edges, ECCV 2014

R-CNN: Region proposals + CNN features

Source: R. Girshick

R. Girshick, J. Donahue, T. Darrell, and J. Malik, <u>Rich Feature Hierarchies for Accurate Object Detection and</u> <u>Semantic Segmentation</u>, CVPR 2014.

R-CNN details

- **Regions**: ~2000 Selective Search proposals
- **Network**: AlexNet *pre-trained* on ImageNet (1000 classes), *fine-tuned* on PASCAL (21 classes)
- **Final detector**: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- Bounding box regression to refine box locations
- Performance: mAP of 53.7% on PASCAL 2010 (vs. 35.1% for Selective Search and 33.4% for Deformable Part Models)

R-CNN pros and cons

- Pros
 - Accurate!
 - Any deep architecture can immediately be "plugged in"
- Cons
 - Not a single end-to-end system
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
 - Training is slow (84h), takes a lot of disk space
 - 2000 CNN passes per image
 - Inference (detection) is slow (47s / image with VGG16)

Fast R-CNN

Source: R. Girshick

Rol pooling

- "Crop and resample" a fixed-size feature representing a region of interest out of the outputs of the last conv layer
 - Use nearest-neighbor interpolation of coordinates, max pooling

Rol pooling illustration

input							
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Prediction

 For each Rol, network predicts probabilities for C+1 classes (class 0 is background) and four bounding box offsets for C classes

R. Girshick, Fast R-CNN, ICCV 2015

Fast R-CNN training

Source: R. Girshick

Multi-task loss

• Loss for ground truth class y, predicted class probabilities P(y), ground truth box b, and predicted box \hat{b} :

$$L(y, P, b, \hat{b}) = -\log P(y) + \lambda \mathbb{I}[y \ge 1] L_{\text{reg}}(b, \hat{b})$$

softmax loss regression loss

Regression loss: smooth L1 loss on top of log space offsets relative to proposal

$$L_{\text{reg}}(b,\hat{b}) = \sum_{i=\{x,y,w,h\}} \text{smooth}_{L_1}(b_i - \hat{b}_i)$$

smooth_{L1}(x) =
$$\begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise} \end{cases}$$

Bounding box regression

	Fast R-CNN	R-CNN	
Train time (h)	9.5	84	
- Speedup	8.8x	1x	
Test time / image	0.32s	47.0s	
Test speedup	146x	1x	
mAP	66.9%	66.0%	(vs. 53.7% fo
			AlexNet)

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

Source: R. Girshick

Faster R-CNN

S. Ren, K. He, R. Girshick, and J. Sun, <u>Faster R-CNN: Towards Real-Time Object Detection with</u> <u>Region Proposal Networks</u>, NIPS 2015

Region proposal network (RPN)

- Slide a small window (3x3) over the conv5 layer
 - Predict object/no object
 - Regress bounding box coordinates with reference to *anchors* (3 scales x 3 aspect ratios)

One network, four losses

Source: R. Girshick, K. He

system	time	07 data	07+12 data
R-CNN	~50s	66.0	-
Fast R-CNN	~2s	66.9	70.0
Faster R-CNN	198ms	69.9	73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Object detection progress

year

Streamlined detection architectures

• The Faster R-CNN pipeline separates proposal generation and region classification:

• Is it possible do detection in one shot?

• Similarly to RPN, use anchors and directly predict class-specific bounding boxes.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, <u>SSD: Single Shot</u> <u>MultiBox Detector</u>, ECCV 2016.

SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, <u>SSD: Single Shot</u> <u>MultiBox Detector</u>, ECCV 2016.

SSD: Results (PASCAL 2007)

 More accurate and faster than YOLO and Faster R-CNN

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512 imes 512

Multi-resolution prediction

- SSD predicts boxes of different size from different conv maps, but each level of resolution has its own predictors and higher-level context does not get propagated back to lower-level feature maps
- Can we have a more elegant multi-resolution prediction architecture?

Feature Pyramid Networks

(d) Feature Pyramid Network

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie, Feature Pyramid Networks for Object Detection, CVPR 2017.

Feature pyramid networks

- Improve predictive power of lower-level feature maps by adding contextual information from higherlevel feature maps
- Predict different sizes of bounding boxes from different levels of the pyramid (but share parameters of predictors)

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, <u>Feature pyramid</u> <u>networks for object detection</u>, CVPR 2017.

RetinaNet

 Combine feature pyramid network with *focal loss* to reduce the standard cross-entropy loss for wellclassified examples

T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, <u>Focal loss for dense object detection</u>, ICCV 2017.

Review: R-CNN

R. Girshick, J. Donahue, T. Darrell, and J. Malik, <u>Rich Feature Hierarchies for Accurate Object Detection and</u> <u>Semantic Segmentation</u>, CVPR 2014.

Review: Fast R-CNN

Review: Faster R-CNN

S. Ren, K. He, R. Girshick, and J. Sun, <u>Faster R-CNN: Towards Real-Time Object Detection with</u> <u>Region Proposal Networks</u>, NIPS 2015

Review: RPN

- Slide a small window (3x3) over the conv5 layer
 - Predict object/no object
 - Regress bounding box coordinates with reference to *anchors* (3 scales x 3 aspect ratios)

Review: SSD

300

Image

300

SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, <u>SSD: Single Shot</u> <u>MultiBox Detector</u>, ECCV 2016.

Summary: Object detection with CNNs

- R-CNN: region proposals + CNN on cropped, resampled regions
- Fast R-CNN: region proposals + Rol pooling on top of a conv feature map
- Faster R-CNN: RPN + Rol pooling
- Next generation of detectors
 - Direct prediction of BB offsets, class scores on top of conv feature maps
 - Get better context by combining feature maps at multiple resolutions

Instance segmentation

Object Detection

Semantic Segmentation

Instance Segmentation

Evaluation

 Average Precision like detection, except region IoU as opposed to box IoU.

B. Hariharan et al., <u>Simultaneous Detection and</u> <u>Segmentation</u>, ECCV 2014

Mask R-CNN

Mask R-CNN = Faster R-CNN + FCN on Rols

Mask branch: separately predict segmentation for each possible class

RolAlign vs. RolPool

RoIPool: nearest neighbor quantization

RolAlign vs. RolPool

- RolPool: nearest neighbor quantization
- RolAlign: bilinear interpolation

Mask R-CNN

• From RolAlign features, predict class label, bounding box, and segmentation mask

Mask R-CNN

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red

Example results

Example results

Instance segmentation results on COCO

	backbone	AP	AP ₅₀	AP75	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

AP at different IoU thresholds

AP for different size instances

Unifying Semantic and Instance Segm.

(a) image

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár, Panoptic Segmentation, CVPR 2019.

Keypoint prediction

 Given K keypoints, train model to predict K m x m one-hot maps

