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We must perceive in order to move, but we must also move in order 
to perceive. 

— JJ Gibson

Vision, like other sensory functions, has its evolutionary rationale 
rooted in improved motor control. Although organisms can of course 
see when motionless or paralyzed, the visual system of the brain has 
the organization, computational profile, and architecture it has in 
order to facilitate the organism's thriving at feeding fleeing, fighting, 
and reproduction.

— Churchland, Ramachandran and Sejnowski
A critique of pure vision

Sea Squirts

Cambrian Explosion (541 million years ago)



Factors Leading to Success in Computer Vision

A. Krizhevsky  et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012 
J. Deng et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009

Large-scale labeled data

Hand-crafted features 
to 

End-to-end trained features
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If and how large-scale learning
can lead to similar improvements 

in robotics?



Robotic Tasks

Navigation

Robot with a first 
person camera

Dropped into a novel 
environment

Navigate 
around

“Go 
300 feet North, 
400 feet East”

Goal

“Go Find a Chair”



Robotic Tasks

Manipulation



Typical Classical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

Slide adapted from S. Levine.
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Typical Classical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

Observations Control
end-to-end training

Should it help?
If so, how to do it?

Does it help?Slide adapted from S. Levine.
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Robot Navigation

Robot with a first 
person camera

Dropped into a novel 
environment

Navigate 
around

“Go 
300 feet North, 
400 feet East”

Goal

“Go Find a Chair”



Mapping

Planning
Observed Images

Path Plan

Geometric Reconstruction

Hartley and Zisserman. 2000. Multiple View Geometry 
in Computer Vision

Thrun, Burgard, Fox. 2005.  Probabilistic Robotics

Canny. 1988. The complexity of robot motion planning.
Kavraki et al. RA1996. Probabilistic roadmaps for path 

planning in high-dimensional configuration spaces. 
Lavalle and Kuffner. 2000. Rapidly-exploring random 

trees: Progress and prospects.

Video Credits: Mur-Artal et al., Palmieri et al.

Observations State
Estimation Planning Low-level

Controller Control



Geometric 3D Reconstruction of the World

Do we need to tediously reconstruct everything on this table?

Video Credit: Mur-Artal and Tardos, TRobotics 2016. ORB-SLAM2: an Open-Source SLAM System for 
Monocular, Stereo and RGB-D Cameras.

Unnecessary



Geometric 3D Reconstruction of the World

Can’t speculate about space not directly observed.

Insufficient



Geometric 3D Reconstruction of the World

Can’t exploit patterns in layout of indoor spaces.

Insufficient



Geometric 3D Reconstruction of the World

Ignore navigational affordances.

Insufficient



Typical Classical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

Observations Control
end-to-end training

Should it help?
If so, how to do it?

Does it help?Slide adapted from S. Levine.
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Agent Environment Interface

Reinforcement Learning

Image Source: https://www.freecodecamp.org/news/a-brief-introduction-to-reinforcement-learning-7799af5840db/

https://www.freecodecamp.org/news/a-brief-introduction-to-reinforcement-learning-7799af5840db/


Markov Decision Process
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Solving MDPs

Most General Case

WorldAgent

at

ot, rt

at ∼ π(ot)

More Specific Case

WorldAgent

at

ot, rt

at ∼ π(ot, T, R)

Fully Observed System ot = st

st+1 ∼ T(st, at)Known Transition Function
R(st+1, st, at)Known Reward Function

at ∼ π(ot)Policy: 



Behavior Cloning

ot, rt
WorldAgent

at
at ∼ πe(ot)

Train Time

Test Time

1. Ask the expert e to solve this MDP.

ot, rt
WorldAgent

at
at ∼ π(ot)

3.   Train a function          that mimics           on D. π(ot) πe(ot)

Assume an expert e 
can solve this MDP.

ot

Go Forward

Go Backward

Sit Down

π(ot) πe(ot)
Go Forward

Go Backward

Sit Down

=

Train with back-propagation

2. Collect labeled dataset D from expert.



Goal (300, Predicted 
Action

Egomotion
Differentiable 

Planner
Differentiable 

Mapper

Optimal 
Action

=

Train with back-propagation

Supervision from an Algorithmic Expert

S. Gupta et al. Cognitive Mapping and Planning for Visual Navigation. CVPR 2017. 



time

state (s)

Behavior Cloning
Does it always work?

No, data mis-match problem



DAgger: Dataset Aggregation

Fix Data Mis-Match Problem

Collect labels on states visited by          instead of          .π(ot) πe(ot)

S. Ross et al. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online 
Learning. AISTAT 2011.



Typical Classical Robotics Pipeline

Observations State
Estimation Planning Low-level

Controller Control

Observations Control
end-to-end training

Should it help?
If so, how to do it?

Does it help?Slide adapted from S. Levine.
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Supervision from an Algorithmic Expert

S. Levine et al. A End-to-End Training of Deep Visuomotor Policies.  JMLR 2016.



Levine, Finn, Darrell, and Abbeel
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coat hanger training (18) spatial test (24) visual test (18)
end-to-end 100% 100% 100%

pose features 88.9% 87.5% 83.3%
pose prediction 55.6% 58.3% 66.7%

shape cube training (27) spatial test (36) visual test (40)
end-to-end 96.3% 91.7% 87.5%

pose features 70.4% 83.3% 40%
pose prediction 0% 0% n/a

toy hammer training (45) spatial test (60) visual test (60)
end-to-end 91.1% 86.7% 78.3%

pose features 62.2% 75.0% 53.3%
pose prediction 8.9% 18.3% n/a

bottle cap training (27) spatial test (12) visual test (40)
end-to-end 88.9% 83.3% 62.5%

pose features 55.6% 58.3% 27.5%

Success rates on training positions, on novel test positions, and
in the presence of visual distractors. The number of trials per
test is shown in parentheses.

Figure 9: Training and visual test scenes as seen by the policy (left), and experimental
results (right). The hammer and bottle images were cropped for visualization only.

to task execution. The policy tends to pick out robust, distinctive features on the objects,
such as the left pole of the clothes rack, the left corners of the shape-sorting cube and
the bottom-left corner of the toy tool bench. In the bottle task, the end-to-end trained
policy outputs points on both sides of the bottle, including one on the cap, while the pose
prediction network only finds points on the right edge of the bottle.

In Figure 11, we compare the feature points learned through guided policy search to
those learned by a CNN trained for pose prediction. After end-to-end training, the policy
acquired a distinctly di↵erent set of feature points compared to the pose prediction CNN
used for initialization. The end-to-end trained model finds more feature points on task-
relevant objects and fewer points on background objects. This suggests that the policy
improves its performance by acquiring goal-driven visual features that di↵er from those
learned for object localization.

The feature point representation is very simple, since it assumes that the learned features
are present at all times, and only one instance of each feature is ever present in the image.
While this is a drastic simplification, both the pose predictor and the policy still achieve good
results. A more flexible architecture that still learns a concise feature point representation
could further improve policy performance. We hope to explore this in future work.

6.6 Computational Performance and Sample E�ciency

We used the Ca↵e deep learning library (Jia et al., 2014) for CNN training. Each visuomotor
policy required a total of 3-4 hours of training time: 20-30 minutes for the pose prediction
data collection on the robot, 40-60 minutes for the fully observed trajectory pretraining on

24

S. Levine et al. A End-to-End Training of Deep Visuomotor Policies.  JMLR 2016.



Can also be applied to navigation

Goal (300, Predicted 
Action

Egomotion
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Planner
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Mapper

Optimal 
Action

=

Train with back-propagation
Gupta et al., CVPR 2017. Cognitive Mapping and Planning for Visual Navigation



Goal (300, 400) Action to 
Execute

Egomotion
Differentiable 

Mapper
Differentiable 

Planner

Goal (chair, table, door)

Gupta et al., CVPR 2017. Cognitive Mapping and Planning for Visual Navigation



Results (Novel Env, Go To Object)

RGB InputDepth Input

Gupta et al., CVPR 2017. Cognitive Mapping and Planning for Visual Navigation



Free Space
Agent can make predictions about its surroundings



Free Space
Agent can make predictions about its surroundings



Free Space
Agent can make predictions about its surroundings



Free Space Hallway Room

Agent can make predictions about its surroundings



Free Space Hallway Room

Agent can make predictions about its surroundings



But representations are still important!

RGB InputDepth Input

Gupta et al., CVPR 2017. Cognitive Mapping and Planning for Visual Navigation



RGBD - No stop RGB - No Noise
Model Easy Med. Hard Overall Easy Med. Hard Overall

ResNet + GRU + IL 0.76 0.28 0.10 0.38 0.71 0.18 0.06 0.32
Target-driven RL [47] 0.89 0.45 0.21 0.52 0.69 0.22 0.07 0.33
Metric Spatial Map + RL [9] 0.89 0.45 0.21 0.52 0.70 0.24 0.11 0.35
Metric Spatial Map + FBE + RL 0.92 0.46 0.29 0.56 0.78 0.46 0.23 0.49
Active Neural SLAM (ANS) [6] 0.93 0.50 0.32 0.58 0.79 0.53 0.30 0.54
Neural Topological SLAM (NTS) 0.94 0.70 0.60 0.75 0.87 0.60 0.46 0.64

Table 2: No stop and no noise. Success rate of the proposed model NTS and the baselines without stop action (left) and without motion
noise (right) in the RGBD setting.
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Figure 8: Performance of the proposed model NTS and two ablations as a function of number of sequential goals.

6.1. Ablations and Sequential Goals

In this subsection, we evaluate the proposed model on se-
quential goals in a single episode and study the importance
of the topological map or the graph and the Semantic Score
Predictor (FS). For creating a test episode with sequen-
tial goals, we randomly sample a goal between 1.5m to 5m
away from the last goal. The agent gets a time budget of
500 timesteps for each goal. We consider two ablations:

NTS w/o Graph. We pick the direction with the highest
score in the current image greedily, not updating or using
the graph over time. Intuitively, the performance of this ab-
lation should deteriorate as the number of sequential goals
increases as it has no memory of past observations.

Neural Topological SLAM w/o Score Function. In this
ablation, we do not use the Semantic Score Predictor (FS)
and pick a ghost node randomly as the long-term goal when
the Goal Image is not localized in the current graph. In-
tuitively, the performance of this ablation should improve
with the increase in the number of sequential goals, as ran-
dom exploration would build the graph over time and in-
crease the likelihood of the Goal Image being localized.

We report the success rate and SPL of NTS and the two
ablations as a function of the number of sequential goals
in Figure 8. Success, in this case, is defined as the ra-
tio of goals reached by the agent across a test set of 1000
episodes. Firstly, the performance of NTS is considerably
higher than both the ablations, indicating the importance of
both the components. The performance of all the models
decreases with an increase in the number of sequential goals

because if the agent fails to reach an intermediate goal, there
is a high chance that the subsequent goals are farther away.
However, the performance gap between NTS and NTS w/o
Score Function decreases and the performance gap between
NTS and NTS w/o Graph increases with increase in the
number of sequential goals as expected. This indicates that
the topological map becomes more important over time as
the agent explores a new environment, and while the Se-
mantic Score Predictor is the most important at the begin-
ning to explore efficiently.

7. Discussion

We designed topological representations for space that
leverage semantics and afford coarse geometric reason-
ing. We showed how we can build such representation au-
tonomously and use them for the task of image-goal navi-
gation. Topological representations provided robustness to
actuation noise, while semantic features stored at nodes al-
lowed the use of statistical regularities for efficient explo-
ration in novel environments. We showed how advances
made in this paper make it possible to study this task in
settings where no prior experience from the environment is
available, resulting in a relative improvement of over 50%.
In the future, we plan to deploy our models on real robots.
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But, at the 
same time, 

importance of 
the  topological 
representation  

increases

Semantic score function improves 
efficiency when no prior experience 
with environment is available.

As experience in environment 
increases, utility of semantic 

function decreases

Visual Semantic Navigation


