From Vision to Robotics

Saurabh Gupta

Cambrian Explosion (541 million years ago)

Sea Squirts

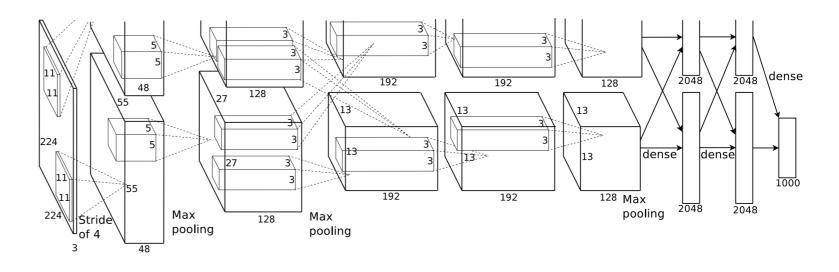
We must perceive in order to move, but we must also move in order to perceive.

— JJ Gibson

Vision, like other sensory functions, has its evolutionary rationale rooted in improved motor control. Although organisms can of course see when motionless or paralyzed, the visual system of the brain has the organization, computational profile, and architecture it has in order to facilitate the organism's thriving at feeding fleeing, fighting, and reproduction.

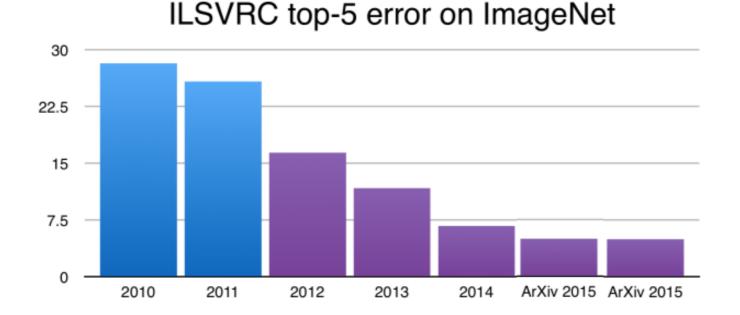
> — Churchland, Ramachandran and Sejnowski A critique of pure vision

Factors Leading to Success in Computer Vision



Hand-crafted features to End-to-end trained features

Large-scale labeled data



A. Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012 J. Deng et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009

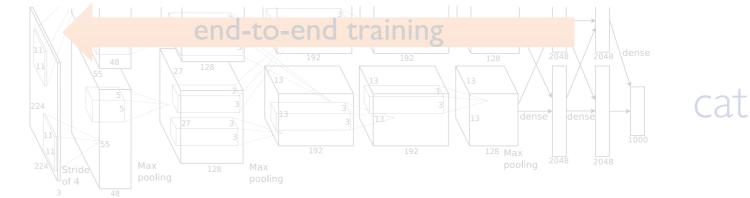
Factors Leading to Success in Computer Vision

 \rightarrow

Hand-crafted features

If and how large-scale learning can lead to similar improvements in robotics? (e.g. DPM) (e.g. SVM)

End-to-end trained features



A. Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012

Robotic Tasks

Navigation

Goal "Go 300 feet North, 400 feet East"

"Go Find a Chair"

Robot with a first person camera

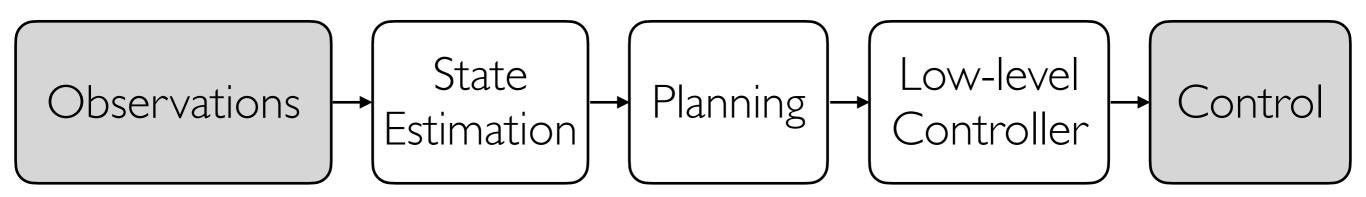
Dropped into a novel environment

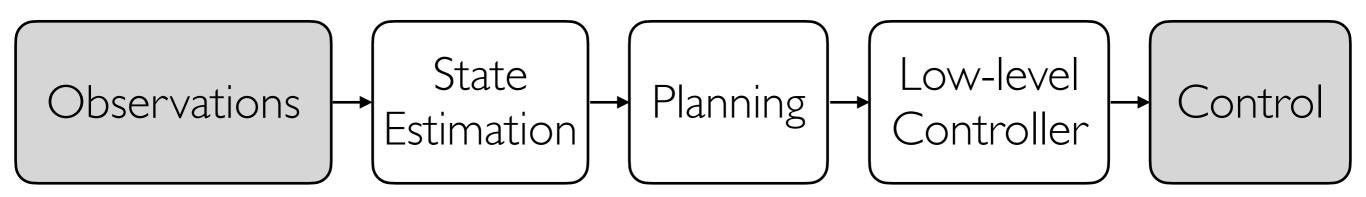
Navigate around

Robotic Tasks

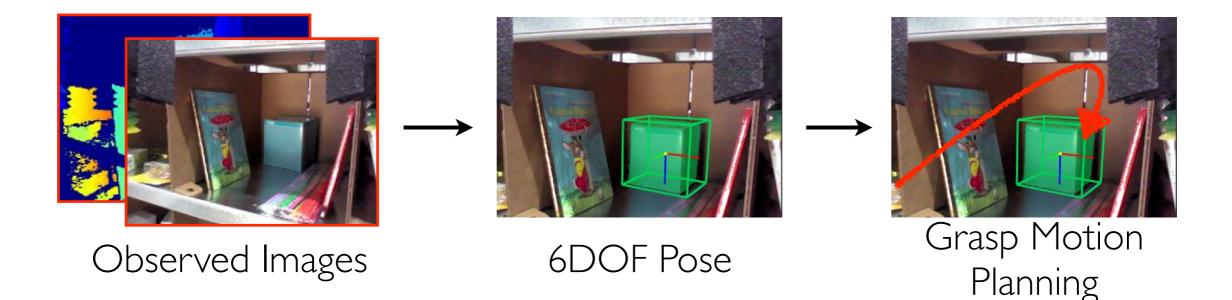
Manipulation



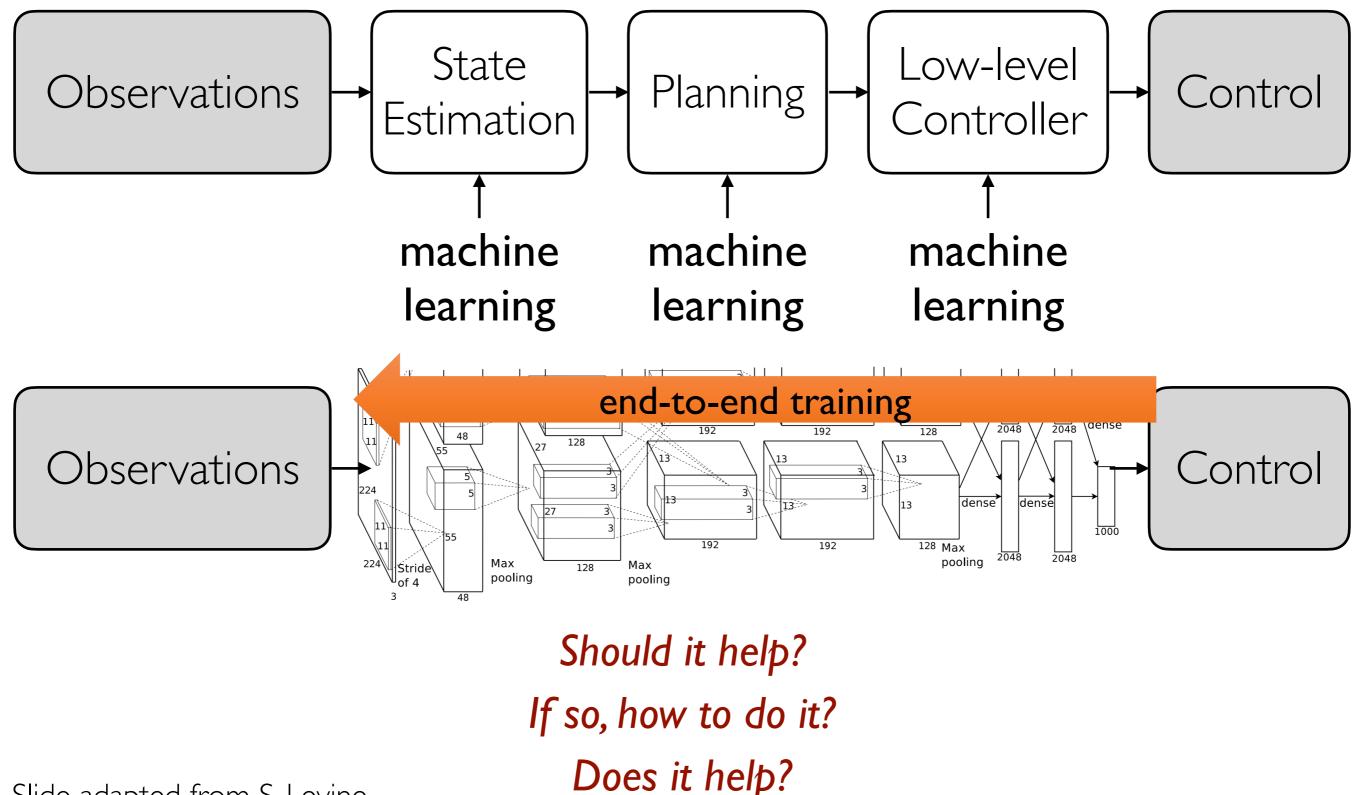




Manipulation

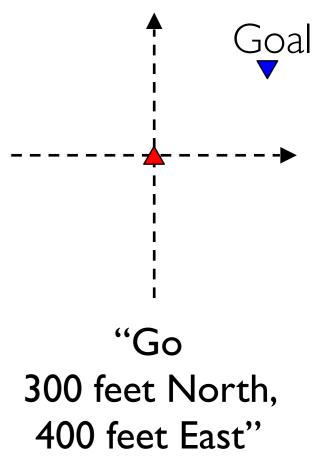


Slide adapted from S. Levine.



Slide adapted from S. Levine.

Robot Navigation



"Go Find a Chair"

Robot with a first person camera

Dropped into a novel environment

Navigate around

Mapping

Observed Images

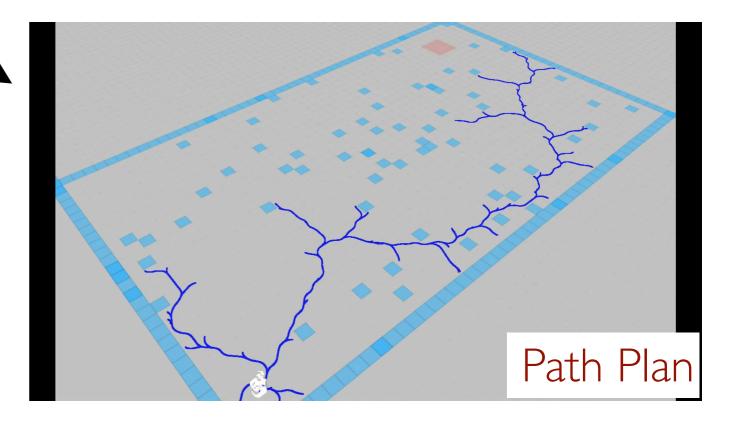
Planning

 Hartley and Zisserman. 2000. Multiple View Geometry in Computer Vision
 Thrun, Burgard, Fox. 2005. Probabilistic Robotics

Canny. 1988. The complexity of robot motion planning.
Kavraki et al. RA1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces.
Lavalle and Kuffner. 2000. Rapidly-exploring random trees: Progress and prospects.

Video Credits: Mur-Artal et al., Palmieri et al.

Geometric Reconstruction



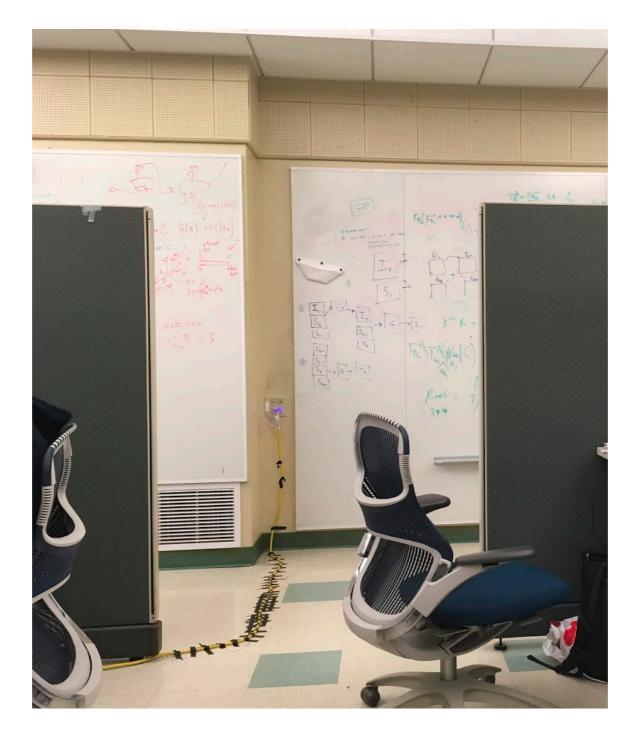
Geometric 3D Reconstruction of the World

Unnecessary

Do we need to tediously reconstruct everything on this table?

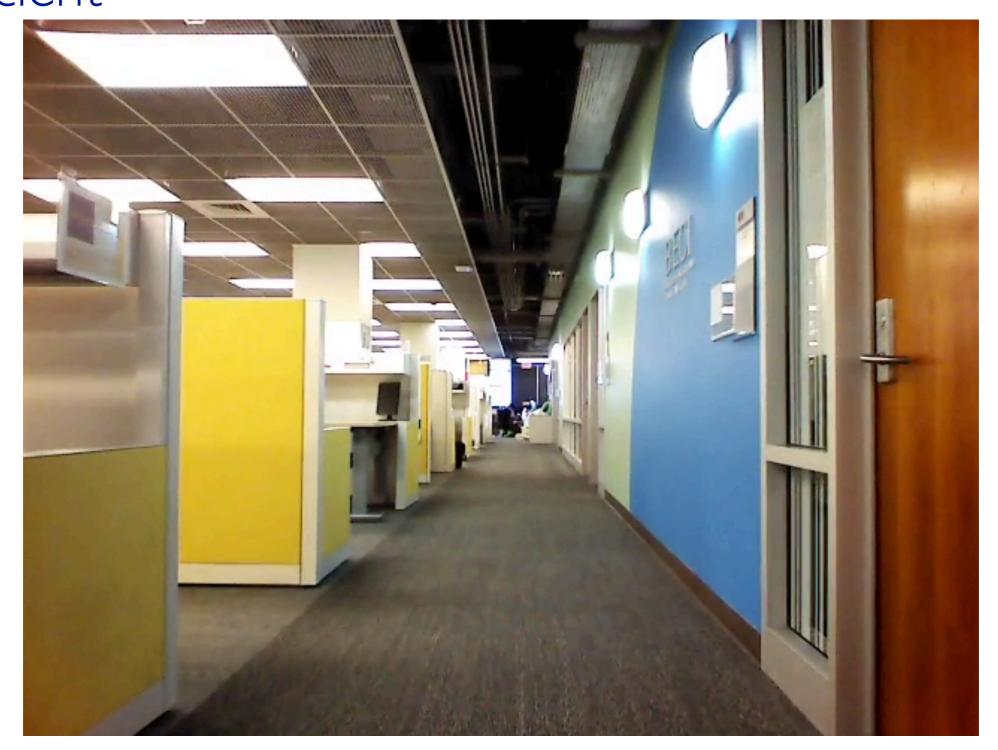
Video Credit: Mur-Artal and Tardos, TRobotics 2016. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.

Geometric 3D Reconstruction of the World Insufficient



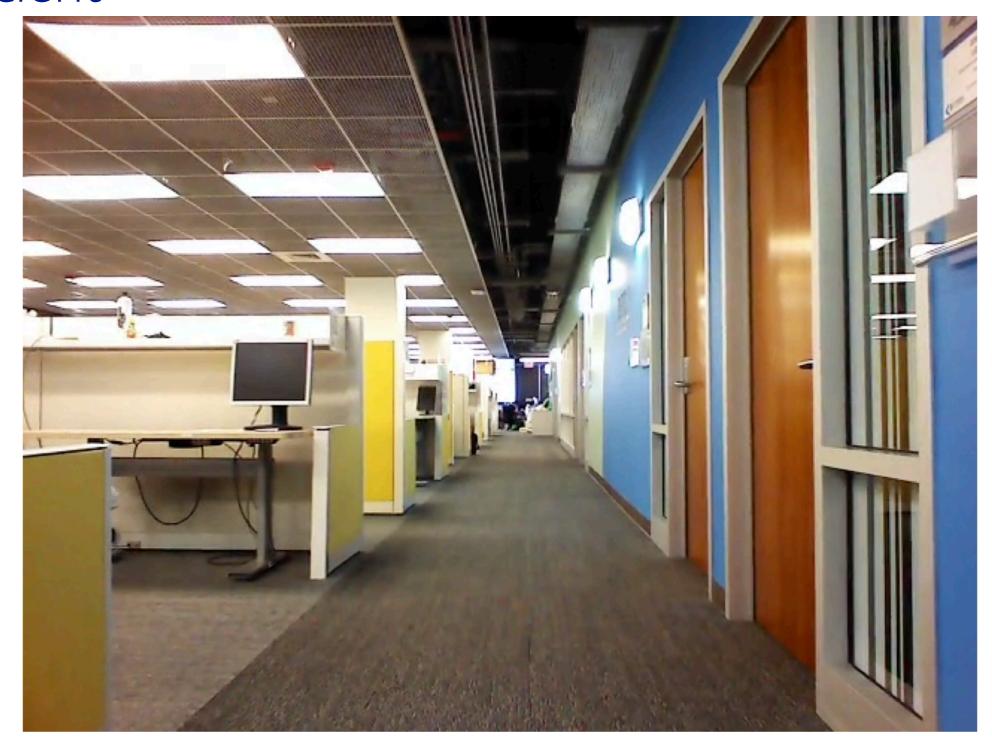
Can't speculate about space not directly observed.

Geometric 3D Reconstruction of the World Insufficient

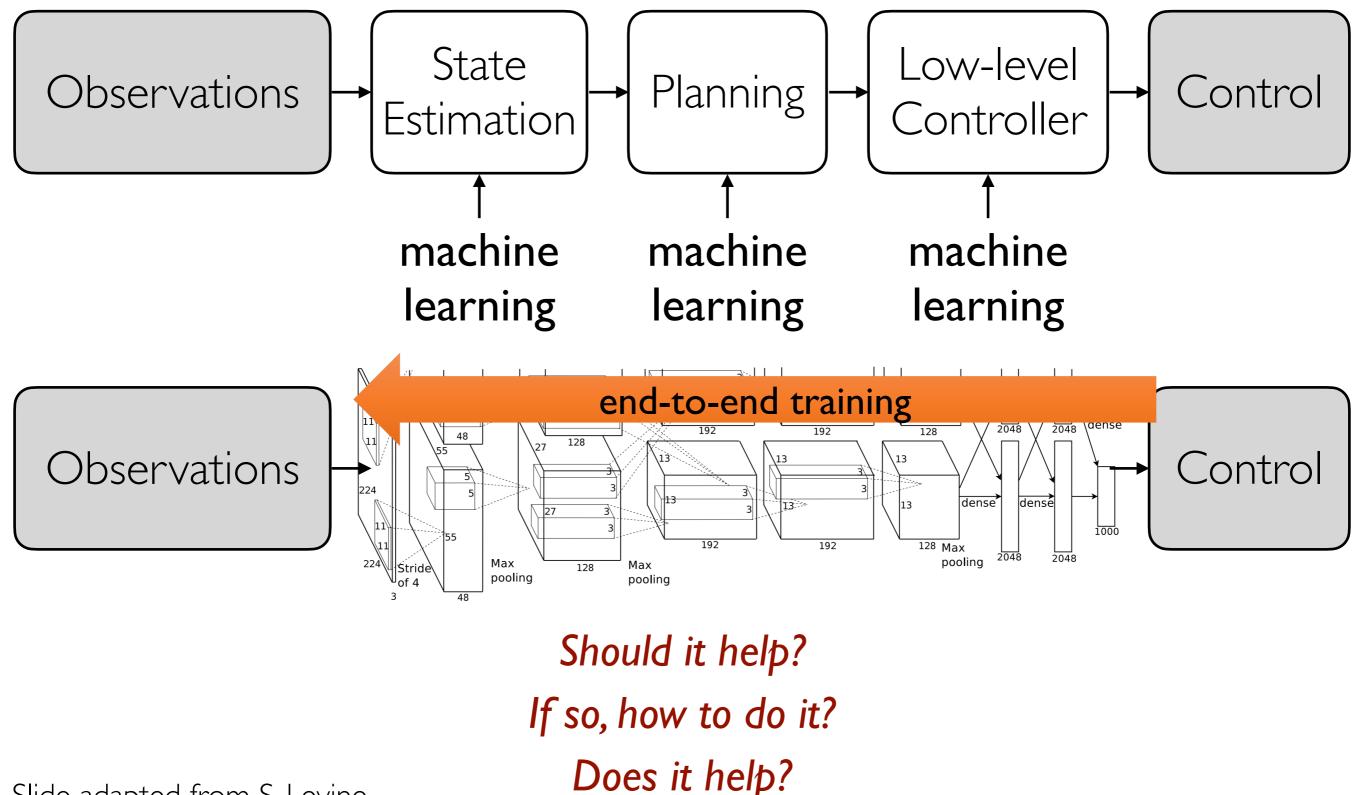


Can't exploit patterns in layout of indoor spaces.

Geometric 3D Reconstruction of the World Insufficient

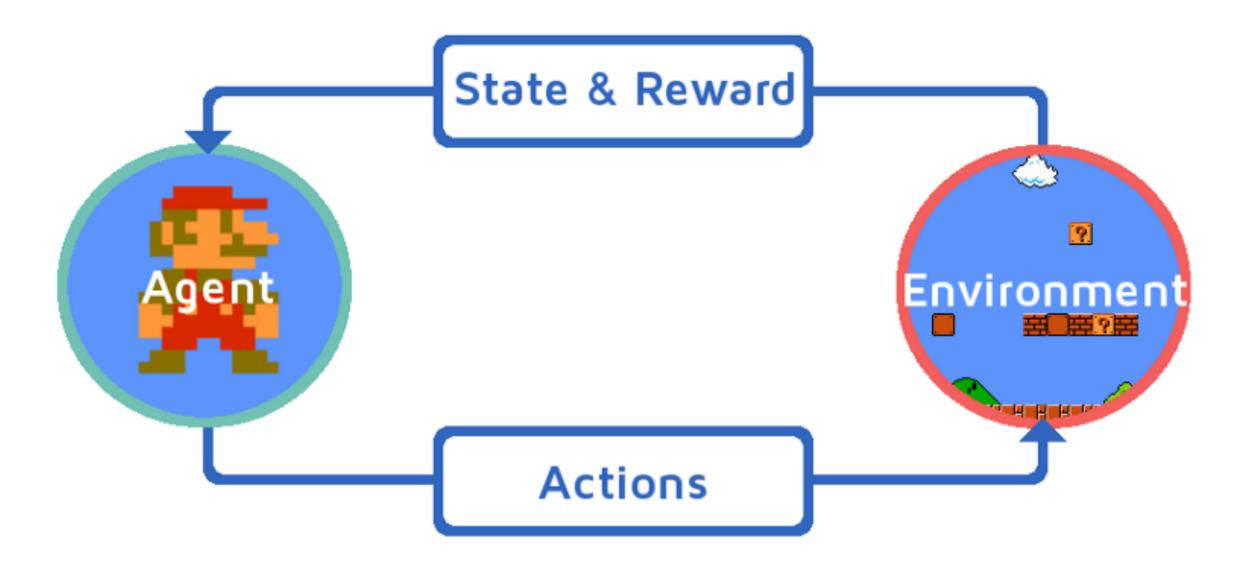


Ignore navigational affordances.



Slide adapted from S. Levine.

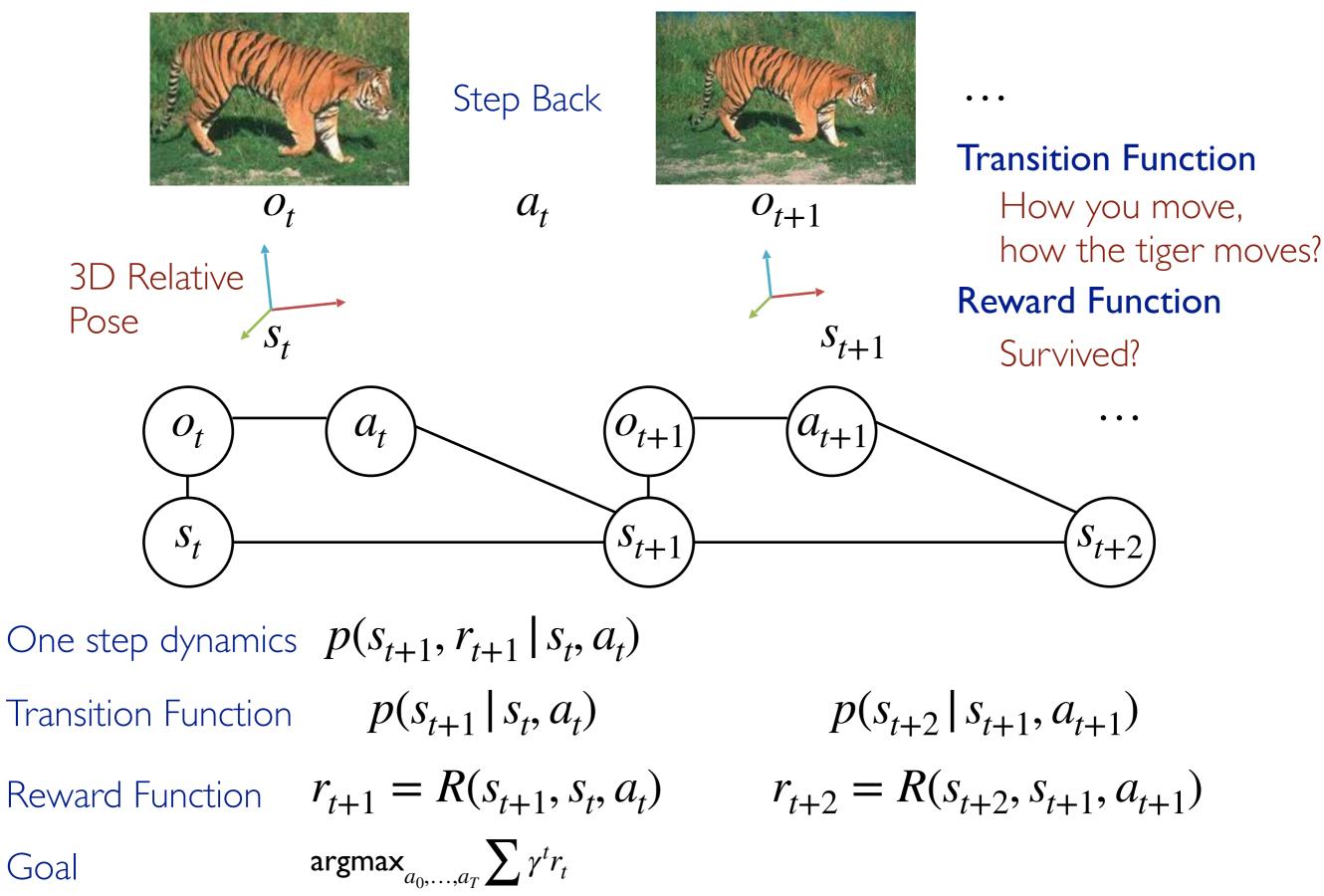
Agent Environment Interface



Reinforcement Learning

Image Source: https://www.freecodecamp.org/news/a-brief-introduction-to-reinforcement-learning-7799af5840db/

Markov Decision Process

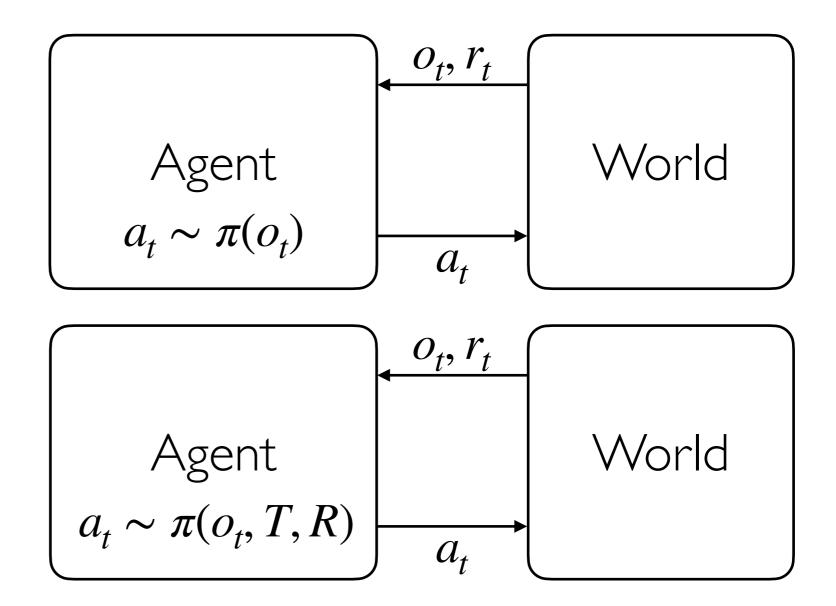


Solving MDPs

Policy: $a_t \sim \pi(o_t)$

Most General Case

More Specific Case



Fully Observed System $o_t = s_t$ Known Transition Function $s_{t+1} \sim T(s_t, a_t)$ Known Reward Function $R(s_{t+1}, s_t, a_t)$

Behavior Cloning

Train Time

Assume an expert e can solve this MDP.

Agent

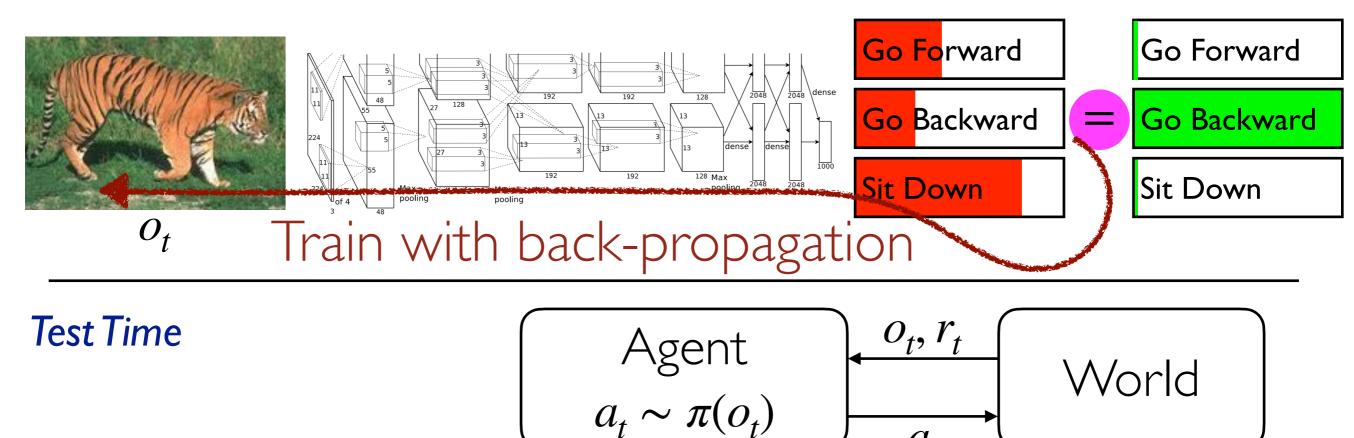
$$o_t, r_t$$
 World

 $a_t \sim \pi_e(o_t)$
 a_t

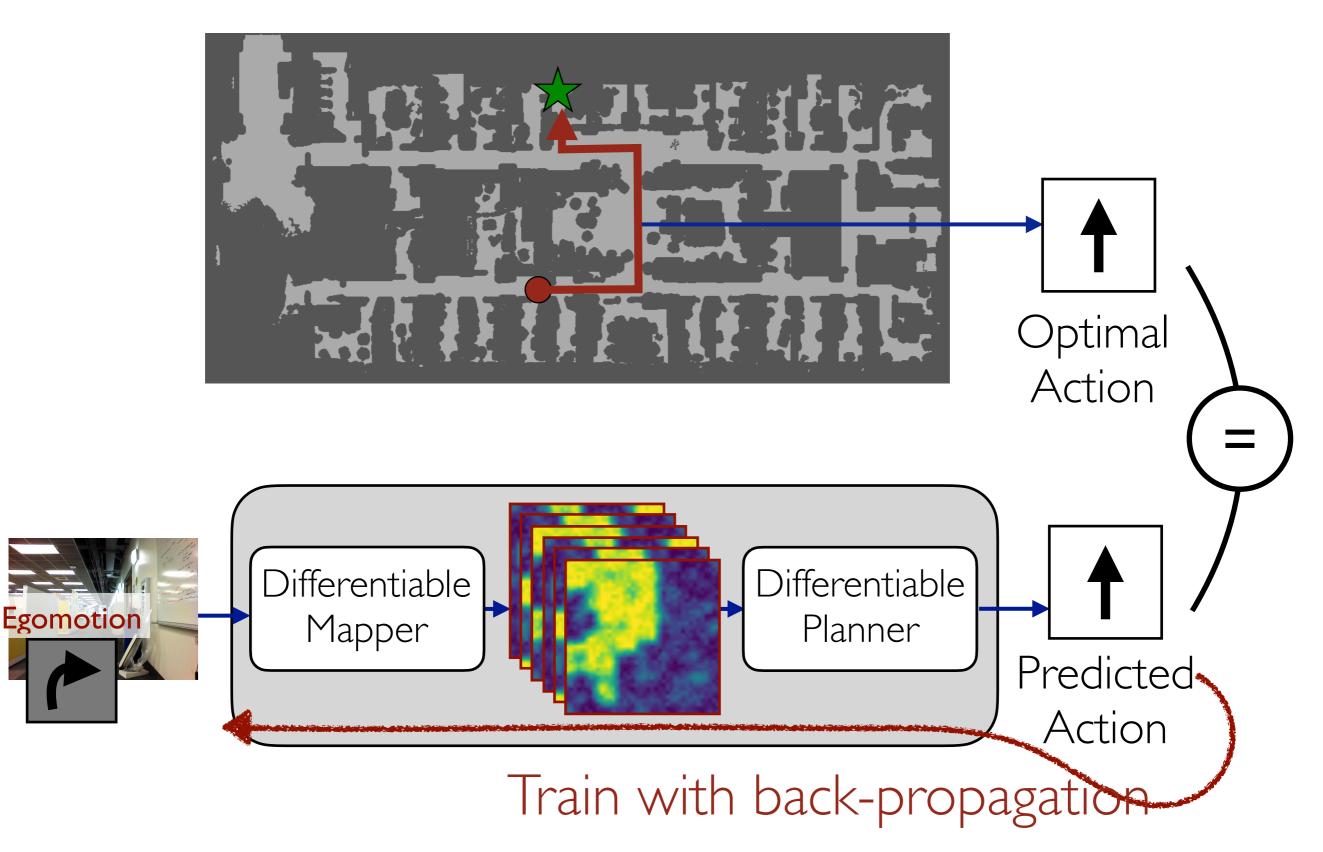
 \mathcal{A}_{t}

 $\pi_e(O_t)$

- 1. Ask the expert e to solve this MDP.
- 2. Collect labeled dataset D from expert.
- 3. Train a function $\pi(o_t)$ that mimics $\pi_e(o_t)$ on D. $\pi(o_t)$



Supervision from an Algorithmic Expert

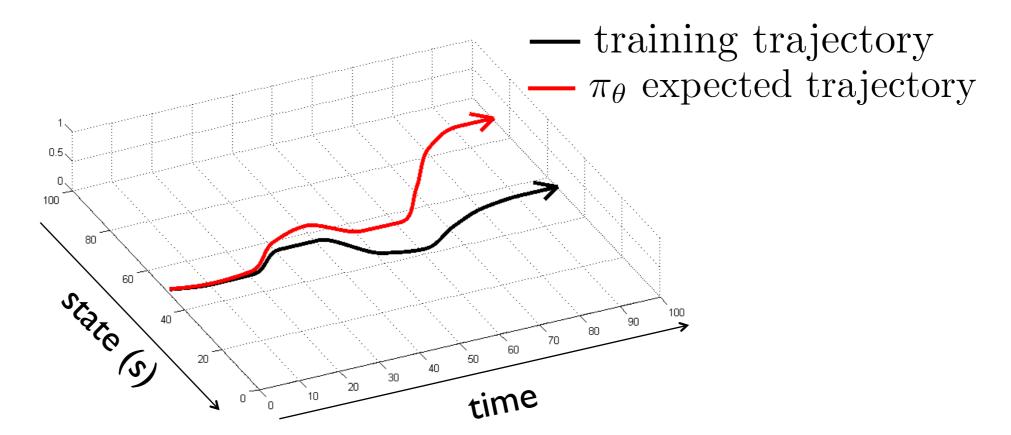


S. Gupta et al. Cognitive Mapping and Planning for Visual Navigation. CVPR 2017.

Behavior Cloning

Does it always work?

No, data mis-match problem



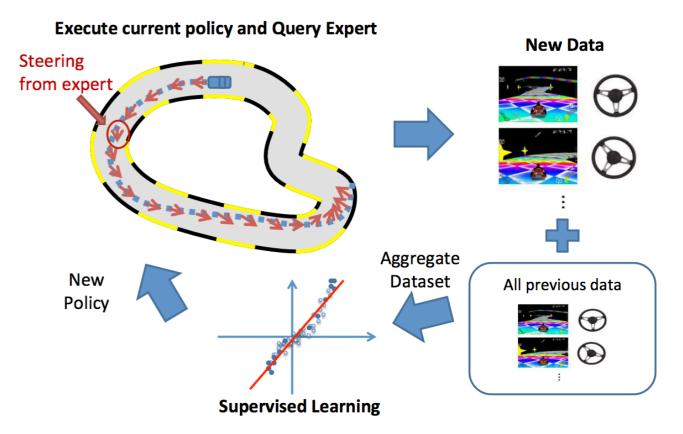
Fix Data Mis-Match Problem

DAgger: Dataset Aggregation

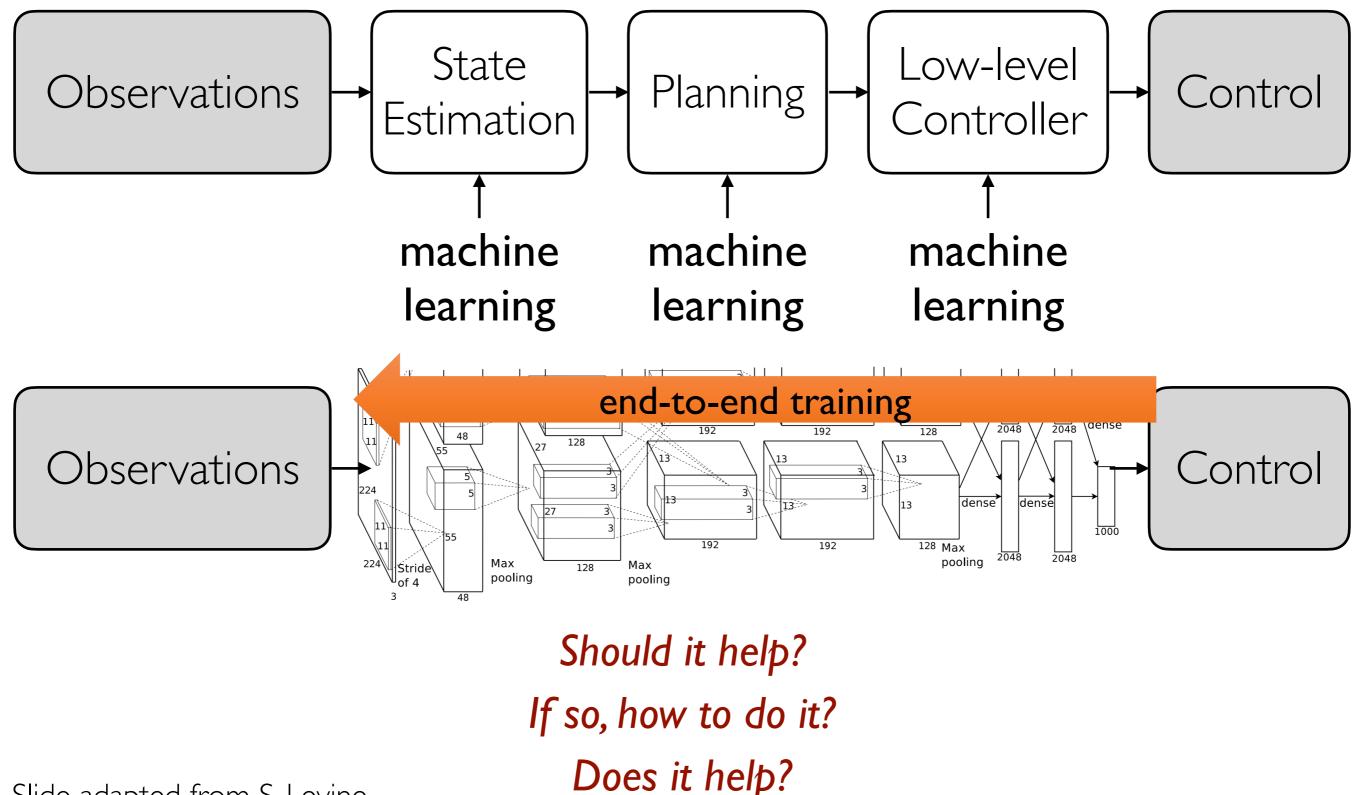
Collect labels on states visited by $\pi(o_t)$ instead of $\pi_e(o_t)$.

▶ 1. train \$\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)\$ from human data \$\mathcal{D} = {\mathbf{o}_1, \mathbf{a}_1, \ldots, \mathbf{o}_N, \mathbf{a}_N}\$
2. run \$\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)\$ to get dataset \$\mathcal{D}_{\pi} = {\mathbf{o}_1, \ldots, \mathbf{o}_M}\$
3. Ask human to label \$\mathcal{D}_{\pi}\$ with actions \$\mathbf{a}_t\$

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



S. Ross et al. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTAT 2011.



Slide adapted from S. Levine.

Supervision from an Algorithmic Expert

Deep Sensorimotor Learning

rll.berkeley.edu/deeplearningrobotics

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

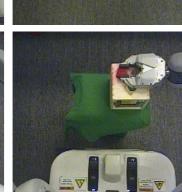
S. Levine et al. A End-to-End Training of Deep Visuomotor Policies. JMLR 2016.

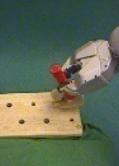
training

visual test

cube

hanger





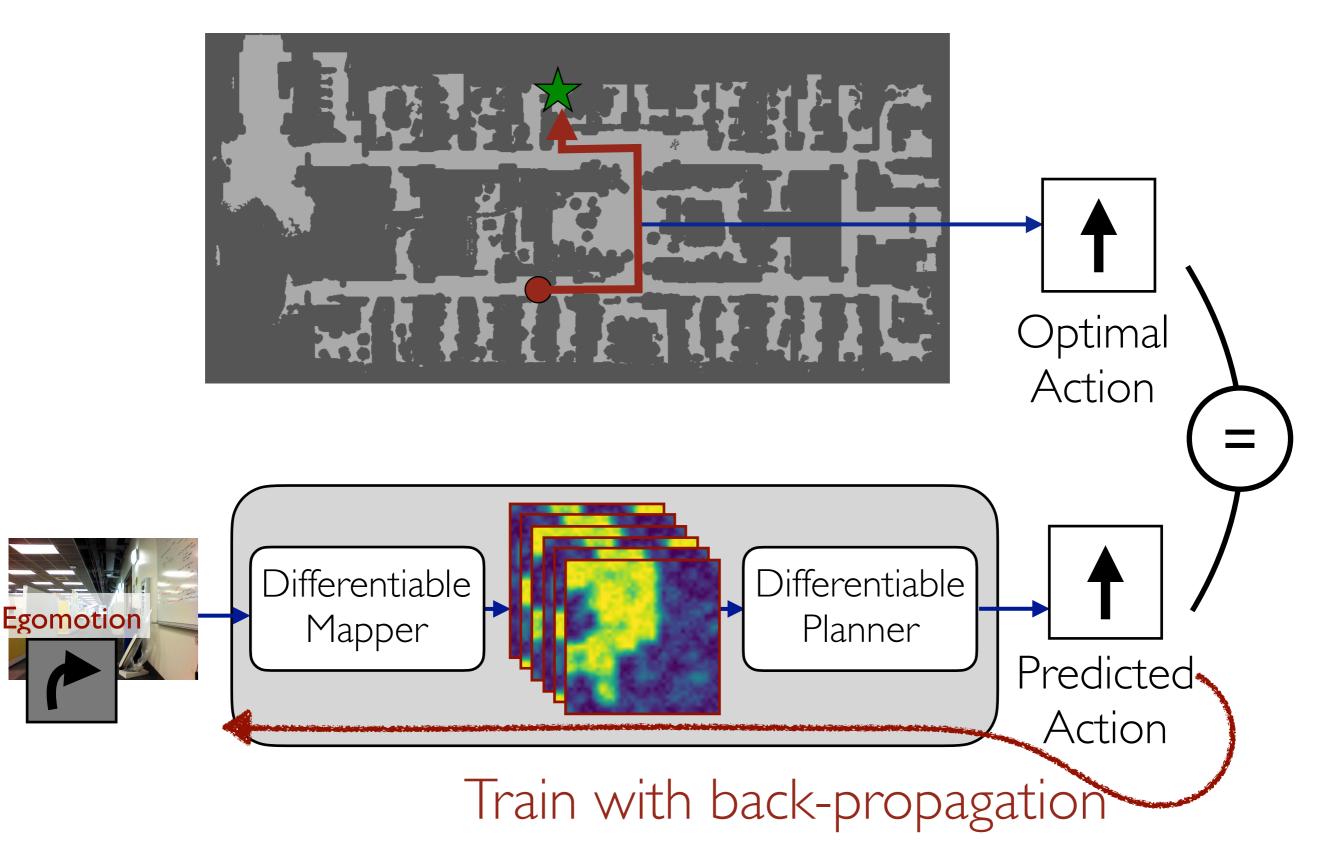
hammer

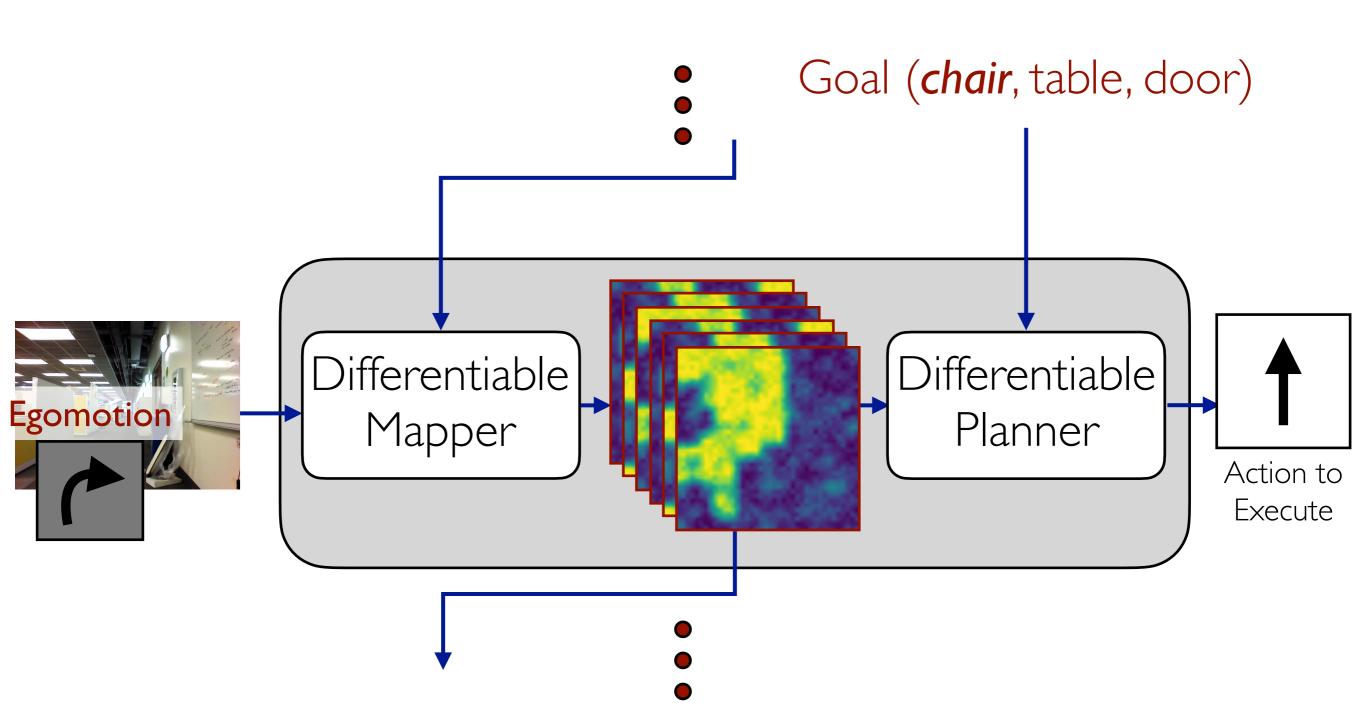
coat hanger	training (18)	spatial test (24)	visual test (18)
end-to-end	100%	100%	100%
pose features	88.9%	87.5%	83.3%
pose prediction	55.6%	58.3%	66.7%
shape cube	training (27)	spatial test (36)	visual test (40)
end-to-end	96.3%	91.7%	87.5%
pose features	70.4%	83.3%	40%
pose prediction	0%	0%	n/a
toy hammer	training (45)	spatial test (60)	visual test (60)
end-to-end	91.1%	86.7%	78.3%
pose features	62.2%	75.0%	53.3%
pose prediction	8.9%	18.3%	n/a
bottle cap	training (27)	spatial test (12)	visual test (40)
end-to-end	88.9%	83.3%	62.5%
pose features	55.6%	58.3%	27.5%

Success rates on training positions, on novel test positions, and in the presence of visual distractors. The number of trials per test is shown in parentheses.

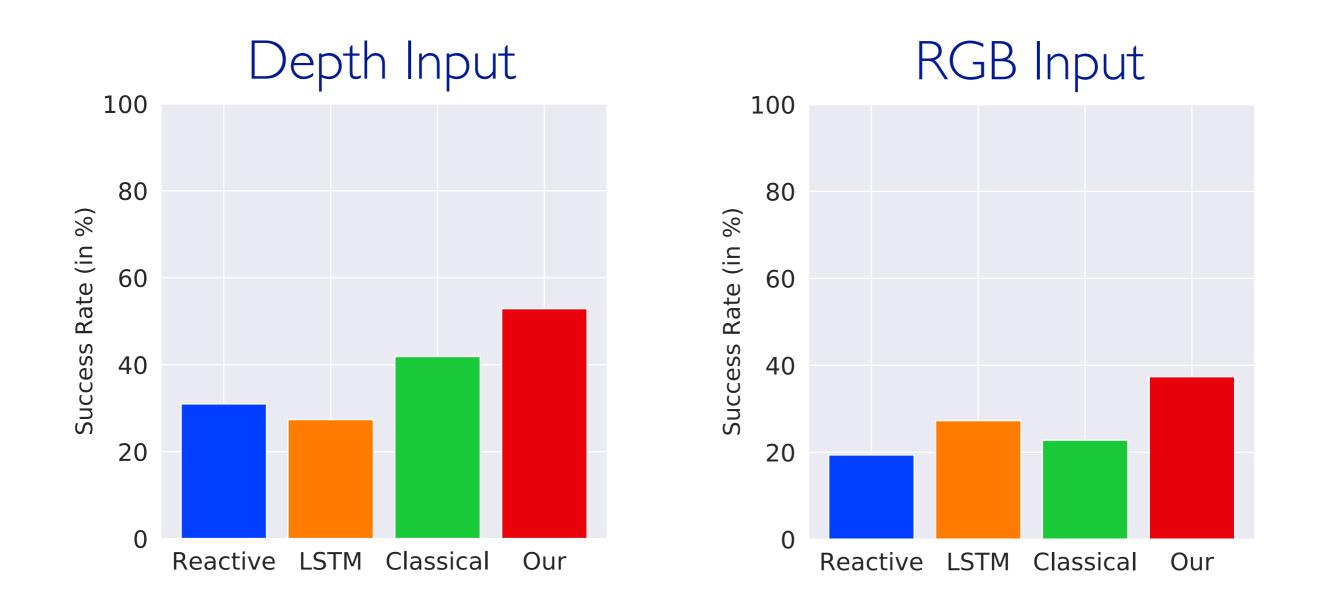
S. Levine et al. A End-to-End Training of Deep Visuomotor Policies. JMLR 2016.

Can also be applied to navigation

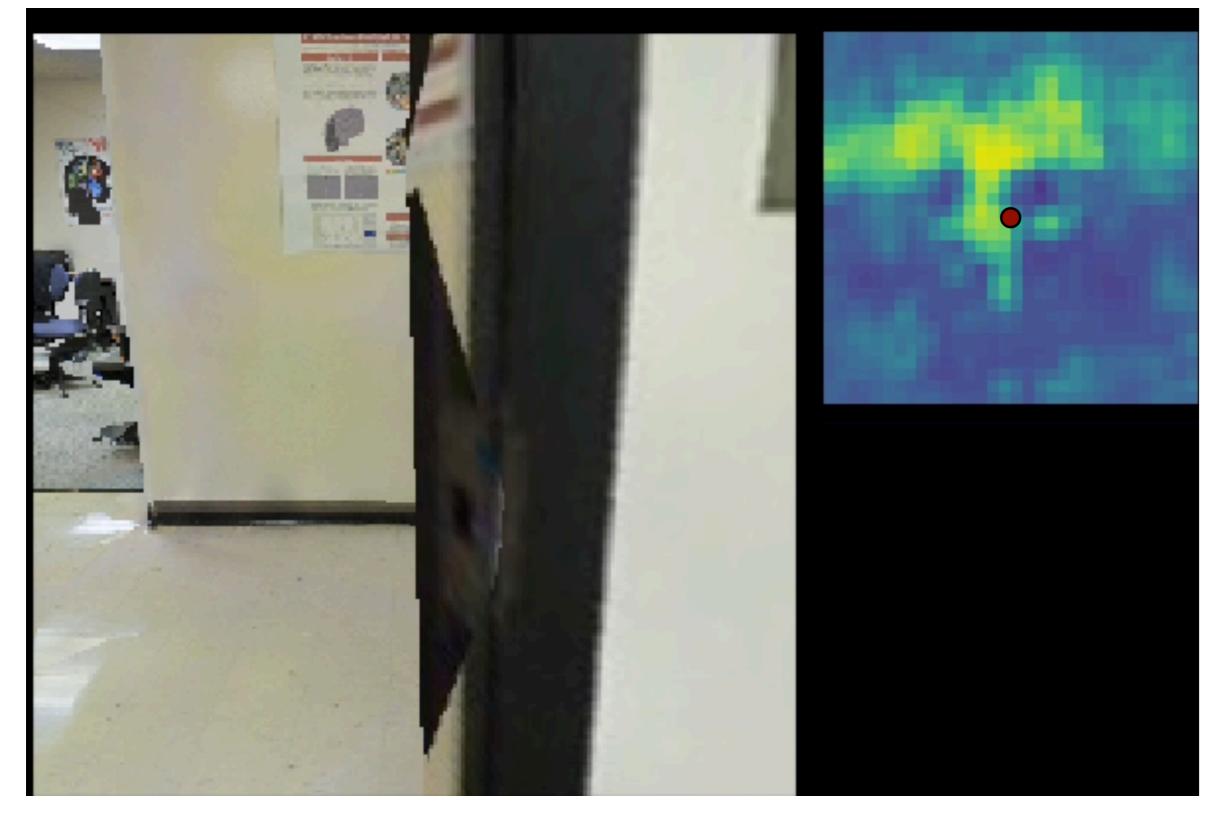




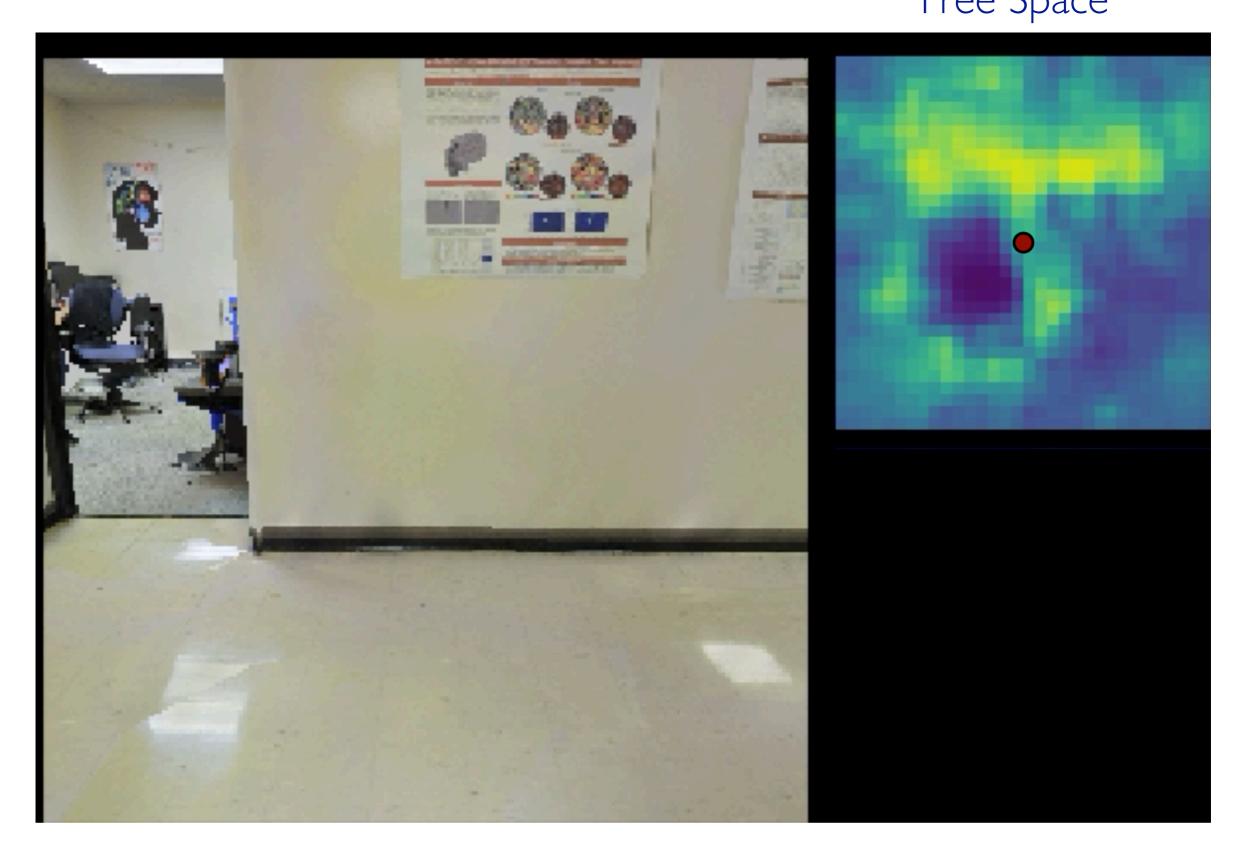
Results (Novel Env, Go To Object)



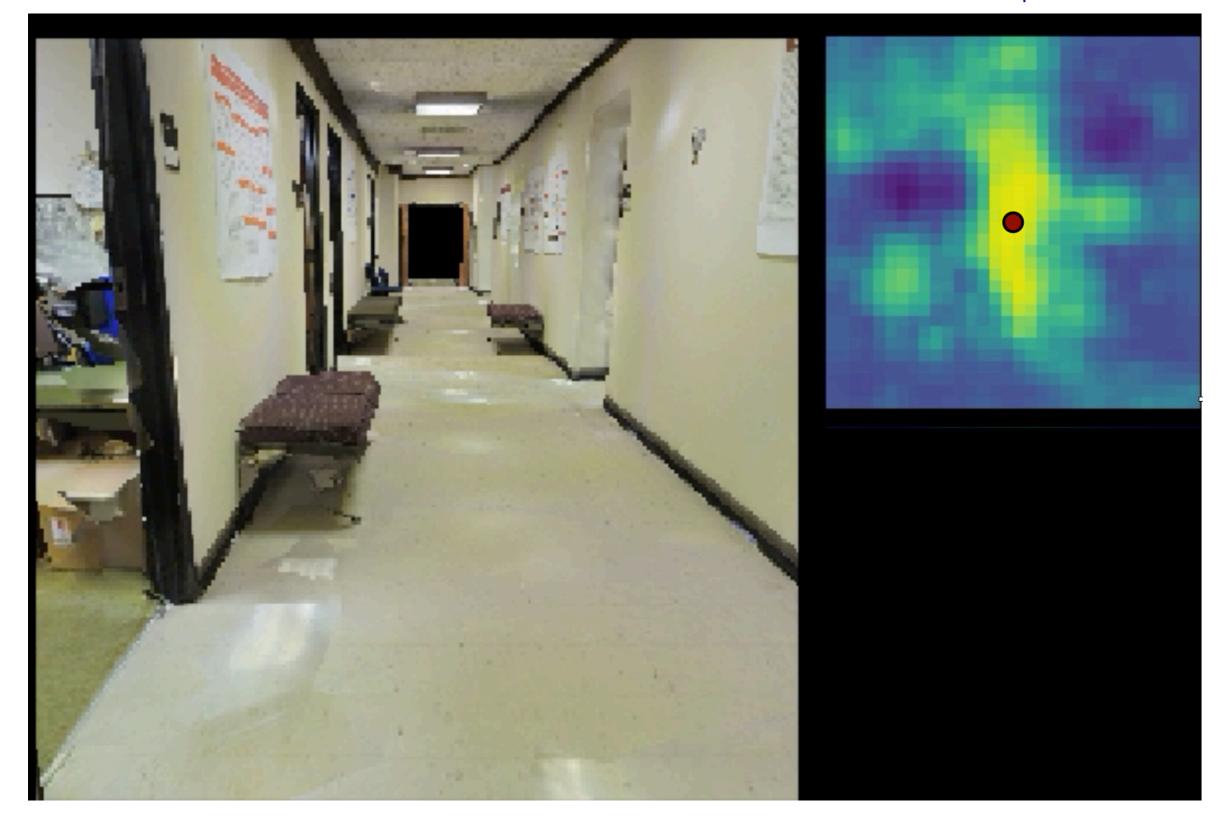
Agent can make predictions about its surroundings Free Space



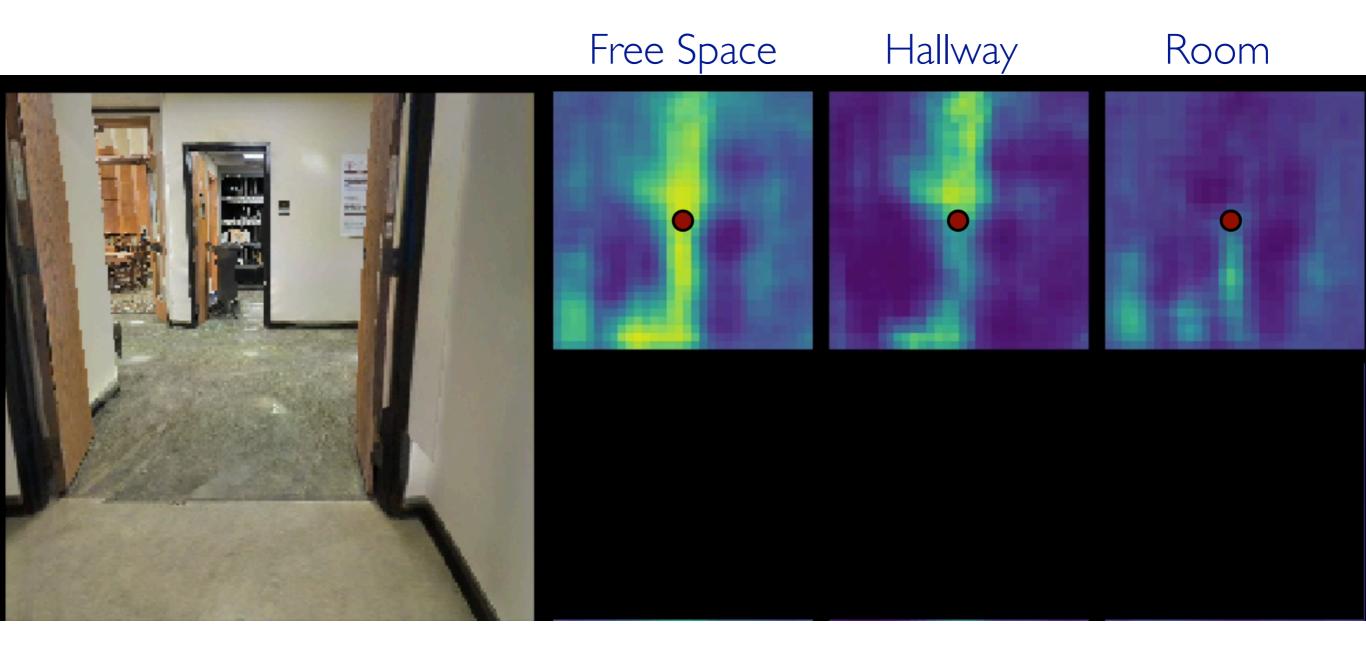
Agent can make predictions about its surroundings Free Space



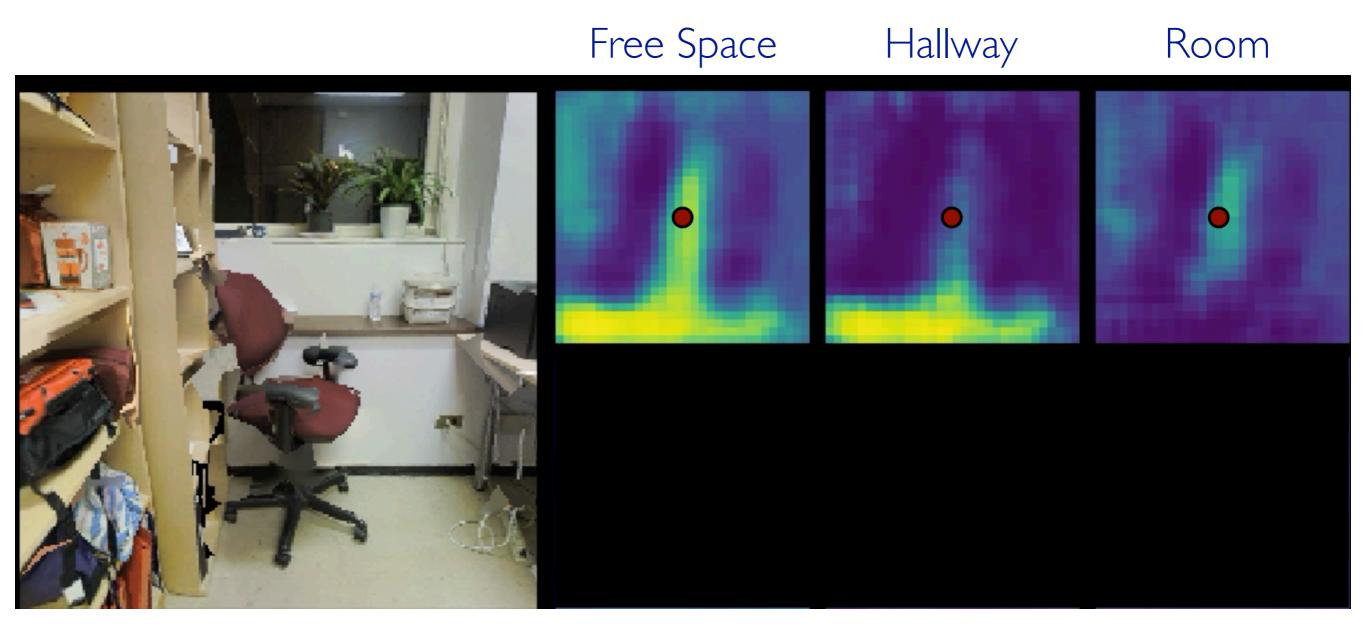
Agent can make predictions about its surroundings Free Space



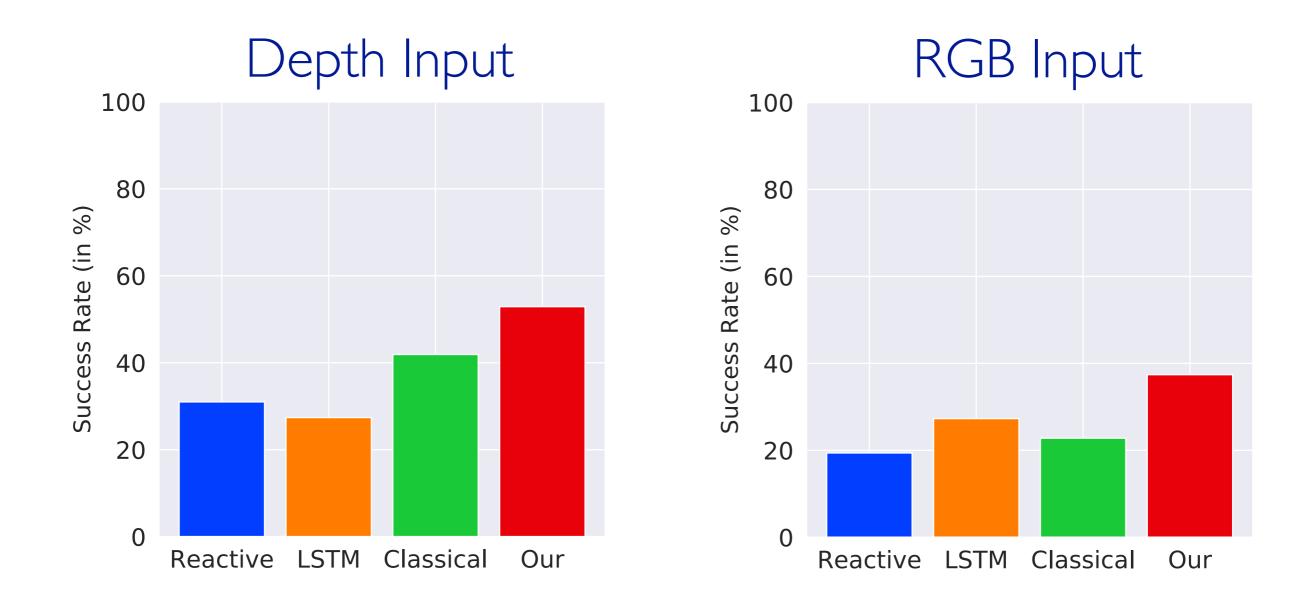
Agent can make predictions about its surroundings



Agent can make predictions about its surroundings



But representations are still important!



Visual Semantic Navigation

