Videos

Saurabh Gupta CS 543 / ECE 549 Computer Vision Spring 2021

Outline

- Correspondence Problems
 - Optical Flow
 - Tracking
 - Mid-level Correspondence
- Recognition in Videos
- Videos as a source of supervision

Correspondence in Time

Tracking (Box-level, long-range) Middle Ground (Mid-level, long-range)

Human Ann Salft Suppervised / Unsupervised Leasyinghetic Data



Source: Xiaolong Wang

Optical Flow (Pixel-level, short-range)

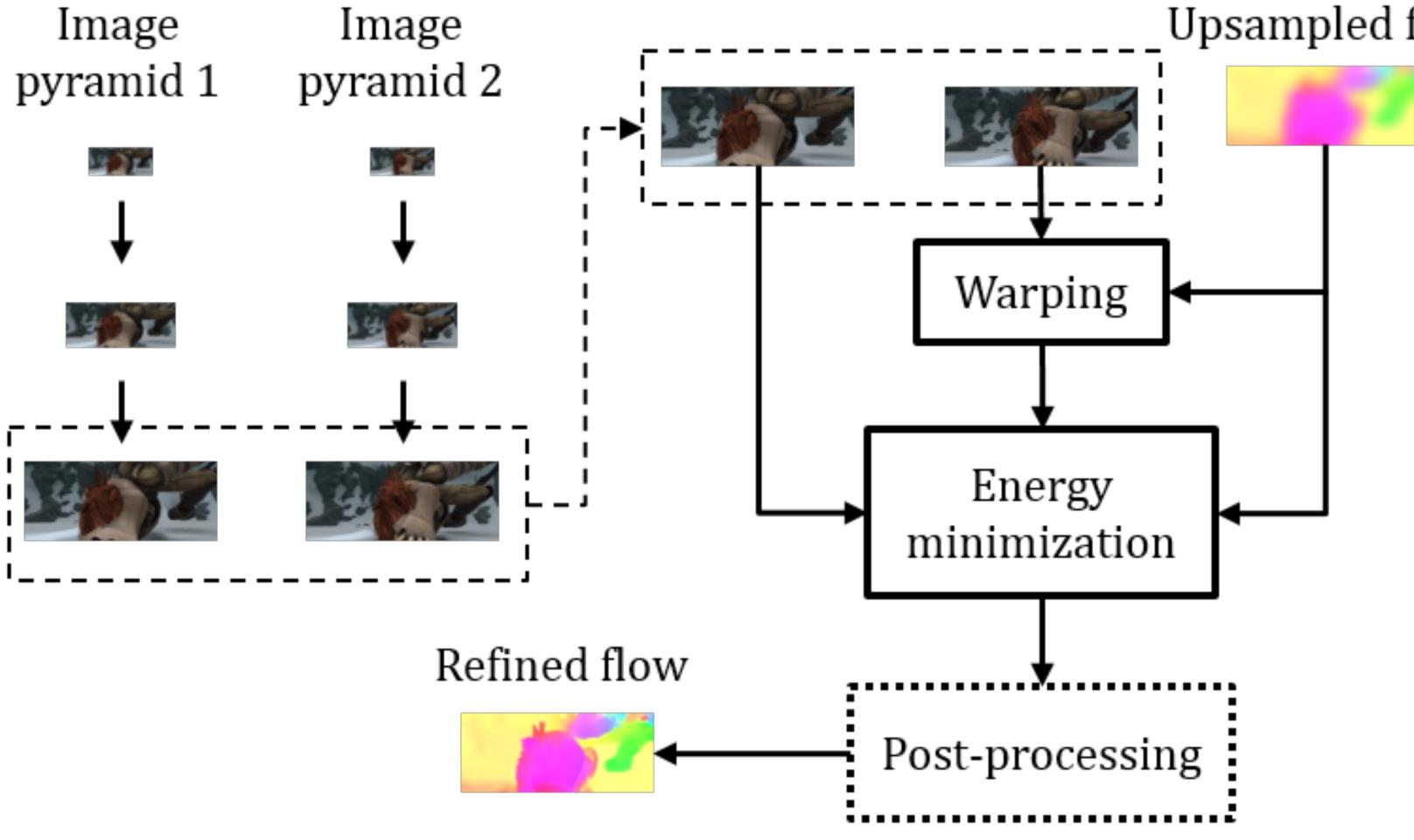
Optical Flow

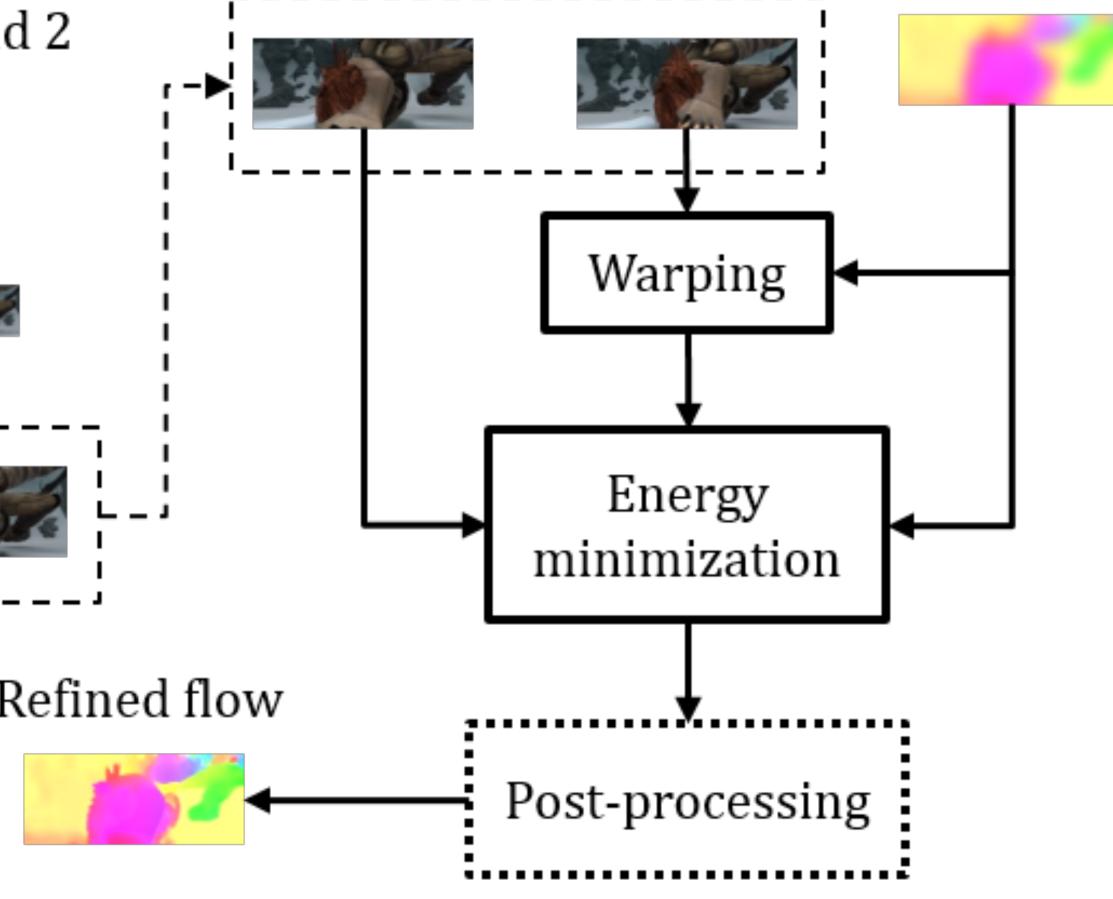
- Data / Supervision
- Architecture

Datasets

- Traditional datasets: Yosemite, Middlebury
- KITTI: w.php?benchmark=flow
- Sintel: <u>http://sintel.is.tue.mpg.de/</u>
- Synthetic Datasets
 - Flying Chairs et al: <u>https://lmb.informatik.uni-</u> freiburg.de/resources/datasets/FlyingChairs.en.html
- Supervision: from Simulation
- Metrics: End-point Error

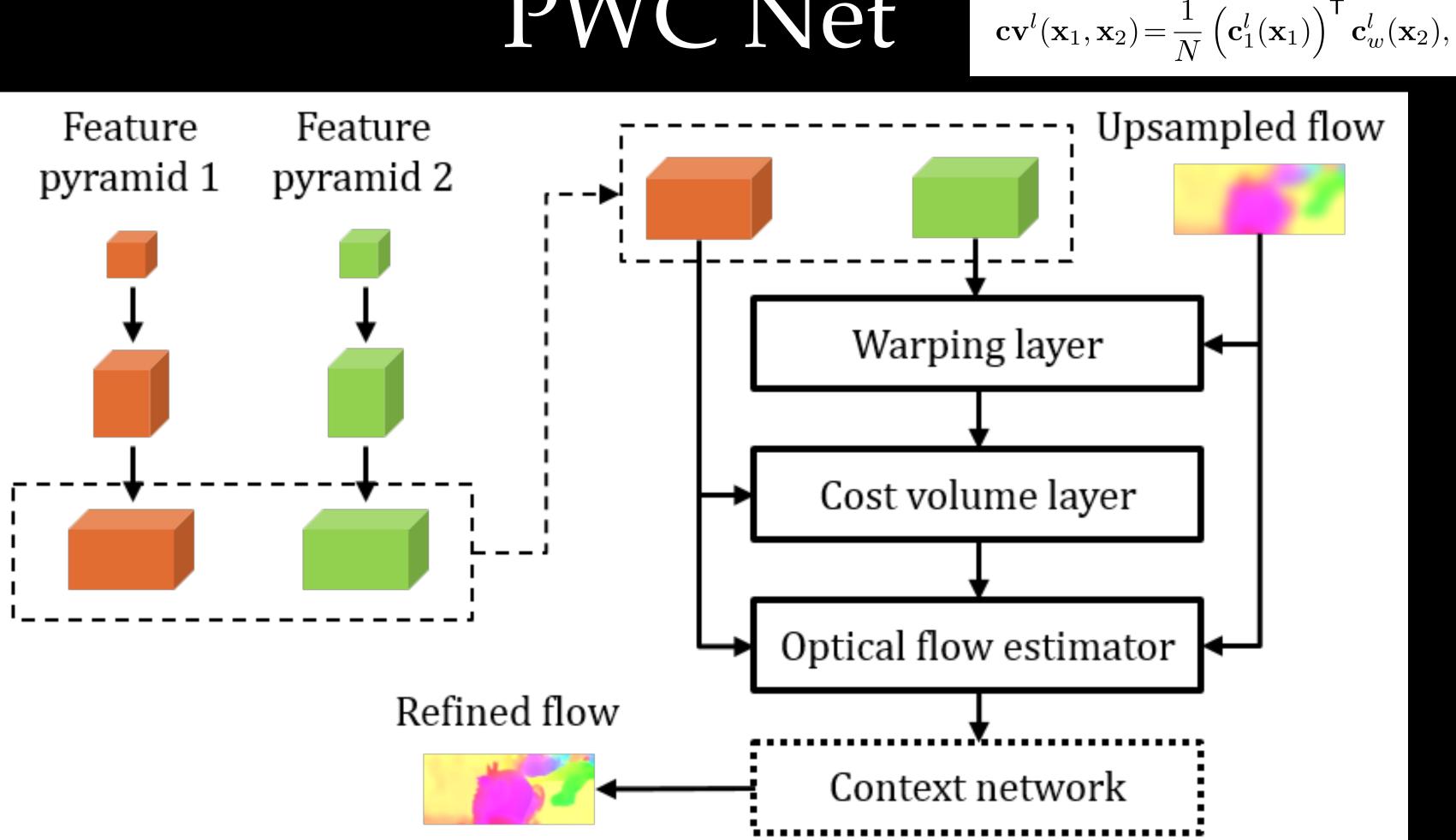
"Classical Optical Flow Pipeline"





Upsampled flow

PWC Net



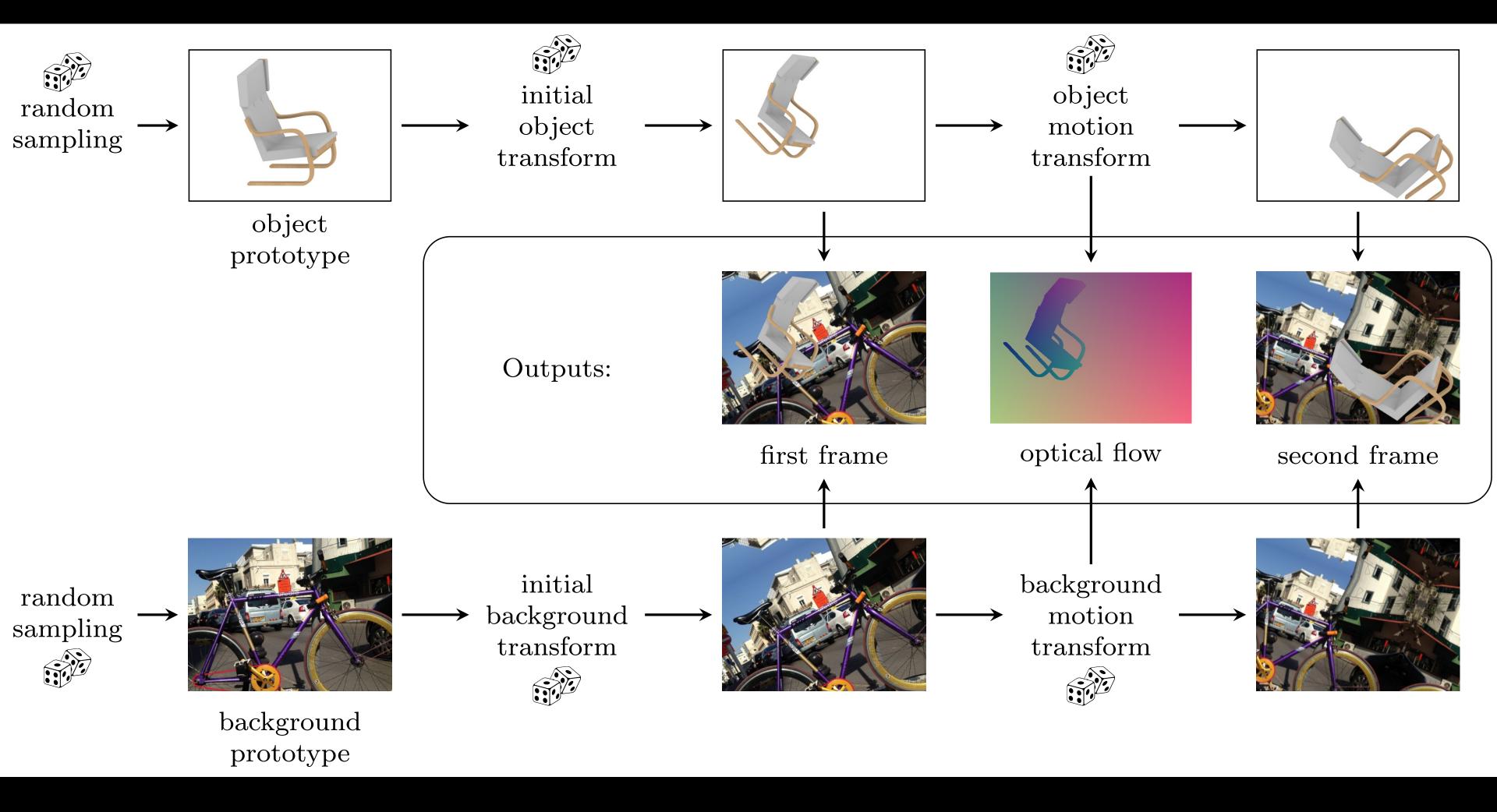
Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation. Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. arXiv 2018.

PWC Net

Max.	Chairs	Sintel	Sintel	KITTI	2012	KITTI	2015
Disp.	Challs	Clean	Final	AEPE	Fl-all	AEPE	Fl-all
0	2.13	3.66	5.09	5.25	29.82%	13.85	43.52%
2	2.09	3.30	4.50	5.26	25.99 %	13.67	38.99 %
Full model (4)	2.00	3.33	4.59	5.14	28.67%	13.20	41.79%
6	1.97	3.31	4.60	4.96	27.05%	12.97	40.94%

(b) **Cost volume.** Removing the cost volume (0) results in moderate performance loss. PWC-Net can handle large motion using a small search range to compute the cost volume.

Flying Chairs Dataset



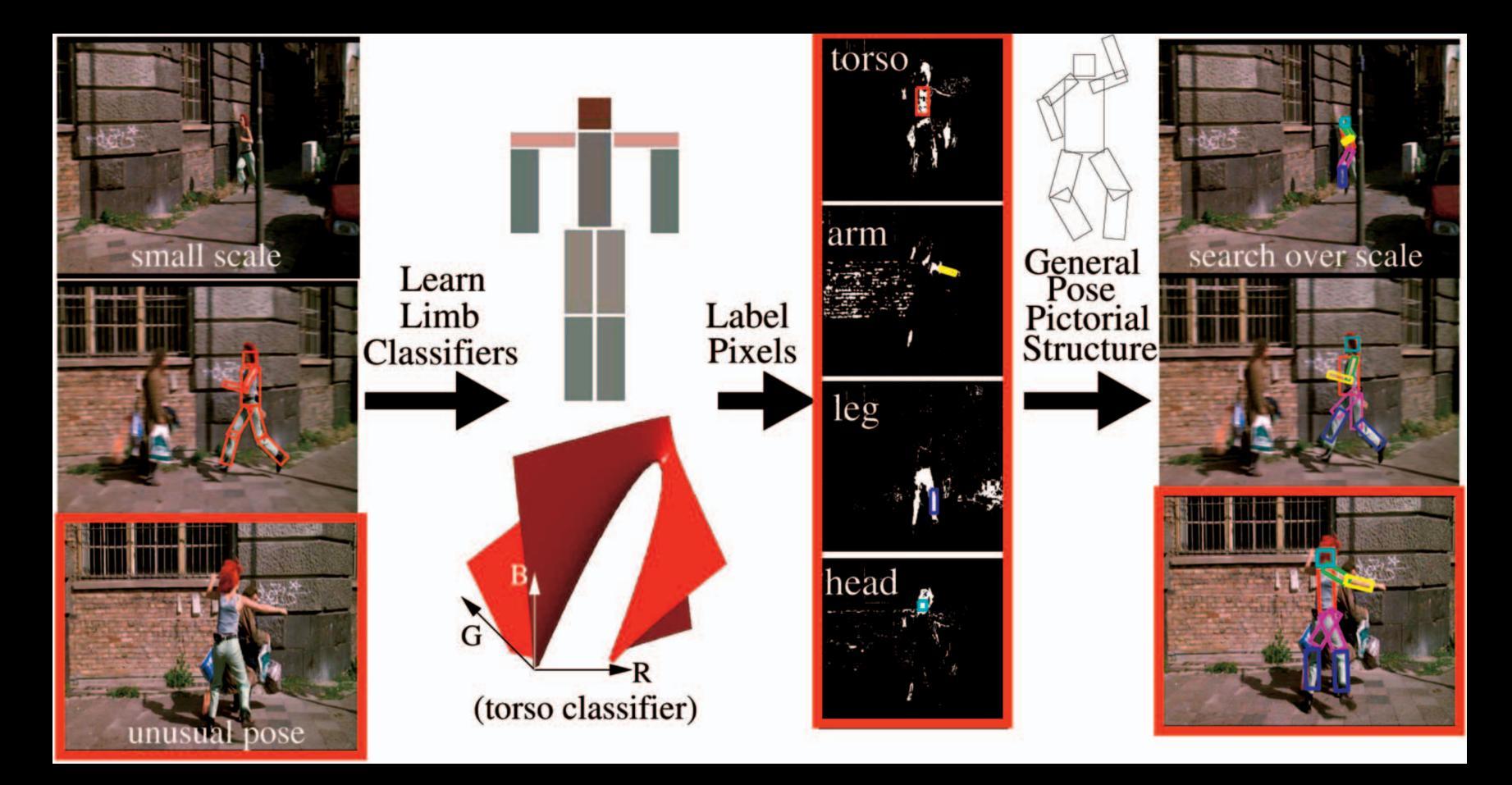
Tracking

- Problem Statements
- Tracking by Detection
- Tracking by Matching

Problem Statements

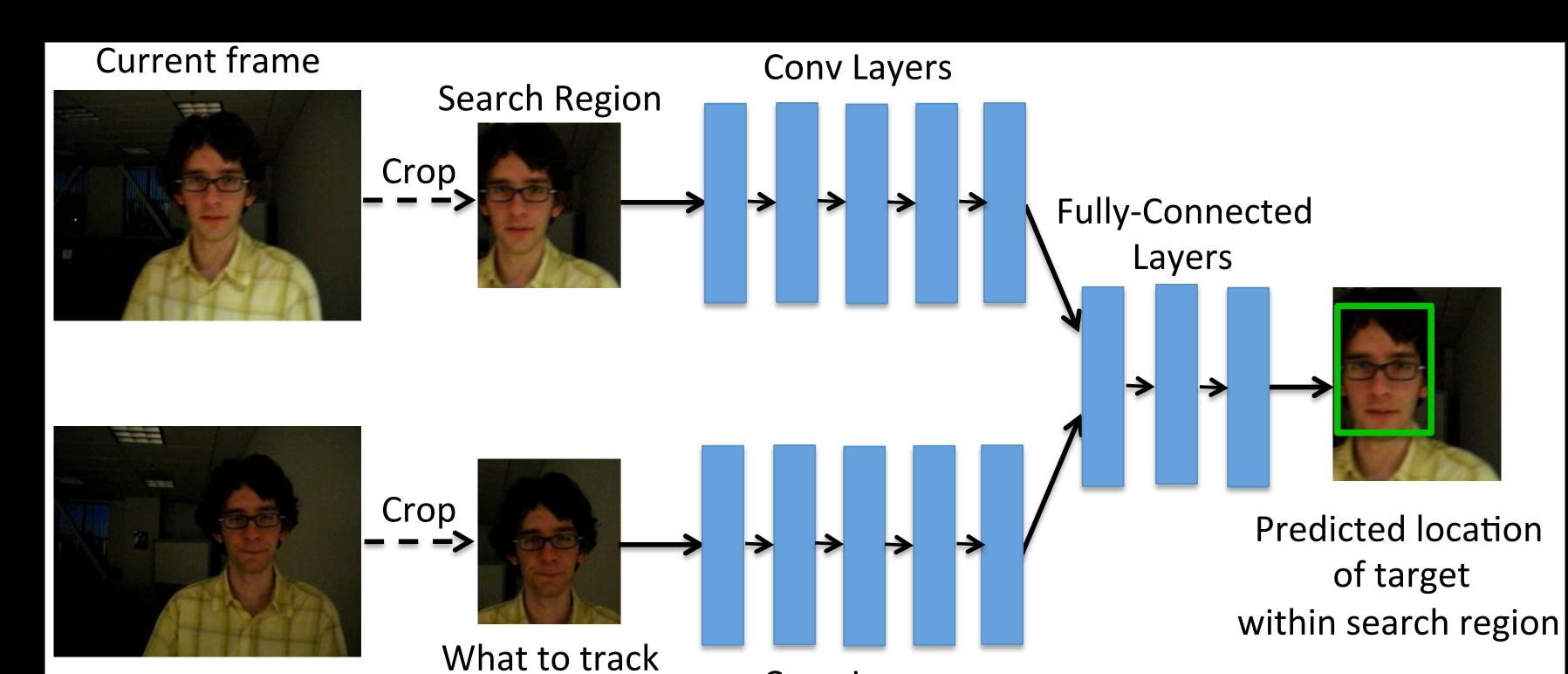
- Single Object Tracking (eg: https://nanonets.com/blog/content/images/2019/07/ messi football track.gif
- Multi-object Tracking (eg: https://motchallenge.net/vis/MOT20-02/gt/)
- Multi-object Tracking and Segmentation (eg: https://www.youtube.com/watch?v=K38 pZw P9s

Tracking by Detection



Strike a Pose! Tracking People by Learning Their Appearance. D. Ramanan et al., PAMI 2007

General Object Tracking

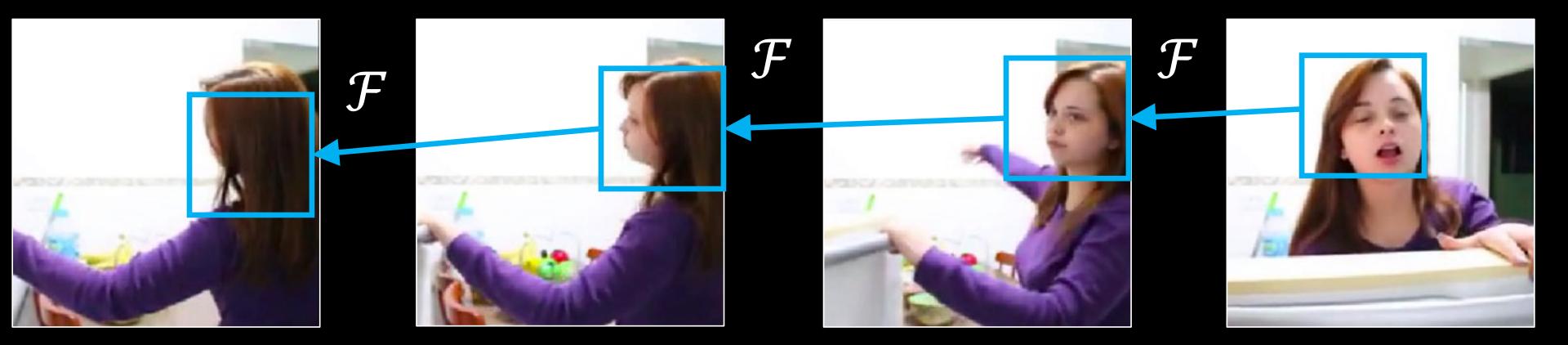


Previous frame

Conv Layers

Learning to Track at 100 FPS with Deep Regression Networks. D. Held et al., ECCV16.

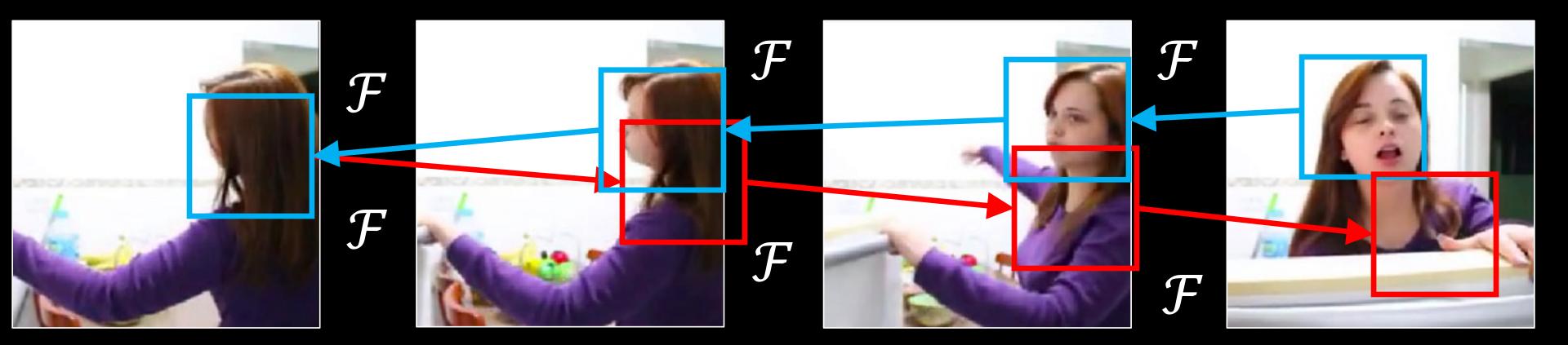
Tracking by Learning to Match *F*: a deep tracker



How to obtain supervision?

Supervision: Cycle-Consistency in Time

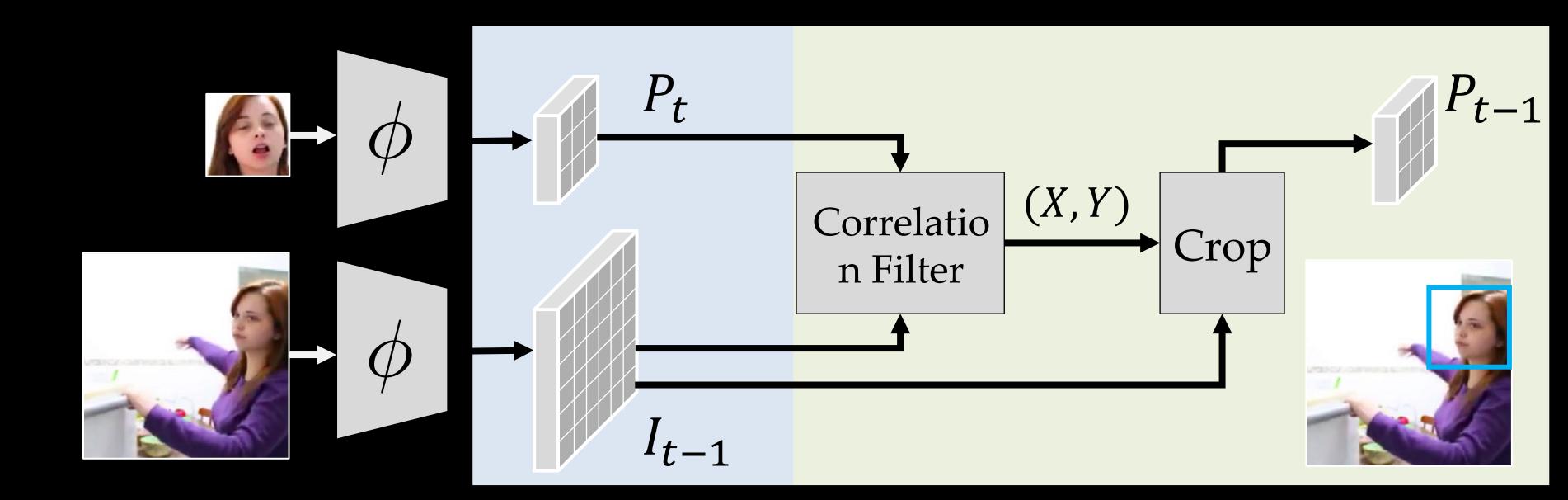
Track backwards



Track forwards, back to the future

Tracker *F*

Densely match features in learned feature space

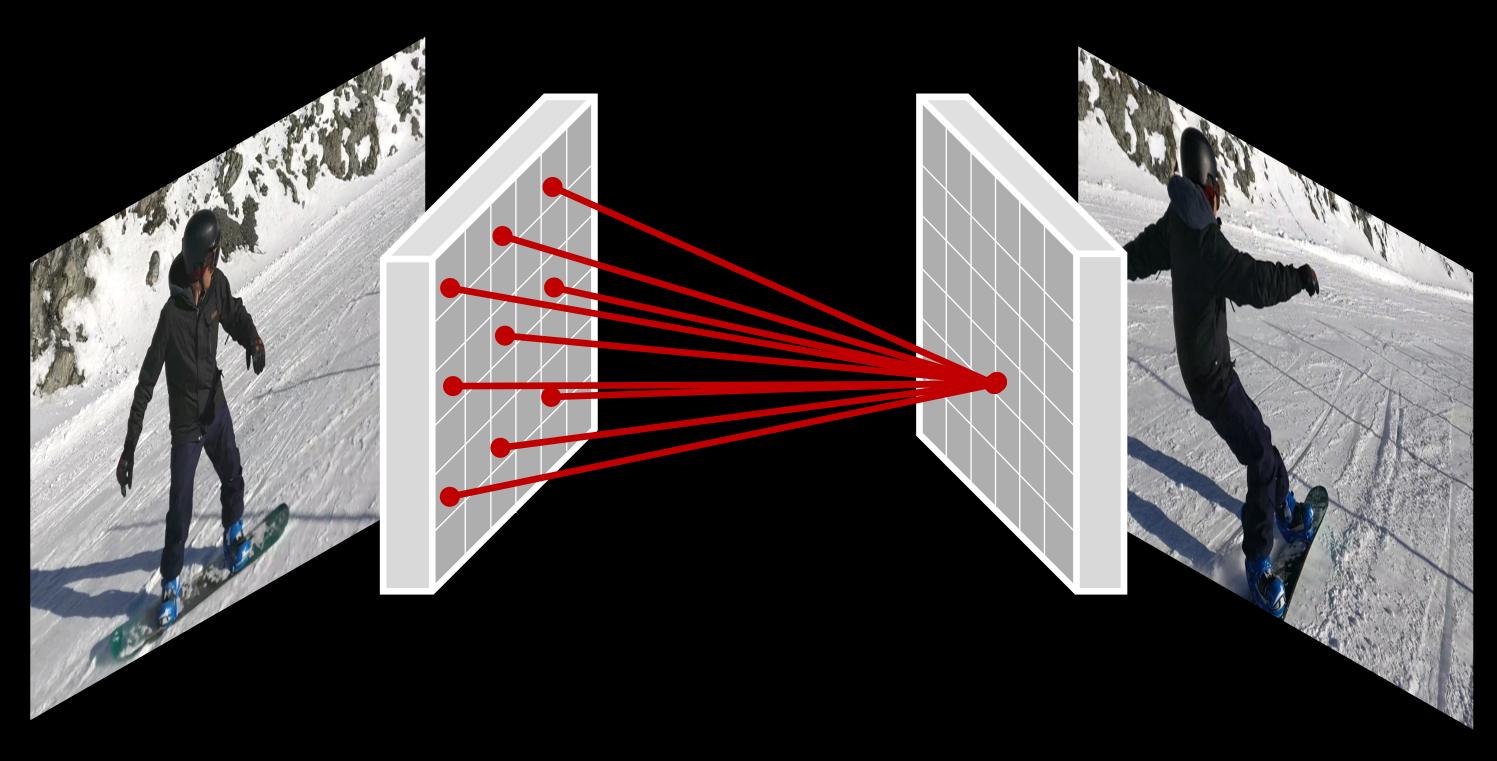


Visualization of Training

Iteration: 1200



Test Time: Nearest Neighbors in Feature Space ϕ

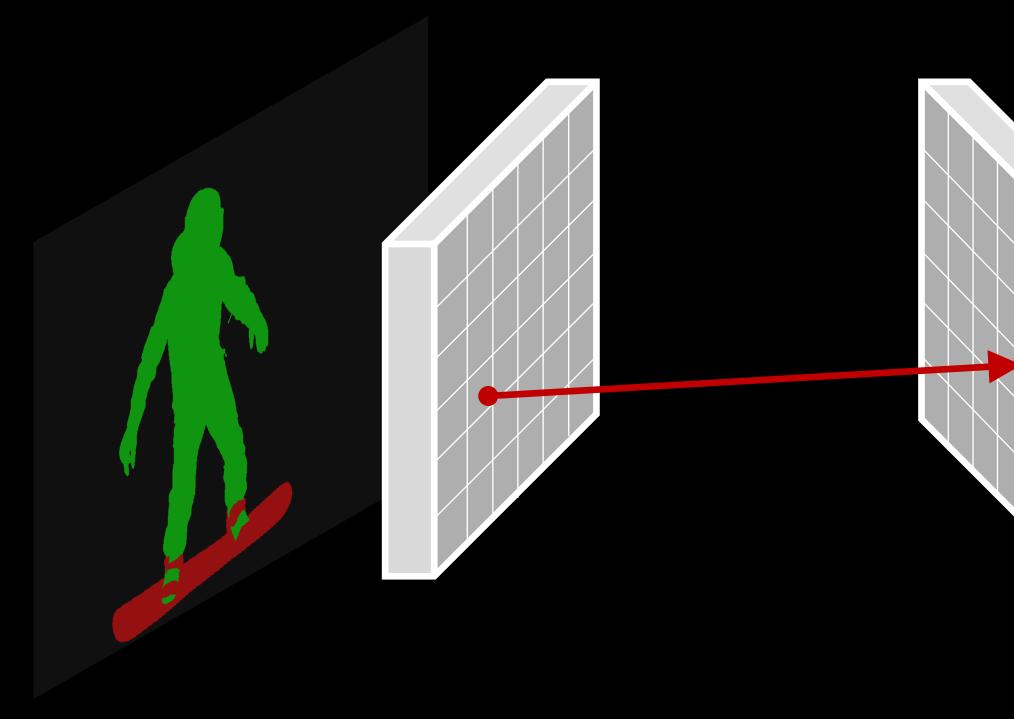


t - 1

Source: Xiaolong Wang

Ĺ

Test Time: Nearest Neighbors in Feature Space ϕ



t - 1

Source: Xiaolong Wang

t

Texture Tracking DAVIS Dataset

Source: Xiaolong Wang

DAVIS Dataset: Pont-Tuset et al. *The 2017 DAVIS Challenge on Video Object Segmentation.* 2017.

Outline

- Correspondence Problems
 - Optical Flow
 - Tracking
 - Mid-level Correspondence
- Recognition in Videos
- Videos as a source of supervision

Recognition in Videos

- Tasks / Datasets
- Models

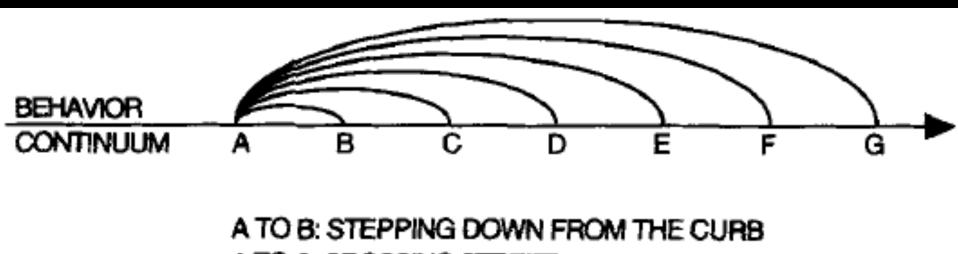
Tasks and Datasets

Action Classification

- Kinetics Dataset: <u>https://arxiv.org/pdf/1705.06950.pdf</u>
- ActivityNet, Sports-8M, ...
- Action "Detection"
 - In space, in time. Eg: JHMDB, AV

Tasks and Datasets

- Time scale
 - Atomic Visual Actions (AVA) Dataset: <u>https://research.goc</u> <u>gle.com/ava/explor</u> <u>e.html</u>



- Bias
 - Something Something Dataset: <u>https://20bn.com/da</u> <u>tasets/something-</u> <u>something</u>

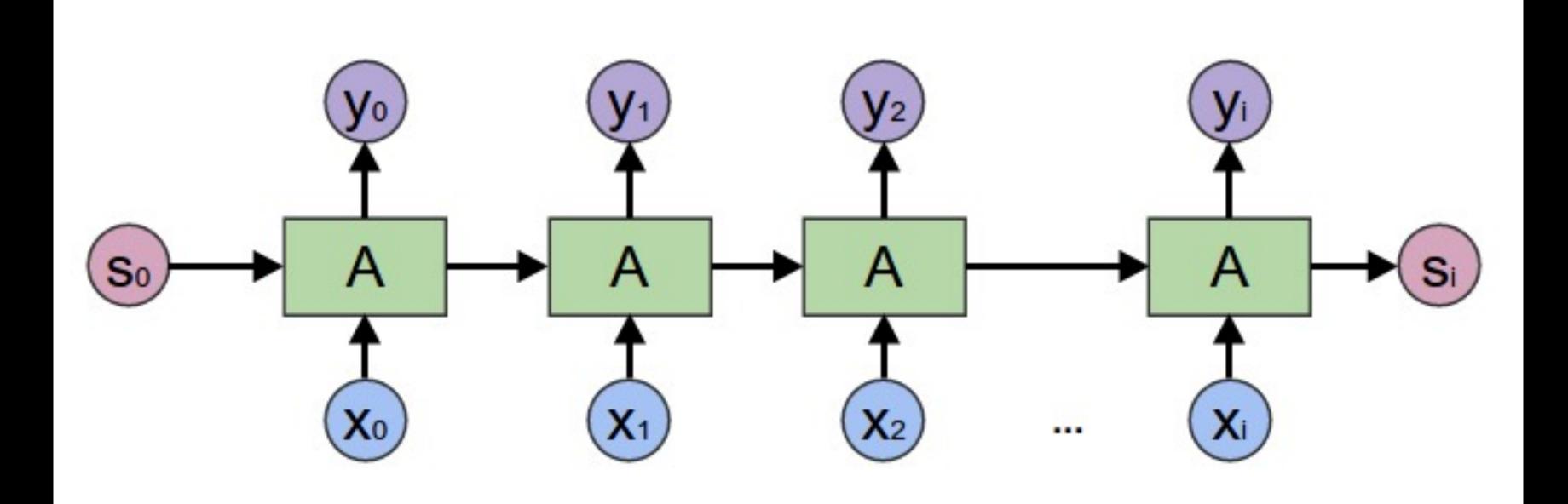
We don't quite know how to define good meaningful tasks for videos. More on this later.

A TO B: STEPPING DOWN FROM THE CURB A TO C: CROSSING STREET A TO D: WALKING TO SCHOOL A TO E: WORKING TO "PASS" FROM THE THIRD GRADE A TO F: GETTING AN EDUCATION A TO G: CLIMBING TO THE TOP IN LIFE

Models

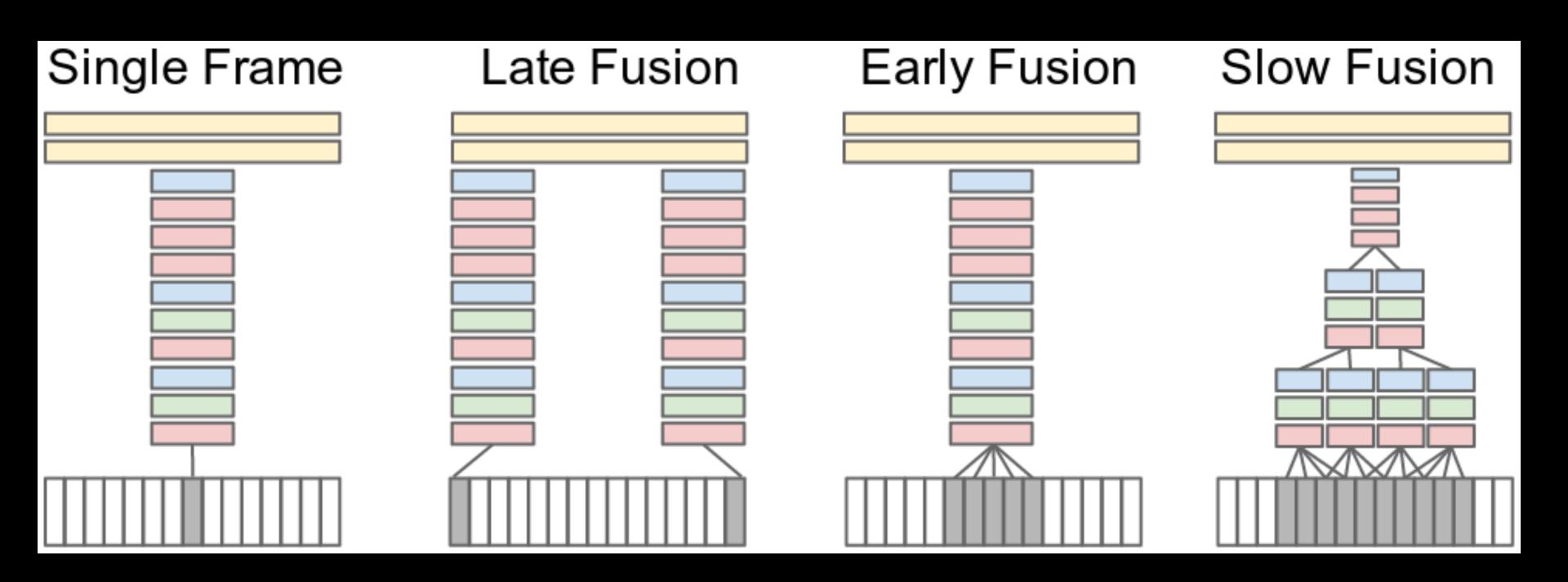
- Recurrent Neural Nets (See: https://colah.github.io/posts/2015-08-**Understanding-LSTMs/**
- Simple Extensions of 2D CNNs
- 3D Convolution Networks
- Two-Stream Networks
- Inflated 3D Conv Nets
- Slow Fast Networks
- Non-local Networks

Recurrent Neural Networks



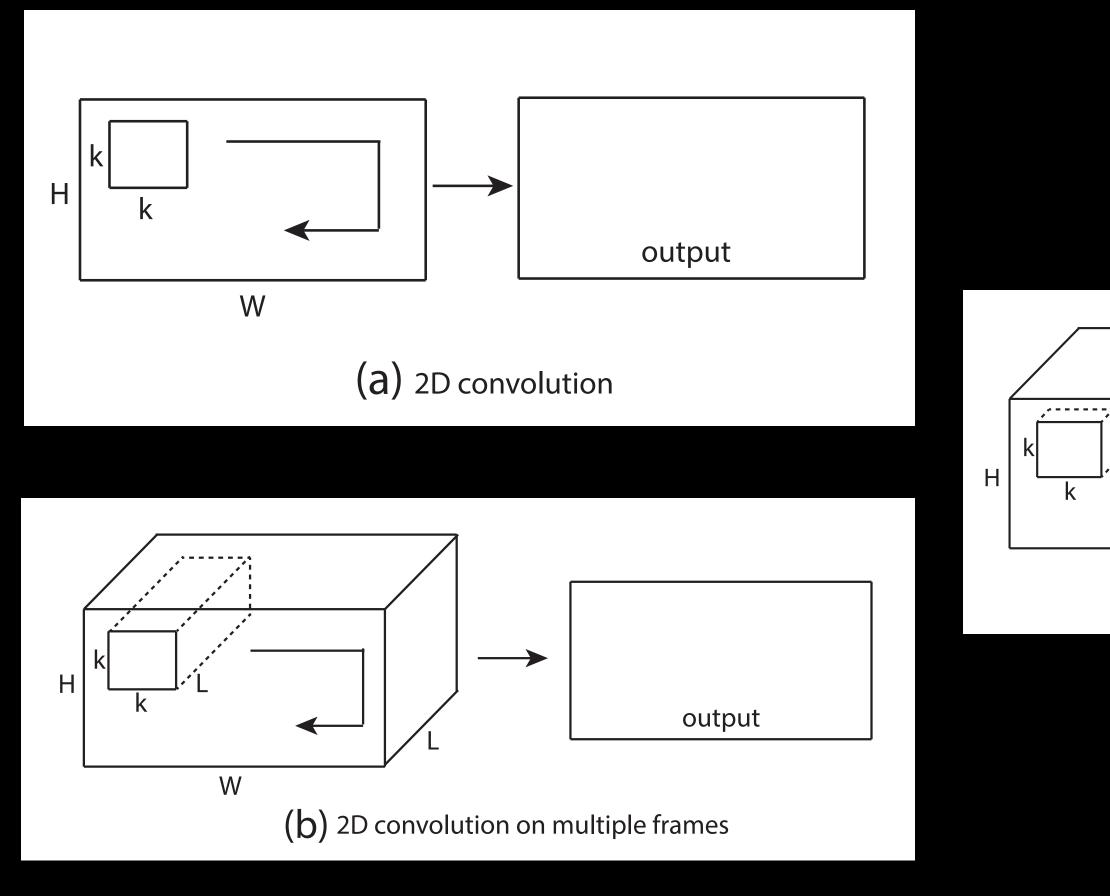
Source: https://colah.github.io/posts/2015-09-NN-Types-FP/

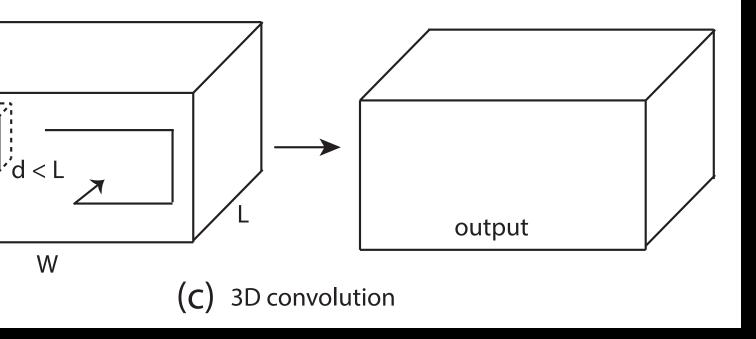
3D Convolutions



Karpathy et al. Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

3D Convolutions

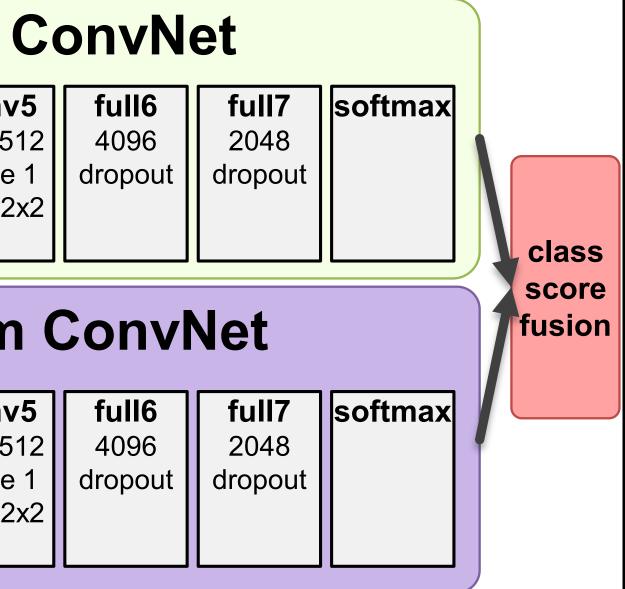




Two Stream Networks

		Spatial stream						
	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv 3x3x5 stride pool 2		
			Ter	npor	al stre	eam		
		conv1	conv2	conv3	conv4	conv		
		7x7x96 stride 2	5x5x256 stride 2	3x3x512 stride 1	3x3x512 stride 1	3x3x5 stride		
input		norm.	pool 2x2			pool 2		
video	multi-frame	pool 2x2						
	optical flow							

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014



Two Stream Networks

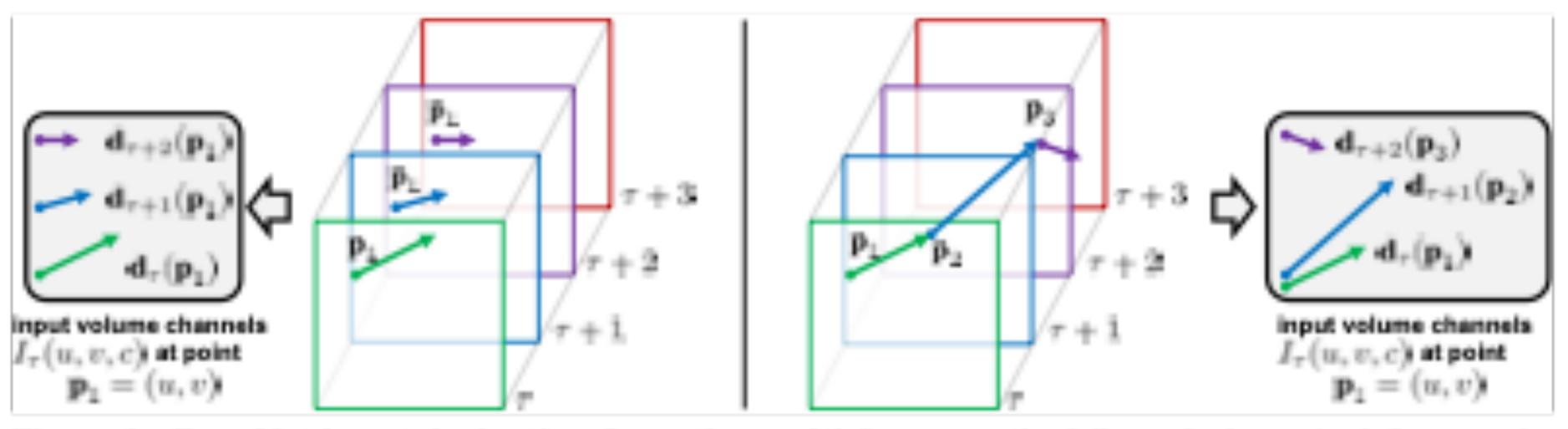


Figure 3: ConvNet input derivation from the multi-frame optical flow. Left: optical flow stacking (1) samples the displacement vectors d at the same location in multiple frames. Right: trajectory stacking (2) samples the vectors along the trajectory. The frames and the corresponding displacement vectors are shown with the same colour.

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Two Stream Networks

Table 1: Individual ConvNets accuracy on UCF-101 (split 1).

(a) **Spatial ConvNet.**

Training setting	Dropout ratio			
Iranning setting	0.5	0.9		
From scratch	42.5%	52.3%		
Pre-trained + fine-tuning	70.8%	72.8%		
Pre-trained + last layer	72.7%	59.9%		

Input configuration Single-frame optical

Optical flow stacking Optical flow stacking

Trajectory stacking (2

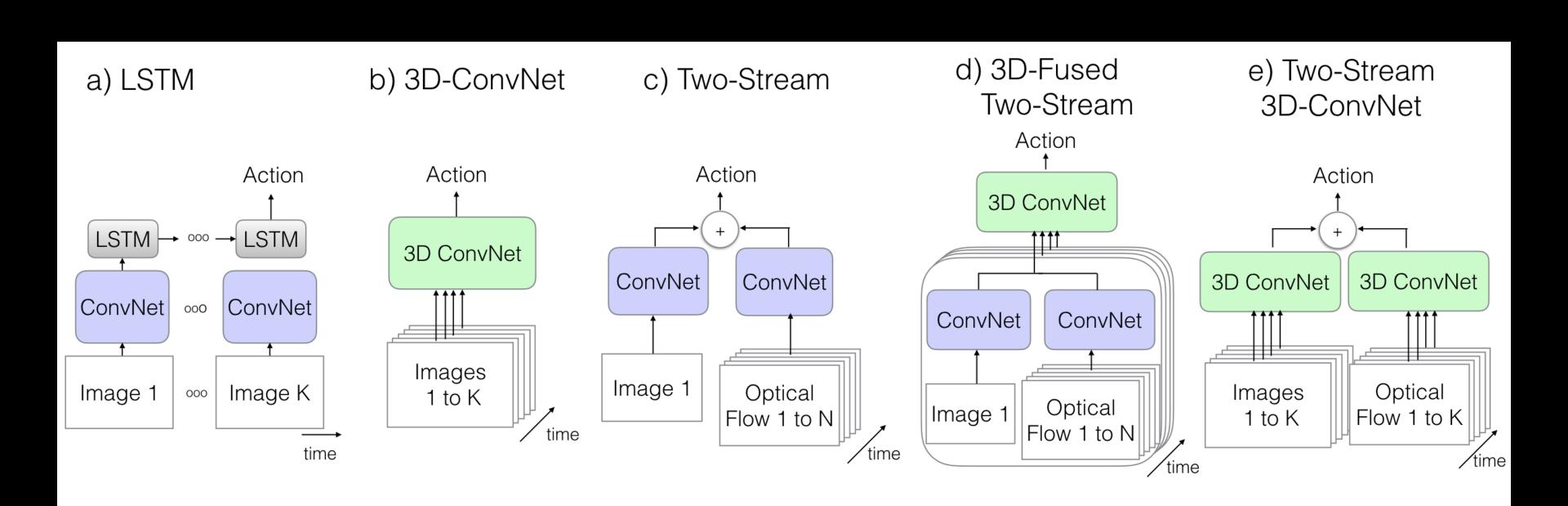
Optical flow stacking

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

(b) **Temporal ConvNet.**

	Mean subtraction		
	off	on	
flow $(L = 1)$	-	73.9%	
g(1)(L=5)	-	80.4%	
g(1)(L = 10)	79.9%	81.0%	
(2)(L = 10)	79.6%	80.2%	
g(1)(L = 10), bi-dir.	-	81.2%	

Inflated 3D Convolutions



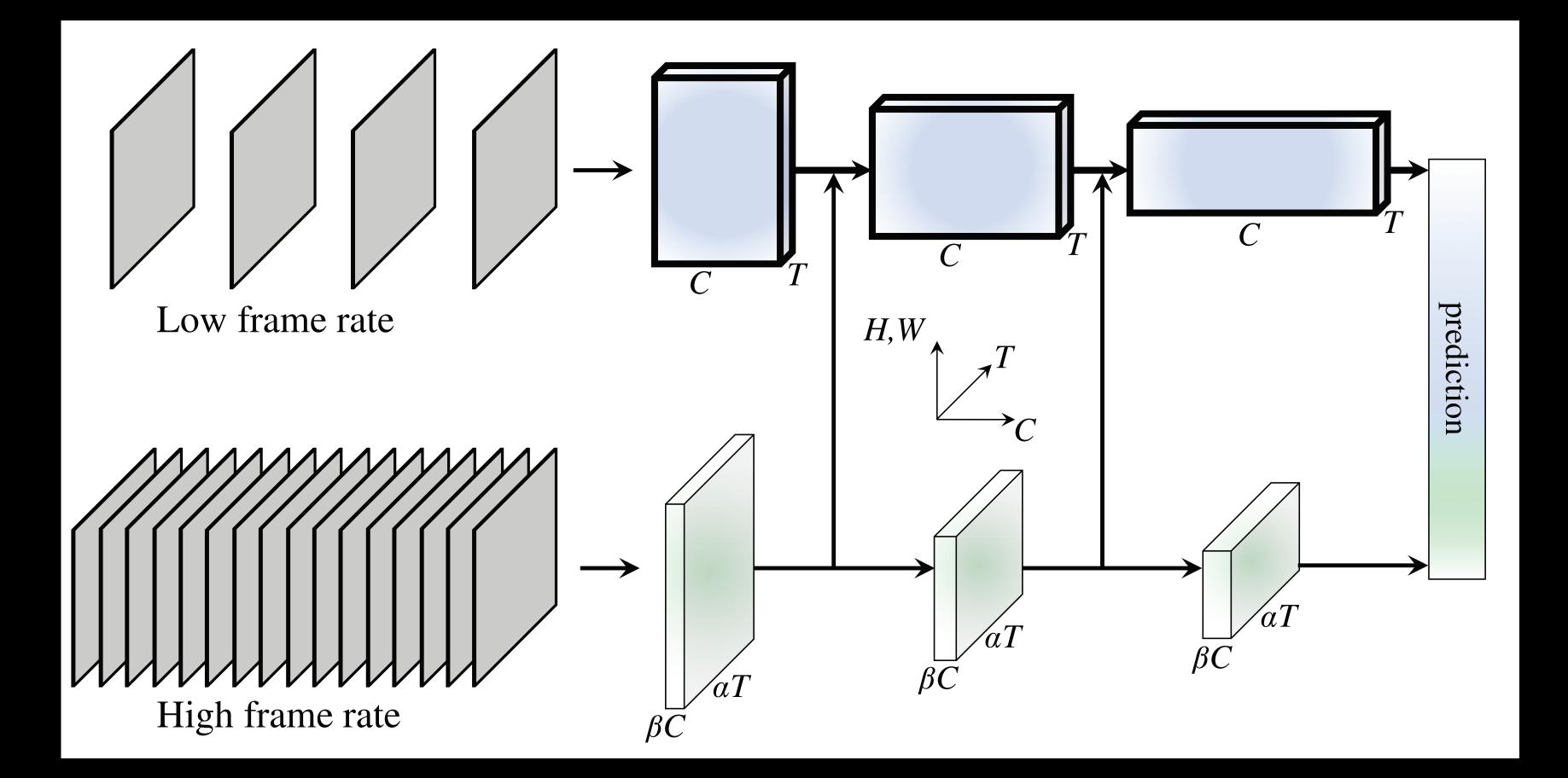
Joao Carreira, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2017

Inflated 3D Convolutions

	UCF-101		HMDB-51			Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	—	—	36.0	_	—	63.3	_	—
(b) 3D-ConvNet	51.6	_	—	24.3	_	—	56.1	_	_
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	_	—	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

Joao Carreira, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2017

SlowFast Networks



Christoph Feichtenhofer et al., Quo Vadis, SlowFast Networks for Video Recognition, CVPR 2019

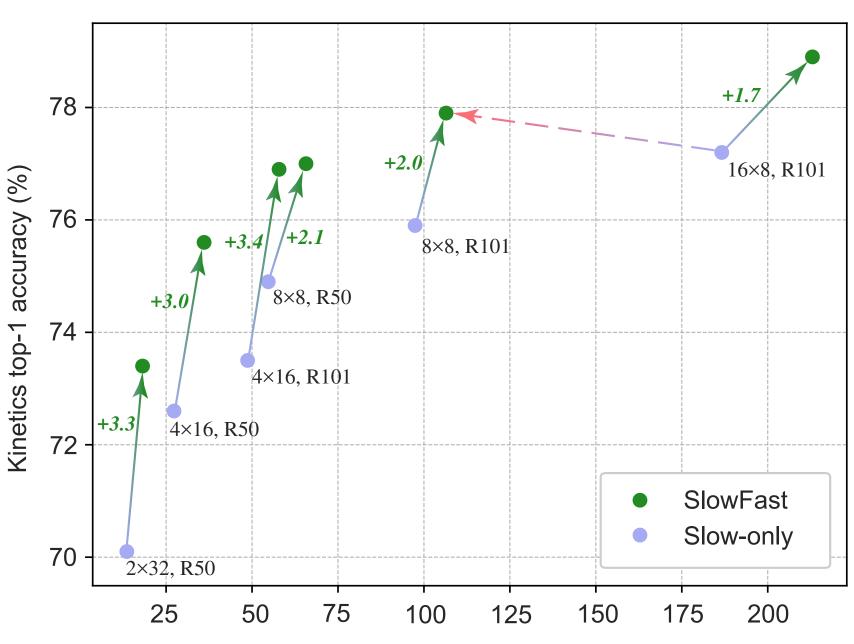
SlowFast Networks

stage	Slow pathway	Fast pathway	output sizes $T \times S^2$	
raw clip	-	-	64×224^2	
data layer	stride 16, 1 ²	stride 2 , 1 ²	$Slow: 4 \times 224^2$ $Fast: 32 \times 224^2$	
conv_1	1×7^2 , 64 stride 1, 2^2	$\frac{5\times7^2}{\text{stride 1, } 2^2}$	$Slow: 4 \times 112^{2}$ $Fast: 32 \times 112^{2}$	
pool ₁	1×3^2 max stride 1, 2^2	1×3^2 max stride 1, 2^2	$Slow: 4 \times 56^{2}$ $Fast: 32 \times 56^{2}$	
res ₂	$\begin{bmatrix} 1 \times 1^2, 64 \\ 1 \times 3^2, 64 \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 8}{1 \times 3^2, 8} \\ 1 \times 1^2, 32 \end{bmatrix} \times 3$	$Slow: 4 \times 56^{2}$ Fast: 32 × 56 ²	
res ₃	$\begin{bmatrix} 1 \times 1^2, 128\\ 1 \times 3^2, 128\\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, 16\\ 1 \times 1^2, 64 \end{bmatrix} \times 4$	$Slow: 4 \times 28^{2}$ Fast: 32 × 28 ²	
res ₄	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, 256\\ 1 \times 1^2, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} \frac{3 \times 1^2, 32}{1 \times 3^2, 32} \\ 1 \times 1^2, 128 \end{bmatrix} \times 6$	$Slow: 4 \times 14^2$ Fast: 32 × 14 ²	
res ₅	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, 512\\ 1 \times 1^2, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 64}{1 \times 3^2, 64} \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$Slow: 4 \times 7^{2}$ $Fast: 32 \times 7^{2}$	
	global average pool	oncate fo	# classes	

global average pool, concate, fc

classes

Table 1. An example instantiation of the SlowFast network. The dimensions of kernels are denoted by $\{T \times S^2, C\}$ for temporal, spatial, and channel sizes. Strides are denoted as $\{\text{temporal stride}^2\}$. Here the speed ratio is $\alpha = 8$ and the channel ratio is $\beta = 1/8$. τ is 16. The green colors mark *higher* temporal resolution, and orange colors mark *fewer* channels, for the Fast pathway. Non-degenerate temporal filters are underlined. Residual blocks are shown by brackets. The backbone is ResNet-50.

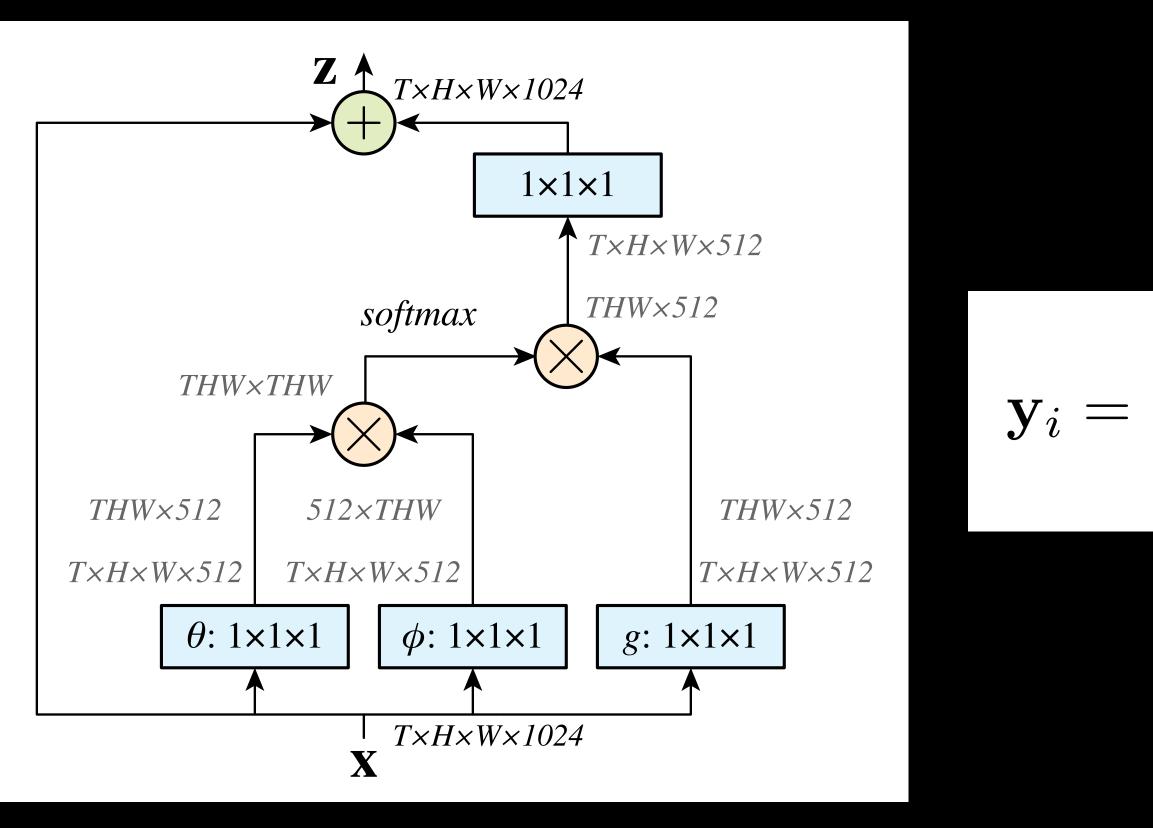


Model capacity in GFLOPs for a single clip with 256² spatial size

Figure 2. Accuracy/complexity tradeoff on Kinetics-400 for the SlowFast (green) *vs*. Slow-only (blue) architectures. SlowFast is consistently better than its Slow-only counterpart in all cases (green arrows). SlowFast provides higher accuracy *and* lower cost than temporally heavy Slow-only (*e.g.* red arrow). The complexity is for a single 256^2 view, and accuracy are obtained by 30-view testing.

Christoph Feichtenhofer et al., Quo Vadis, SlowFast Networks for Video Recognition, CVPR 2019

Non-local Networks



Xiaolong Wang et al., Non-local Neural Networks, CVPR 2018

 $\mathbf{y}_i = \frac{1}{\mathcal{C}(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_i, \mathbf{x}_j) g(\mathbf{x}_j).$

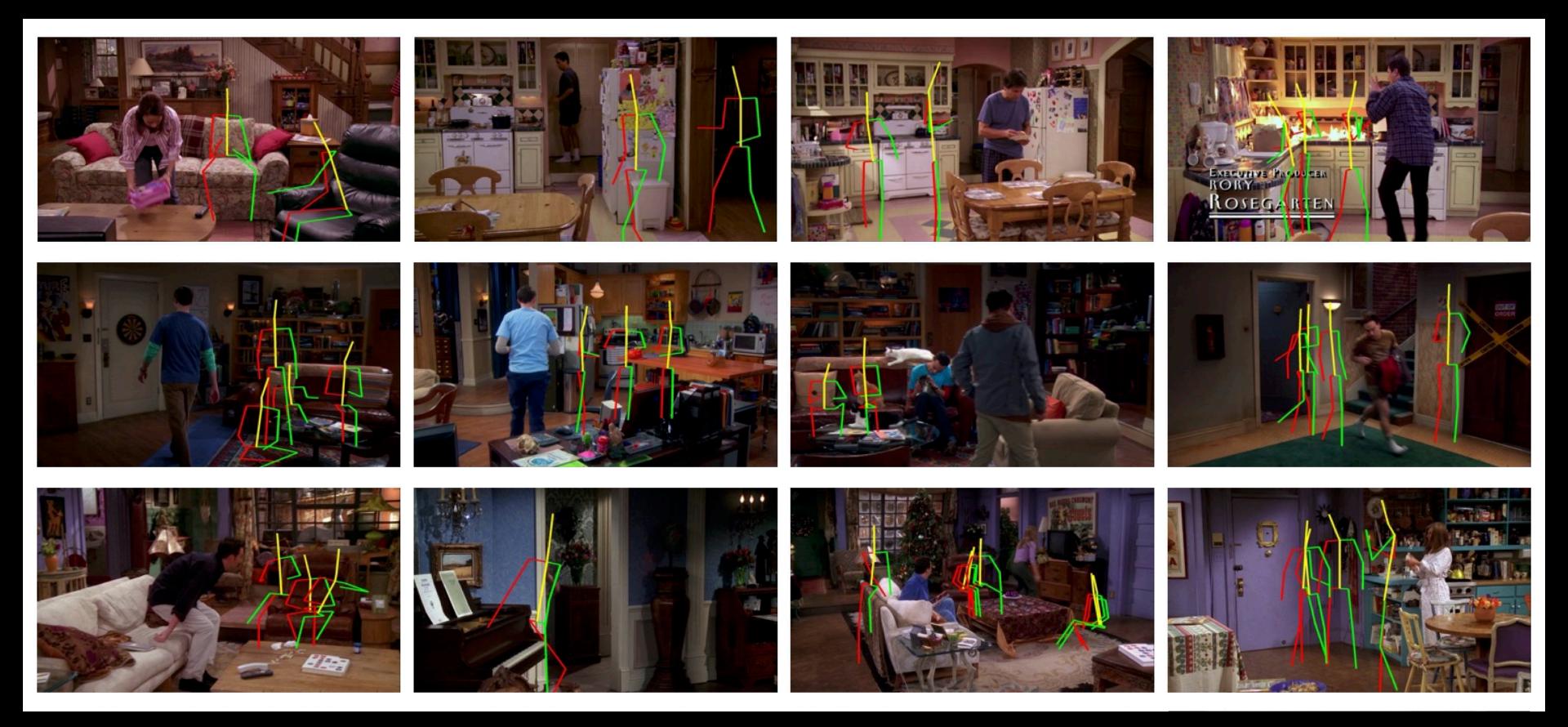
Non-local Networks

Xiaolong Wang et al., <u>Non-local Neural Networks</u>, CVPR 2018

Outline

- Correspondence Problems
 - Optical Flow
 - Tracking
 - Mid-level Correspondence
- Recognition in Videos
- Videos as a source of supervision

Videos as a source for supervision



Xiaolong Wang et al., <u>Binge Watching: Scaling Affordance Learning from Sitcoms</u>, CVPR 2018