Light, Camera and Shading

CS 543 / ECE 549 – Saurabh Gupta

Many slides adapted from S. Seitz, L. Lazebnik, D. Hoiem, D. Forsyth

Overview

- Cameras with lenses
 - Depth of field
 - Field of view
 - Lens aberrations
- Brightness of a pixel
 - Small taste of radiometry
 - In-camera transformation of light
 - Reflectance properties of surfaces
 - Lambertian reflection model
 - Shape from shading

Building a Real Camera

Home-made pinhole camera

http://www.debevec.org/Pinhole/

Slide by A. Efros

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

Slide by Steve Seitz

Adding a lens

A lens focuses light onto the film

- Thin lens model:
 - Rays passing through the center are not deviated (pinhole projection model still holds)

A lens focuses light onto the film

- Thin lens model:
 - Rays passing through the center are not deviated (pinhole projection model still holds)
 - All rays parallel to the optical axis pass through the focal point
 - All parallel rays converge to points on the focal plane

Slide by Steve Seitz

• Where does the lens focus the rays coming from a given point in the scene?

What is the relation between the focal length (*f*), the distance of the object from the optical center (*D*), and the distance at which the object will be in focus (*D'*)?

Similar triangles everywhere!

Slide by Frédo Durand

Any point satisfying the thin lens equation is in focus.

What happens when *D* is very large?

For a fixed focal length, there is a specific distance at which objects are "in focus"

• Other points project to a "circle of confusion" in the image

DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD OF FIELD

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Controlling depth of field

Changing the aperture size affects depth of field

- A smaller *aperture* increases the range in which the object is approximately in focus
- But small aperture reduces amount of light need to increase *exposure*

http://en.wikipedia.org/wiki/File:Depth_of_field_illustration.svg

Varying the aperture

Small aperture = large DOF

copyright 1997 philg®nit₊edu

Large aperture = small DOF

Field of View

FOV depends on focal length and size of the camera retina

$$\phi = \tan^{-1}\left(\frac{d/2}{f}\right)$$

Larger focal length = smaller FOV

Slide by A. Efros

Field of View

Field of View

Field of View / Focal Length

Large FOV, small *f* Camera close to car

Small FOV, large *f* Camera far from the car

Sources: A. Efros, F. Durand

Same effect for faces

wide-angle

standard

telephoto

Source: F. Durand

Approximating an orthographic camera

Source: Hartley & Zisserman

The dolly zoom

 Continuously adjusting the focal length while the camera moves away from (or towards) the subject

http://en.wikipedia.org/wiki/Dolly zoom

The dolly zoom

- Continuously adjusting the focal length while the camera moves away from (or towards) the subject
- "The Vertigo shot"

Example of dolly zoom from *Goodfellas* (YouTube) Example of dolly zoom from *La Haine* (YouTube)

Real lenses

Lens flaws: Vignetting

Radial Distortion

- Caused by imperfect lenses
- Deviations are most noticeable near the edge of the lens

Lens flaws: Spherical aberration

Spherical lenses don't focus light perfectly Rays farther from the optical axis focus closer

Lens Flaws: Chromatic Aberration

Lens has different refractive indices for different wavelengths: causes color fringing

Near Lens Center

Near Lens Outer Edge

Lens Flaws: Chromatic Aberration

Researchers tried teaching a network about objects by forcing it to assemble jigsaws.

Initial layout, with sampled patches in red

Image layout is discarded

We can recover image layout automatically

Slide Credit: C. Doersch

Rolling Shutter

Rolling Shutter: pixels read in sequence Can get global reading, but **\$\$\$**

Overview

- Cameras with lenses
 - Depth of field
 - Field of view
 - Lens aberrations
- Brightness of a pixel
 - Small taste of radiometry
 - In-camera transformation of light
 - Reflectance properties of surfaces
 - Lambertian reflection model
 - Shape from shading

Image formation

What determines the brightness of an image pixel?

Slide by L. Fei-Fei
Fundamental radiometric relation

L: Radiance emitted from P toward P'

- Energy carried by a ray (Watts per sq. meter per steradian)
- E: Irradiance falling on P' from the lens
 - Energy arriving at a surface (Watts per sq. meter)

What is the relationship between *E* and *L*?

Fundamental radiometric relation

$$E = \left[\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha\right] L$$

- Image irradiance is linearly related to scene radiance
- Irradiance is proportional to the area of the lens and inversely proportional to the squared distance between the lens and the image plane
- The irradiance falls off as the angle between the viewing ray and the optical axis increases

Relation between Image Irradiance E and Scene Radiance L

• Solid angles of the double cone (orange and green):

$$d\omega_i = d\omega_s \qquad \frac{dA_i \cos \alpha}{(f/\cos \alpha)^2} = \frac{dA_s \cos \theta}{(z/\cos \alpha)^2} \qquad \frac{dA_s}{dA_i} = \frac{\cos \alpha}{\cos \theta} \left(\frac{z}{f}\right)^2$$

• Solid angle subtended by lens:

$$d\omega_L = \frac{\pi d^2}{4} \frac{\cos \alpha}{\left(z / \cos \alpha\right)^2} \longrightarrow (2)$$

(1)

Slide from S Narasimhan.

Relation between Image Irradiance E and Scene Radiance L

• Image irradiance is proportional to Scene Radiance!

Slide from S Narasimhan.

• Small field of view \rightarrow Effects of 4th power of cosine are small.

From light rays to pixel values

- Camera response function: the mapping *f* from irradiance to pixel values
 - Useful if we want to estimate material properties
 - Enables us to create high dynamic range (HDR) images
 - Classic reference: P. E. Debevec and J. Malik, <u>Recovering High</u> <u>Dynamic Range Radiance Maps from Photographs</u>, SIGGRAPH 97

Basic models of reflection

Slide from D. Hoiem

Other possible effects

Other possible effects

Slide from D. Hoiem

https://en.wikipedia.org/wiki/Subsurface_scattering#/media/File:Skin_Subsurface_Scattering.jpg

Other possible effects

fluorescence

https://en.wikipedia.org/wiki/Fluorescence#/media/File:Fluorescent_minerals_hg.jpg

Slide from D. Hoiem

Overview

- Cameras with lenses
 - Depth of field
 - Field of view
 - Lens aberrations
- Brightness of a pixel
 - Small taste of radiometry
 - In-camera transformation of light
 - Reflectance properties of surfaces
 - Lambertian reflection model
 - Shape from shading

Some light is absorbed (function of albedo ρ) Remaining light is scattered (diffuse reflection) Examples: soft cloth, concrete, matte paints

Slide from D. Hoiem

Specular Reflection

Reflected direction depends on light orientation and surface normal

• E.g., mirrors are fully specular

Flickr, by piratejohnny

Slide from D. Hoiem

Most surfaces have both specular and diffuse components

Specularity = spot where specular reflection dominates (typically reflects light source)

Typically, specular component is small

Photo: northcountryhardwoodfloors.com

BRDF: Bidirectional Reflectance Distribution Function

- Model of local reflection that tells how bright a surface appears when viewed from one direction when light falls on it from another
- Definition: ratio of the radiance in the emitted direction to irradiance in the incident direction

BRDFs can be incredibly complicated...

Diffuse reflection

- Light is reflected equally in all directions
 - Dull, matte surfaces like chalk or latex paint
 - Microfacets scatter incoming light randomly
- Brightness of the surface depends on the incidence of illumination

Diffuse reflection: Lambert's law

 $B = \rho \mathbf{N} \cdot \mathbf{S}$ $= \rho \|\mathbf{S}\| \cos \theta$

- *B*: radiosity (total power leaving the surface per unit area)
- *ρ*: albedo (fraction of incident irradiance reflected by the surface)
- N: unit normal
- S: source vector (magnitude proportional to intensity of the source)

Specular reflection

- Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)
- On real surfaces, energy usually goes into a lobe of directions

Moving the light source

Changing the exponent

Specular reflection

Picture source

Lambertian + Specular Model

• I(x) = Ambient Term + Diffuse Term + Specular Term

Photometric stereo (shape from shading)

• Can we reconstruct the shape of an object based on shading cues?

Luca della Robbia, *Cantoria*, 1438

Photometric stereo

Assume:

- A Lambertian object
- A *local shading model* (each point on a surface receives light only from sources visible at that point)
- A set of *known* light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection
- Goal: reconstruct object shape and albedo

Example 1


```
F&P 2<sup>nd</sup> ed., sec. 2.2.4
```

Example 2

Input

Recovered albedo

Recovered normal field

Recovered surface model

Х

Ζ

Image model

- **Known:** source vectors S_j and pixel values $I_j(x,y)$
- **Unknown:** surface normal N(x,y) and albedo $\rho(x,y)$

Image model

- **Known:** source vectors S_j and pixel values $I_j(x,y)$
- **Unknown:** surface normal N(x,y) and albedo $\rho(x,y)$
- Assume that the response function of the camera is a linear scaling by a factor of *k*
- Lambert's law:

$$I_{j}(x, y) = k \rho(x, y) (\mathbf{N}(x, y) \cdot \mathbf{S}_{j})$$
$$= (\rho(x, y) \mathbf{N}(x, y)) \cdot (k\mathbf{S}_{j})$$
$$= \mathbf{g}(x, y) \cdot \mathbf{V}_{j}$$

Least squares problem

• For each pixel, set up a linear system:

- Obtain least-squares solution for g(x,y) (which we defined as N(x,y) ρ(x,y))
- Since N(x,y) is the unit normal, ρ(x,y) is given by the magnitude of g(x,y)
- Finally, $N(x,y) = g(x,y) / \rho(x,y)$

Slide from L. Lazebnik F&P 2nd ed., sec. 2.2.4

Synthetic example

Recovered albedo

Recovered normal field

Recovering a surface from normals

Recall the surface is written as

(x, y, f(x, y))

This means the normal has the form:

$$\mathbf{N}(x, y) = \frac{1}{\sqrt{f_x^2 + f_y^2 + 1}} \begin{pmatrix} f_x \\ f_y \\ 1 \end{pmatrix}$$

If we write the estimated vector *g* as

$$\mathbf{g}(x, y) = \begin{pmatrix} g_1(x, y) \\ g_2(x, y) \\ g_3(x, y) \end{pmatrix}$$

Then we obtain values for the partial derivatives of the surface:

$$f_x(x, y) = g_1(x, y) / g_3(x, y)$$

$$f_y(x, y) = g_2(x, y) / g_3(x, y)$$

Recovering a surface from normals

We can now recover the surface height at any point by integration along some path, e.g.

$$f(x,y) = \int_{0}^{x} f_x(s,0) ds + \int_{0}^{y} f_y(x,t) dt + C$$

(for robustness, should take integrals over many different paths and average the results) Integrability: for the surface *f* to exist, the mixed second partial derivatives must be equal:

$$\frac{\partial}{\partial y}(g_1(x,y)/g_3(x,y)) = \frac{\partial}{\partial x}(g_2(x,y)/g_3(x,y))$$

(in practice, they should at least be similar)

Surface recovered by integration

Slide from L. Lazebnik

F&P 2nd ed., sec. 2.2.4

Limitations

- Orthographic camera model
- Simplistic reflectance and lighting model
- No shadows
- No interreflections
- No missing data
- Integration is tricky

$$I(x,y) = \mathbf{N}(x,y) \cdot \mathbf{S}(x,y)$$

Full 3D case:

$$\begin{pmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) & N_{z}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) & N_{z}(x_{2}, y_{2}) \\ \vdots & \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) & N_{z}(x_{n}, y_{n}) \end{pmatrix} \begin{pmatrix} S_{x} \\ S_{y} \\ S_{z} \end{pmatrix} = \begin{pmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{pmatrix}$$

$$I(x,y) = \mathbf{N}(x,y) \cdot \mathbf{S}(x,y)$$

Full 3D case:

$$\begin{bmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) & N_{z}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) & N_{z}(x_{2}, y_{2}) \\ \vdots & \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) & N_{z}(x_{n}, y_{n}) \end{bmatrix} \begin{pmatrix} S_{x} \\ S_{y} \\ S_{z} \end{pmatrix} = \begin{pmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{pmatrix}$$

For points on the *occluding contour*, $N_z = 0$:

$$\begin{pmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) \\ \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) \end{pmatrix} \begin{pmatrix} S_{x} \\ S_{y} \end{pmatrix} = \begin{pmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{pmatrix}$$

Application: Detecting composite photos

Real photo

Fake photo

M. K. Johnson and H. Farid, <u>Exposing Digital Forgeries by Detecting Inconsistencies in Lighting</u>, ACM Multimedia and Security Workshop, 2005.