Light, Camera and Shading

CS 543 / ECE 549 - Saurabh Gupta

Overview

- Cameras with lenses
- Depth of field
- Field of view
- Lens aberrations
- Brightness of a pixel
- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Lambertian reflection model
- Shape from shading

Building a Real Camera

Home-made pinhole camera

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

Adding a lens

Adding a lens

A lens focuses light onto the film

- Thin lens model:
- Rays passing through the center are not deviated (pinhole projection model still holds)

Adding a lens

A lens focuses light onto the film

- Thin lens model:
- Rays passing through the center are not deviated (pinhole projection model still holds)
- All rays parallel to the optical axis pass through the focal point
- All parallel rays converge to points on the focal plane

Thin lens formula

- Where does the lens focus the rays coming from a given point in the scene?

image
plane
lens
object

Thin lens formula

- What is the relation between the focal length (f), the distance of the object from the optical center (\boldsymbol{D}), and the distance at which the object will be in focus (\boldsymbol{D}^{\prime})?

Thin lens formula

Similar triangles everywhere!

Thin lens formula

Similar triangles everywhere!

$$
y^{\prime} / y=D^{\prime} / D
$$

Thin lens formula

Similar triangles everywhere!

$$
\begin{aligned}
& y^{\prime} / y=D^{\prime} / D \\
& y^{\prime} / y=\left(D^{\prime}-f\right) / f
\end{aligned}
$$

Thin lens formula

$\frac{1}{D^{\prime}}+\frac{1}{D}=\frac{1}{f}$
Any point satisfying the thin lens equation is in focus.

What happens when D is very large?

image plane
lens
object

Depth of Field

For a fixed focal length, there is a specific distance at which objects are "in focus"

- Other points project to a "circle of confusion" in the image

Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Controlling depth of field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light - need to increase exposure

Varying the aperture

Large aperture = small DOF

Small aperture = large DOF

Field of View

FOV depends on focal length and size of the camera retina

$$
\phi=\tan ^{-1}\left(\frac{d / 2}{f}\right)
$$

Larger focal length = smaller FOV

Field of View

Slide by A. Efros

Field of View

Slide by A. Efros

Field of View / Focal Length

Large FOV, small f
Camera close to car

Small FOV, large f
Camera far from the car

Same effect for faces

wide-angle

standard

telephoto

Approximating an orthographic camera

The dolly zoom

- Continuously adjusting the focal length while the camera moves away from (or towards) the subject

http://en.wikipedia.org/wiki/Dolly zoom

The dolly zoom

- Continuously adjusting the focal length while the camera moves away from (or towards) the subject
- "The Vertigo shot"

Example of dolly zoom from Goodfellas (YouTube)
Example of dolly zoom from La Haine (YouTube)

Real lenses

Lens flaws: Vignetting

Radial Distortion

- Caused by imperfect lenses
- Deviations are most noticeable near the edge of the lens

Lens flaws: Spherical aberration

Spherical lenses don't focus light perfectly Rays farther from the optical axis focus closer

Lens Flaws: Chromatic Aberration

Lens has different refractive indices for different wavelengths: causes color fringing

Near Lens Center

Near Lens Outer Edge

Lens Flaws: Chromatic Aberration

Researchers tried teaching a network about objects by forcing it to assemble jigsaws.

Initial layout, with sampled patches in red
 is discarded

We can recover image layout automatically

Rolling Shutter

Rolling Shutter: pixels read in sequence Can get global reading, but $\$ \$ \$$

Overview

- Cameras with lenses
- Depth of field
- Field of view
- Lens aberrations
- Brightness of a pixel
- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Lambertian reflection model
- Shape from shading

Image formation

What determines the brightness of an image pixel?
Distribution and properties of light sources

Sensor properties

Surface reflectance properties

Surface
shape and orientation

Fundamental radiometric relation

L: Radiance emitted from P toward P^{\prime}

- Energy carried by a ray (Watts per sq. meter per steradian)

E: Irradiance falling on P^{\prime} from the lens

- Energy arriving at a surface (Watts per sq. meter)

Fundamental radiometric relation

$$
E=\left[\frac{\pi}{4}\left(\frac{d}{f}\right)^{2} \cos ^{4} \alpha\right] L
$$

- Image irradiance is linearly related to scene radiance
- Irradiance is proportional to the area of the lens and inversely proportional to the squared distance between the lens and the image plane
- The irradiance falls off as the angle between the viewing ray and the optical axis increases

Relation between Image Irradiance E and Scene Radiance L

- Solid angles of the double cone (orange and green):

$$
d \omega_{i}=d \omega_{s} \quad \frac{d A_{i} \cos \alpha}{(f / \cos \alpha)^{2}}=\frac{d A_{s} \cos \theta}{(z / \cos \alpha)^{2}}
$$

$$
\frac{d A_{s}}{d A_{i}}=\frac{\cos \alpha}{\cos \theta}\left(\frac{z}{f}\right)^{2}
$$

- Solid angle subtended by lens:

$$
\begin{equation*}
d \omega_{L}=\frac{\pi d^{2}}{4} \frac{\cos \alpha}{(z / \cos \alpha)^{2}} \tag{1}
\end{equation*}
$$

Slide from S Narasimhan.

Relation between Image Irradiance E and Scene Radiance L

- Flux received by lens from $d A_{s}=$ Flux projected onto image $d A_{i}$

$$
\begin{aligned}
& L\left(d A_{s} \cos \theta\right) d \omega_{L}=E d A_{i} \longrightarrow \text { (3) } \\
& \text { 2), and (3): } \quad E=L \frac{\pi}{4}\left(\frac{d}{f}\right)^{2} \cos \alpha^{4}
\end{aligned}
$$

- From (1), (2), and (3):

S Narasimhan. - Small field of view \rightarrow Effects of $4^{\text {th }}$ power of cosine are small.

From light rays to pixel values

- Camera response function: the mapping f from irradiance to pixel values
- Useful if we want to estimate material properties
- Enables us to create high dynamic range (HDR) images
- Classic reference: P. E. Debevec and J. Malik, Recovering High Dynamic Range Radiance Maps from Photographs, SIGGRAPH 97

Basic models of reflection

Specular: light bounces off at the incident angle

- E.g., mirror

Diffuse: light scatters in all directions

- E.g., brick, cloth, rough wood

Other possible effects

transparency light source
light source

Other possible effects

subsurface scattering

light source

Slide from D. Hoiem

Other possible effects

fluorescence

phosphorescence
light source

Overview

- Cameras with lenses
- Depth of field
- Field of view
- Lens aberrations
- Brightness of a pixel
- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Lambertian reflection model
- Shape from shading

Lambertian reflectance model

Some light is absorbed (function of albedo ρ)
Remaining light is scattered (diffuse reflection)
Examples: soft cloth, concrete, matte paints

Specular Reflection

Reflected direction depends on light orientation and surface normal

- E.g., mirrors are fully specular

Flickr, by suzysputnik

Flickr, by piratejohnny

Most surfaces have both specular and diffuse components

Specularity = spot where specular reflection dominates (typically reflects light source)

Typically, specular component is small

BRDF: Bidirectional Reflectance Distribution Function

- Model of local reflection that tells how bright a surface appears when viewed from one direction when light falls on it from another
- Definition: ratio of the radiance in the emitted direction to irradiance in the incident direction

BRDFs can be incredibly complicated...

Diffuse reflection

- Light is reflected equally in all directions
- Dull, matte surfaces like chalk or latex paint
- Microfacets scatter incoming light randomly
- Brightness of the surface depends on the incidence of illumination

brighter

darker

Diffuse reflection: Lambert's law

$$
\begin{aligned}
B & =\rho \mathbf{N} \cdot \mathbf{S} \\
& =\rho\|\mathbf{S}\| \cos \theta
\end{aligned}
$$

- B: radiosity (total power leaving the surface per unit area)
- ρ : albedo (fraction of incident irradiance reflected by the surface)
- N : unit normal
- S: source vector (magnitude proportional to intensity of the source)

Specular reflection

- Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)
- On real surfaces, energy usually goes into a lobe of directions
- Phong model: reflected energy falls of with $\cos ^{n}(\delta \theta)$

Moving the light source

Changing the exponent

Specular reflection

Picture source
Slide from L. Lazebnik

Lambertian + Specular Model

- I(x) = Ambient Term + Diffuse Term + Specular Term

Photometric stereo (shape from shading)

- Can we reconstruct the shape of an object based on shading cues?

Luca della Robbia, Cantoria, 1438

Photometric stereo

Assume:

- A Lambertian object
- A local shading model (each point on a surface receives light only from sources visible at that point)
- A set of known light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection

Goal: reconstruct object shape and albedo

Example 1

 Recovered albedo

Recovered normal field

Recovered surface model

Slide from L. Lazebnik

Example 2

Input

Slide from L. Lazebnik

Image model

- Known: source vectors \mathbf{S}_{j} and pixel values $I_{j}(x, y)$
- Unknown: surface normal $\mathbf{N}(x, y)$ and albedo $\rho(x, y)$

Image model

- Known: source vectors \mathbf{S}_{j} and pixel values $I_{j}(x, y)$
- Unknown: surface normal $\mathbf{N}(x, y)$ and albedo $\rho(x, y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$
\begin{aligned}
I_{j}(x, y) & =k \rho(x, y)\left(\mathbf{N}(x, y) \cdot \mathbf{S}_{j}\right) \\
& =(\rho(x, y) \mathbf{N}(x, y)) \cdot\left(k \mathbf{S}_{j}\right) \\
& =\mathbf{g}(x, y) \cdot \mathbf{V}_{j}
\end{aligned}
$$

Least squares problem

- For each pixel, set up a linear system:
- Obtain least-squares solution for $\mathbf{g}(x, y)$ (which we defined as $\mathbf{N}(x, y) \rho(x, y)$)
- Since $\mathbf{N}(x, y)$ is the unit normal, $\rho(x, y)$ is given by the magnitude of $\mathbf{g}(x, y)$
- Finally, $\mathbf{N}(x, y)=\mathbf{g}(x, y) / \rho(x, y)$

Synthetic example

Slide from L. Lazebnik
Recovered normal field

Recovering a surface from normals

Recall the surface is written as

$$
(x, y, f(x, y))
$$

This means the normal has the form:
$\mathbf{N}(x, y)=\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}\left(\begin{array}{c}f_{x} \\ f_{y} \\ 1\end{array}\right)$

$$
\begin{aligned}
& f_{x}(x, y)=g_{1}(x, y) / g_{3}(x, y) \\
& f_{y}(x, y)=g_{2}(x, y) / g_{3}(x, y)
\end{aligned}
$$

Recovering a surface from normals

We can now recover the surface height at any point by integration along some path, e.g.

$$
\begin{aligned}
f(x, y)= & \int_{0}^{x} f_{x}(s, 0) d s+ \\
& \int_{0}^{y} f_{y}(x, t) d t+C
\end{aligned}
$$

(for robustness, should take integrals over many different paths and average the results)

Integrability: for the surface f to exist, the mixed second partial derivatives must be equal:

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(g_{1}(x, y) / g_{3}(x, y)\right)= \\
& \frac{\partial}{\partial x}\left(g_{2}(x, y) / g_{3}(x, y)\right)
\end{aligned}
$$

(in practice, they should at least be similar)

Surface recovered by integration

Limitations

- Orthographic camera model
- Simplistic reflectance and lighting model
- No shadows
- No interreflections
- No missing data
- Integration is tricky

Finding the direction of the light source

$$
I(x, y)=\mathbf{N}(x, y) \cdot \mathbf{S}(x, y)
$$

Full 3D case:

$$
\left(\begin{array}{ccc}
N_{x}\left(x_{1}, y_{1}\right) & N_{y}\left(x_{1}, y_{1}\right) & N_{z}\left(x_{1}, y_{1}\right) \\
N_{x}\left(x_{2}, y_{2}\right) & N_{y}\left(x_{2}, y_{2}\right) & N_{z}\left(x_{2}, y_{2}\right) \\
\vdots & \vdots & \vdots \\
N_{x}\left(x_{n}, y_{n}\right) & N_{y}\left(x_{n}, y_{n}\right) & N_{z}\left(x_{n}, y_{n}\right)
\end{array}\right)\left(\begin{array}{l}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right)=\left(\begin{array}{c}
I\left(x_{1}, y_{1}\right) \\
I\left(x_{2}, y_{2}\right) \\
\vdots \\
I\left(x_{n}, y_{n}\right)
\end{array}\right)
$$

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

Consider points on the occluding contour:

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

$$
I(x, y)=\mathbf{N}(x, y) \cdot \mathbf{S}(x, y)
$$

Full 3D case:

For points on the occluding contour, $N_{z}=0$:

$$
\left(\begin{array}{cc}
N_{x}\left(x_{1}, y_{1}\right) & N_{y}\left(x_{1}, y_{1}\right) \\
N_{x}\left(x_{2}, y_{2}\right) & N_{y}\left(x_{2}, y_{2}\right) \\
\vdots & \vdots \\
N_{x}\left(x_{n}, y_{n}\right) & N_{y}\left(x_{n}, y_{n}\right)
\end{array}\right)\binom{S_{x}}{S_{y}}=\left(\begin{array}{c}
I\left(x_{1}, y_{1}\right) \\
I\left(x_{2}, y_{2}\right) \\
\vdots \\
I\left(x_{n}, y_{n}\right)
\end{array}\right)
$$

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Application: Detecting composite photos

Real photo

Fake photo

M. K. Johnson and H. Farid, Exposing Digital Forgeries by Detecting Inconsistencies in Lighting, ACM Multimedia and Security Workshop, 2005.

