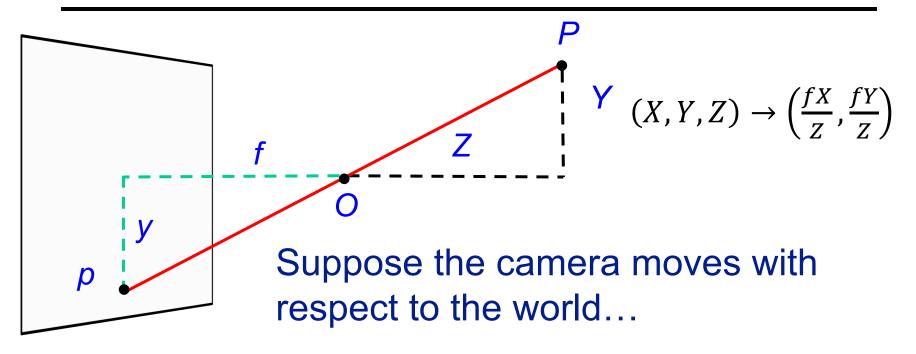
Dynamic Perspective

CS 543 / ECE 549 – Saurabh Gupta

Perspective Projection



- Point P (X, Y, Z) in the world moves relative to the camera, its projection in the image (x, y) moves as well.
- This movement in the image plane is called optical flow.
- Suppose the image of the point (x, y) moves to $(x + \Delta x, y + \Delta y)$ in time Δt , then $\left(\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}\right)$ are the two components of the optical flow.

Outline

- Relate optical flow to camera motion
- Special cases

How does a point X in the scene move?

- Assume that the camera moves with a translational velocity $t=(t_x,t_y,t_z)$ and angular velocity $\omega=(\omega_x,\omega_y,\omega_z)$.
- Linear velocity of point P = (X, Y, Z) is given by $\dot{P} = -t \omega \times P$.

$$\begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{bmatrix} = - \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} - \begin{bmatrix} \omega_y Z - \omega_z Y \\ \omega_z X - \omega_x Z \\ \omega_x Y - \omega_y X \end{bmatrix}$$

Now, lets consider the effect of projection

$$\begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{bmatrix} = - \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} - \begin{bmatrix} \omega_y Z - \omega_z Y \\ \omega_z X - \omega_x Z \\ \omega_x Y - \omega_y X \end{bmatrix}$$

- Assume, f = 1, $x = \frac{X}{Z}$, $y = \frac{Y}{Z}$.
- $\dot{x} = \frac{\dot{X}Z \dot{Z}X}{Z^2}$, $\dot{y} = \frac{\dot{Y}Z \dot{Z}Y}{Z^2}$
- Substitute \dot{X} , \dot{Y} , \dot{Z} , from equation above:

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} -1 & 0 & x \\ 0 & -1 & y \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ (1+y^2) & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

Dynamic Perspective Equations

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} -1 & 0 & x \\ 0 & -1 & y \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ (1+y^2) & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

Translation Component Rotation Component

Optical flow for pure rotation

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} -1 & 0 & x \\ 0 & -1 & y \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ (1+y^2) & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

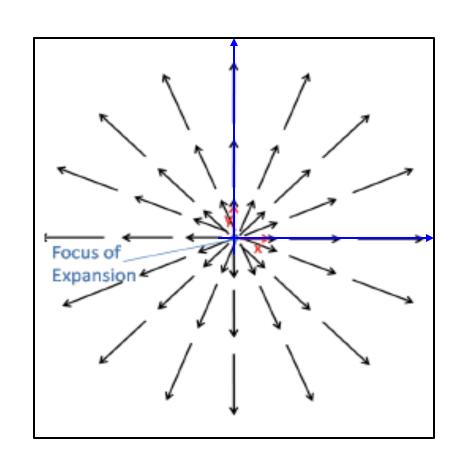
•
$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} xy & -(1+x^2) & y \\ (1+y^2) & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

- We can determine ω from the flow field.
- Flow field is independent of Z(x, y).

Optical flow for pure translation along Z-axis

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} -1 & 0 & x \\ 0 & -1 & y \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ (1+y^2) & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

- $\bullet \quad \begin{bmatrix} u \\ v \end{bmatrix} = \frac{t_z}{Z(x,y)} \begin{bmatrix} x \\ y \end{bmatrix}$
- Optical flow vector is a scalar multiple of position vector.
- Scale factor ambiguity, if $t_Z \rightarrow kt_Z$, and $Z \rightarrow kZ$, optical flow remains unchanged.
- But, you can get time to collision, Z/t_z .

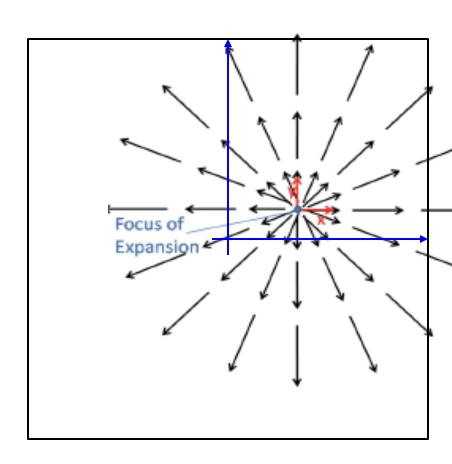


STOP

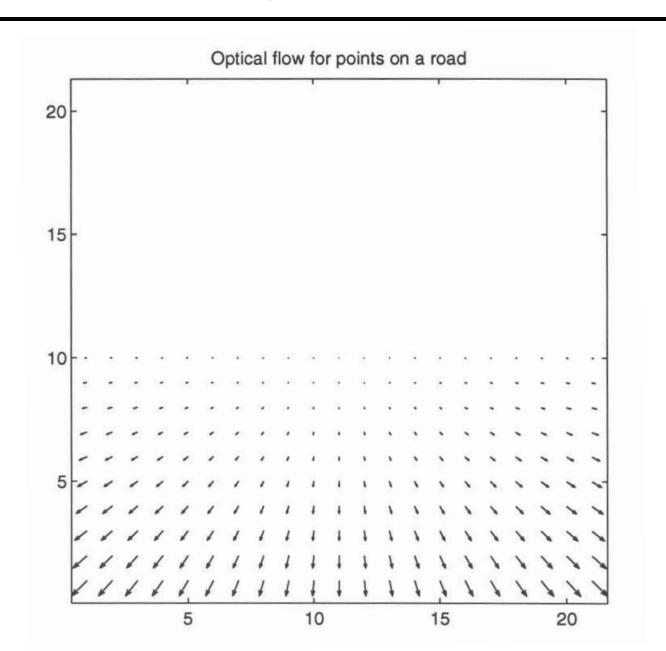
Optical flow for impure translation along Z-axis

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} -1 & 0 & x \\ 0 & -1 & y \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ (1+y^2) & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

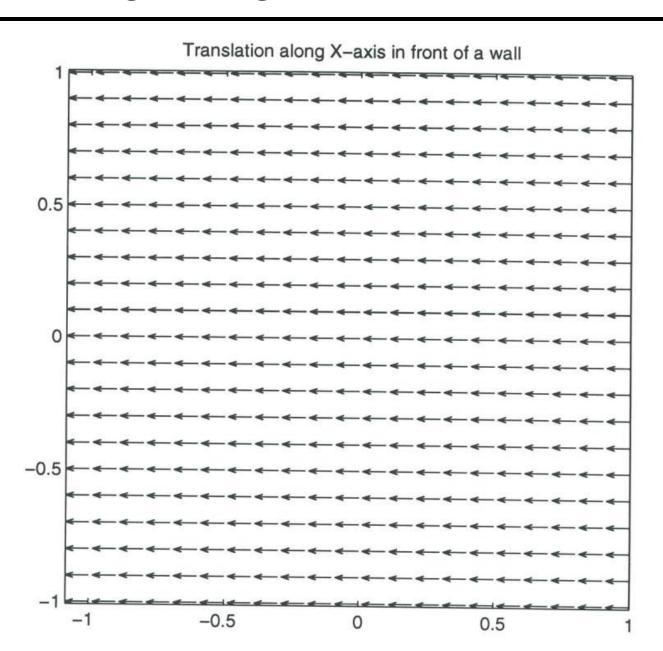
•
$$u = \frac{-t_x + xt_z}{Z(x,y)}$$
, $v = \frac{-t_y + yt_z}{Z(x,y)}$



Optical flow for points on a road



Translating along X-axis in front of a wall



Estimating Optical Flow from Images

Aperture Problem

Recap

Relate optical flow to camera motion

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} -1 & 0 & x \\ 0 & -1 & y \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ (1+y^2) & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

- Special cases
 - Pure rotation / pure translation / time to collision