
Edge Detection

Many slides from S. Lazebnik.

CS 543 / ECE 549 – Saurabh Gupta

Edge Detection

Many slides from S. Lazebnik.

CS 543 / ECE 549 – Saurabh Gupta

While we wait,
what do you see
in this image?

Source: Gregory, R. L. (1970). The Intelligent Eye. New York, NY: McGraw-Hill Paperbacks.

Are Edges an Input or an Output?

Edge detection

• Goal: Identify sudden changes (discontinuities)
in an image

• Intuitively, edges carry most of the semantic
and shape information from the image

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Sources: D. Lowe and S. Seitz

Edge detection

Source: https://www.clipartkey.com/view/wRJixi_drawing-of-altgeld-hall-chapel/

Ideal: artist’s line drawing Reality

Edge detection
• An edge is a place of rapid change in the

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Source: L. Lazebnik

Derivatives with convolution
For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite
differences:

To implement the above as convolution, what would be
the associated filter?

e
e

e

),(),(lim),(
0

yxfyxf
x
yxf -+
=

¶
¶

®

1
),(),1(),(yxfyxf

x
yxf -+
»

¶
¶

Source: K. Grauman

Partial derivatives of an image

Which shows changes with respect to x?

-1
1

1
-1or-1 1

x
yxf

¶
¶),(

y
yxf

¶
¶),(

Source: L. Lazebnik

Finite difference filters
Other approximations of derivative filters exist:
• Prewitt

• Sobel

• Roberts

Source: K. Grauman

Mx
<latexit sha1_base64="jwvJb5fneCtak2jcjjkEVVf6Qgw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EiOYByRJmJ5NkyOzsMtMrhiWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5ybUSkHnAccz+kAyX6glG00v1t96lbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7NQJObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+qlQcYJcsfmifiIJRmT6N+kJzRnKsSWUaWFvJWxINWVo0ynYELzFl5dJo1L2zsqVu/NS9SqLIw9HcAyn4MEFVOEGalAHBgN4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/NxiNwA==</latexit>

My
<latexit sha1_base64="tJPIteo/l/tkSLkEuN2Erb4Glrs=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDP1W09cGxGrRxwn3I/oQIlQMIpWerjrjXulsltxZyDLxMtJGXLUe6Wvbj9macQVMkmN6Xhugn5GNQom+aTYTQ1PKBvRAe9YqmjEjZ/NTp2QU6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7QheIsvL5NmteKdV6r3F+XadR5HAY7hBM7Ag0uowS3UoQEMBvAMr/DmSOfFeXc+5q0rTj5zBH/gfP4AOJyNwQ==</latexit>

Mx
<latexit sha1_base64="jwvJb5fneCtak2jcjjkEVVf6Qgw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EiOYByRJmJ5NkyOzsMtMrhiWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5ybUSkHnAccz+kAyX6glG00v1t96lbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7NQJObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+qlQcYJcsfmifiIJRmT6N+kJzRnKsSWUaWFvJWxINWVo0ynYELzFl5dJo1L2zsqVu/NS9SqLIw9HcAyn4MEFVOEGalAHBgN4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/NxiNwA==</latexit>

My
<latexit sha1_base64="tJPIteo/l/tkSLkEuN2Erb4Glrs=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDP1W09cGxGrRxwn3I/oQIlQMIpWerjrjXulsltxZyDLxMtJGXLUe6Wvbj9macQVMkmN6Xhugn5GNQom+aTYTQ1PKBvRAe9YqmjEjZ/NTp2QU6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7QheIsvL5NmteKdV6r3F+XadR5HAY7hBM7Ag0uowS3UoQEMBvAMr/DmSOfFeXc+5q0rTj5zBH/gfP4AOJyNwQ==</latexit>

Mx
<latexit sha1_base64="jwvJb5fneCtak2jcjjkEVVf6Qgw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EiOYByRJmJ5NkyOzsMtMrhiWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5ybUSkHnAccz+kAyX6glG00v1t96lbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7NQJObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+qlQcYJcsfmifiIJRmT6N+kJzRnKsSWUaWFvJWxINWVo0ynYELzFl5dJo1L2zsqVu/NS9SqLIw9HcAyn4MEFVOEGalAHBgN4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/NxiNwA==</latexit>

My
<latexit sha1_base64="tJPIteo/l/tkSLkEuN2Erb4Glrs=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDP1W09cGxGrRxwn3I/oQIlQMIpWerjrjXulsltxZyDLxMtJGXLUe6Wvbj9macQVMkmN6Xhugn5GNQom+aTYTQ1PKBvRAe9YqmjEjZ/NTp2QU6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7QheIsvL5NmteKdV6r3F+XadR5HAY7hBM7Ag0uowS3UoQEMBvAMr/DmSOfFeXc+5q0rTj5zBH/gfP4AOJyNwQ==</latexit>

The gradient points in the direction of most rapid increase
in intensity

Image gradient

The gradient of an image:

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?

Application: Gradient-domain image editing

• Goal: solve for pixel values in the target region to match
gradients of the source region while keeping background
pixels the same

P. Perez, M. Gangnet, A. Blake, Poisson Image Editing, SIGGRAPH 2003
Source: L. Lazebnik

http://www.cs.virginia.edu/~connelly/class/2014/comp_photo/proj2/poisson.pdf

Effects of noise
Consider a single row or column of the image

Where is the edge?
Source: S. Seitz

Solution: smooth first

• To find edges, look for peaks in)(gf
dx
d

*

f

g

f * g

)(gf
dx
d

*

Source: S. Seitz

• Differentiation is convolution, and convolution
is associative:

• This saves us one operation:

g
dx
dfgf

dx
d

=)(

Derivative theorem of convolution

g
dx
df *

f

g
dx
d

Source: S. Seitz

Derivative of Gaussian filters

Which one finds horizontal/vertical edges?

x-direction y-direction

Source: L. Lazebnik

Derivative of Gaussian filters

Are these filters separable?

x-direction y-direction

Recall: Separability of the Gaussian filter

The 2D Gaussian can be expressed as the
product of two functions, one a function of x
and the other a function of y.

In this case the two functions are the (identical)
1D Gaussian.

Source: D. Lowe

G�(x, y) =
1

2⇡�2
e
�
⇣

x2+y2

2�2

⌘

=

✓
1p
2⇡�2

e�
x2

2�2

◆✓
1p
2⇡�2

e�
y2

2�2

◆

<latexit sha1_base64="gA69LuXMimkzVXh6EnLZ5uy5OOY=">AAACzHiclVFNaxsxENVuvxKnTZ32mIuoSXFoY3Y3gfYSCMkh6aWkUCcByzZaedYW0X5Emg1elr32B+aWc/9IZa8NzselA4LHe2+epJkwU9Kg59077ouXr16/WVtvbLx9t/m+ufXhwqS5FtAVqUr1VcgNKJlAFyUquMo08DhUcBlen8z0y1vQRqbJbywy6Md8nMhICo6WGjb/ng6ZkeOY0/b0a7FLPx9SFmkuSr8qA5bJWhwEFQ zKPaYgwnatTwfBl8Ly1rW0MC3HE9ytKGONWc6K26Yxc6PxYWYduoxbjVpm/V9I8XzIsNnyOt686FPgL0CLLOp82Lxjo1TkMSQoFDem53sZ9kuuUQoFVYPlBjIurvkYehYmPAbTL+fLqOiOZUY0SrU9CdI5u9pR8tiYIg6tM+Y4MY+1Gfmc1ssx+t4vZZLlCImoL4pyRTGls83SkdQgUBUWcKGlfSsVE27ngnb/DTsE//GXn4KLoOPvd4JfB62j48U41sg2+UTaxCffyBE5I+ekS4Tzw0mdqVO4P110S7eqra6z6PlIHpT75x/VoeDS</latexit>

Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

Source: D. Forsyth

Review: Smoothing vs. derivative filters
Smoothing filters

• Gaussian: remove “high-frequency” components;
“low-pass” filter

• Can the values of a smoothing filter be negative?
• What should the values sum to?

– One: constant regions are not affected by the filter

Derivative filters
• Derivatives of Gaussian
• Can the values of a derivative filter be negative?
• What should the values sum to?

– Zero: no response in constant regions

Source: L. Lazebnik

Building an edge detector

original image final output

Building an edge detector

norm of the gradient

Building an edge detector

orientation of the gradient

✓ = np.arctan2(-gy, gx)
<latexit sha1_base64="7haZ1zjuLWh84YA//VHmL8MfXdA=">AAACDnicbVDLSgNBEJz1bXxFPXoZDIKCht0o6EUQvXiMYFRIQuiddJLB2dllplcSlnyBF3/FiwdFvHr25t84eRx8FTQUVd10d4WJkpZ8/9ObmJyanpmdm88tLC4tr+RX165snBqBFRGr2NyEYFFJjRWSpPAmMQhRqPA6vD0b+Nd3aKyM9SX1EqxH0NayJQWQkxr5rRp1kIAf8xphl4gynRTBCAJd2t5r93Z5u7vTb+QLftEfgv8lwZgU2BjlRv6j1oxFGqEmocDaauAnVM/AkBQK+7laajEBcQttrDqqIUJbz4bv9PmWU5q8FRtXmvhQ/T6RQWRtLwpdZwTUsb+9gfifV02pdVTPpE5SQi1Gi1qp4hTzQTa8KQ0KUj1HQBjpbuWiAwYEuQRzLoTg98t/yVWpGOwXSxcHhZPTcRxzbINtsm0WsEN2ws5ZmVWYYPfskT2zF+/Be/JevbdR64Q3nllnP+C9fwHT7ZtR</latexit>

Building an edge detector

Norm of the gradient > threshold

How to turn
these thick
regions of
the gradient
into
curves?

Non-maximum suppression

• For each location q above threshold, check that the gradient
magnitude is higher than at neighbors p and r along the
direction of the gradient
• May need to interpolate to get the magnitudes at p and r

Source: L. Lazebnik

Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

𝑓 𝑥, 𝑦 ≈ 1 − 𝑥 𝑥
𝑓(0,0) 𝑓(0,1)
𝑓(1,0) 𝑓(1,1)

1 − 𝑦
𝑦

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options
imx2 = imresize(im, 2,

interpolation_type)

‘nearest’
• Copy value from nearest known
• Very fast but creates blocky edges

‘bilinear’
• Weighted average from four nearest known

pixels
• Fast and reasonable results

‘bicubic’ (default)
• Non-linear smoothing over larger area
• Slower, visually appealing, may create negative

pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation
Source: D. Hoeim

http://en.wikipedia.org/wiki/Bicubic_interpolation

Non-maximum suppression

Another problem: pixels
along this edge didn’t
survive the thresholding

NMS NMS > threshold

Hysteresis thresholding

Use a high threshold to start edge curves, and a
low threshold to continue them.

Source: Steve Seitz

Hysteresis

high threshold
(strong edges)

low threshold
(weak edges) hysteresis threshold

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei

Effect of s (Gaussian kernel spread/size)

Canny with Canny with original

The choice of s depends on desired behavior
• large s detects large scale edges
• small s detects fine features

Source: S. Seitz

Recap: Canny edge detector
1. Compute x and y gradient images
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

• Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

• Define two thresholds: low and high
• Use the high threshold to start edge curves and

the low threshold to continue them

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Lazebnik

http://ieeexplore.ieee.org/document/4767851/

Image gradients vs. meaningful contours

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: L. Lazebnik

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Do humans consistently segment images?

A Database of Human Segmented Natural Images and its Application to
Evaluating Segmentation Algorithms and Measuring Ecological Statistics

David Martin Charless Fowlkes Doron Tal Jitendra Malik
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

{dmartin,fowlkes,doron,malik}@eecs.berkeley.edu

Abstract

This paper presents a database containing ‘ground
truth’ segmentations produced by humans for images of a
wide variety of natural scenes. We define an error measure
which quantifies the consistency between segmentations of
differing granularities and find that different human seg-
mentations of the same image are highly consistent. Use of
this dataset is demonstrated in two applications: (1) eval-
uating the performance of segmentation algorithms and (2)
measuring probability distributions associated with Gestalt
grouping factors as well as statistics of image region prop-
erties.

1. Introduction

Two central problems in vision are image segmentation
and recognition1. Both problems are hard, and we do not
yet have any general purpose solution approaching human
level competence for either one.
While it is unreasonable to expect quick solutions to ei-

ther problem, there is one dimension on which research in
recognition is on much more solid grounds–it is consider-
ably easier to quantify the performance of computer vision
algorithms at recognition than at segmentation. Recogni-
tion is classification, and one can empirically estimate the
probability of misclassification by simply counting classifi-
cation errors on a test set. The ready availability of test sets
– two of most significant ones are the MNIST handwrit-
ten digit dataset and the FERET face data set–has meant
that different algorithms can be compared directly using the
same quantitative error measures. It is well accepted that
one cannot evaluate a recognition algorithm by showing a
few images of correct classification. In contrast, image seg-

1It could be argued that they are aspects of the same problem. We do
not necessarily disagree!

Figure 1: Sample of 10 images from the segmentation database. Each
image has been segmented by 3 different people. A total of 10 people are
represented in this data.

A Database of Human Segmented Natural Images and its Application to
Evaluating Segmentation Algorithms and Measuring Ecological Statistics

Divide each image into pieces, where each piece represents a distinguished
thing in the image. It is important that all of the pieces have approximately
equal importance. The number of things in each image is up to you.
Something between 2 and 20 should be reasonable for any of our images.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mftm-iccv01.pdf
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mftm-iccv01.pdf

Aside: Datasets, Metrics and Benchmarks
• Standard image sets
• Standard metrics
• Possible to quantitatively compare different

methods

A Database of Human Segmented Natural Images and its Application to
Evaluating Segmentation Algorithms and Measuring Ecological Statistics

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mftm-iccv01.pdf
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mftm-iccv01.pdf

11

Fig. 14. Hierarchical segmentation from contours. Far Left: Image. Left: Maximal response of contour detector
gPb over orientations. Middle Left: Weighted contours resulting from the Oriented Watershed Transform - Ultrametric
Contour Map (OWT-UCM) algorithm using gPb as input. This single weighted image encodes the entire hierarchical
segmentation. By construction, applying any threshold to it is guaranteed to yield a set of closed contours (the ones
with weights above the threshold), which in turn define a segmentation. Moreover, the segmentations are nested.
Increasing the threshold is equivalent to removing contours and merging the regions they separated. Middle Right:

The initial oversegmentation corresponding to the finest level of the UCM, with regions represented by their mean
color. Right and Far Right: Contours and corresponding segmentation obtained by thresholding the UCM at level 0.5.

E(x, y, ✓), to assign each arc pixel (x, y) a boundary
strength of E(x, y, o(x, y)). We quantize o(x, y) in the
same manner as ✓, so this operation is a simple lookup.
Finally, each original arc in K0 is assigned weight equal
to average boundary strength of the pixels it contains.
Comparing the middle left and far right panels of Fig-
ure 12 shows this reweighting scheme removes artifacts.

4.2 Ultrametric Contour Map
Contours have the advantage that it is fairly straightfor-
ward to represent uncertainty in the presence of a true
underlying contour, i.e. by associating a binary random
variable to it. One can interpret the boundary strength
assigned to an arc by the Oriented Watershed Transform
(OWT) of the previous section as an estimate of the
probability of that arc being a true contour.

It is not immediately obvious how to represent un-
certainty about a segmentation. One possibility, which
we exploit here, is the Ultrametric Contour Map (UCM)
[35] which defines a duality between closed, non-self-
intersecting weighted contours and a hierarchy of re-
gions. The base level of this hierarchy respects even
weak contours and is thus an oversegmentation of the
image. Upper levels of the hierarchy respect only strong
contours, resulting in an under-segmentation. Moving
between levels offers a continuous trade-off between
these extremes. This shift in representation from a single
segmentation to a nested collection of segmentations
frees later processing stages to use information from
multiple levels or select a level based on additional
knowledge.

Our hierarchy is constructed by a greedy graph-based
region merging algorithm. We define an initial graph
G = (P0,K0, W (K0)), where the nodes are the regions
P0, the links are the arcs K0 separating adjacent regions,
and the weights W (K0) are a measure of dissimilarity

between regions. The algorithm proceeds by sorting the
links by similarity and iteratively merging the most
similar regions. Specifically:

1) Select minimum weight contour:
C⇤ = argminC2K0

W (C).
2) Let R1, R2 2 P0 be the regions separated by C⇤.
3) Set R = R1 [R2, and update:

P0 P0\{R1, R2} [{R} and K0 K0\{C⇤
}.

4) Stop if K0 is empty.
Otherwise, update weights W (K0) and repeat.

This process produces a tree of regions, where the leaves
are the initial elements of P0, the root is the entire image,
and the regions are ordered by the inclusion relation.

We define dissimilarity between two adjacent regions
as the average strength of their common boundary in
K0, with weights W (K0) initialized by the OWT. Since at
every step of the algorithm all remaining contours must
have strength greater than or equal to those previously
removed, the weight of the contour currently being
removed cannot decrease during the merging process.
Hence, the constructed region tree has the structure of
an indexed hierarchy and can be described by a den-
drogram, where the height H(R) of each region R is the
value of the dissimilarity at which it first appears. Stated
equivalently, H(R) = W (C) where C is the contour
whose removal formed R. The hierarchy also yields a
metric on P0⇥P0, with the distance between two regions
given by the height of the smallest containing segment:

D(R1, R2) = min{H(R) : R1, R2 ✓ R} (15)

This distance satisfies the ultrametric property:

D(R1, R2)  max(D(R1, R), D(R,R2)) (16)

since if R is merged with R1 before R2, then D(R1, R2) =
D(R,R2), or if R is merged with R2 before R1, then
D(R1, R2) = D(R1, R). As a consequence, the whole

pB Boundary Detector

Contour Detection and Hierarchical Image Segmentation P. Arbeláez. PAMI 2010.

5

2.3.2 Rand Index
Originally, the Rand Index [62] was introduced for gen-
eral clustering evaluation. It operates by comparing the
compatibility of assignments between pairs of elements
in the clusters. The Rand Index between test and ground-
truth segmentations S and G is given by the sum of the
number of pairs of pixels that have the same label in
S and G and those that have different labels in both
segmentations, divided by the total number of pairs of
pixels. Variants of the Rand Index have been proposed
[5], [7] for dealing with the case of multiple ground-truth
segmentations. Given a set of ground-truth segmenta-
tions {Gk}, the Probabilistic Rand Index is defined as:

PRI(S, {Gk}) =
1
T

X

i<j

[cijpij + (1� cij)(1� pij)] (6)

where cij is the event that pixels i and j have the same
label and pij its probability. T is the total number of
pixel pairs. Using the sample mean to estimate pij , (6)
amounts to averaging the Rand Index among different
ground-truth segmentations. The PRI has been reported
to suffer from a small dynamic range [5], [7], and its
values across images and algorithms are often similar.
In [5], this drawback is addressed by normalization with
an empirical estimation of its expected value.

2.3.3 Segmentation Covering
The overlap between two regions R and R0, defined as:

O(R,R0) =
|R \R0

|

|R [R0|
(7)

has been used for the evaluation of the pixel-wise clas-
sification task in recognition [8], [11]. We define the
covering of a segmentation S by a segmentation S0 as:

C(S0
! S) =

1
N

X

R2S

|R| · max
R02S0

O(R,R0) (8)

where N denotes the total number of pixels in the image.
Similarly, the covering of a machine segmentation S by

a family of ground-truth segmentations {Gi} is defined
by first covering S separately with each human segmen-
tation Gi, and then averaging over the different humans.
To achieve perfect covering the machine segmentation
must explain all of the human data. We can then define
two quality descriptors for regions: the covering of S by
{Gi} and the covering of {Gi} by S.

3 CONTOUR DETECTION
As a starting point for contour detection, we consider
the work of Martin et al. [2], who define a function
Pb(x, y, ✓) that predicts the posterior probability of a
boundary with orientation ✓ at each image pixel (x, y)
by measuring the difference in local image brightness,
color, and texture channels. In this section, we review
these cues, introduce our own multiscale version of the
Pb detector, and describe the new globalization method
we run on top of this multiscale local detector.

0 0.5 1

Upper Half−Disc Histogram

0 0.5 1

Lower Half−Disc Histogram

Fig. 4. Oriented gradient of histograms. Given an
intensity image, consider a circular disc centered at each
pixel and split by a diameter at angle ✓. We compute
histograms of intensity values in each half-disc and output
the �2 distance between them as the gradient magnitude.
The blue and red distributions shown in the middle panel
are the histograms of the pixel brightness values in the
blue and red regions, respectively, in the left image. The
right panel shows an example result for a disc of radius
5 pixels at orientation ✓ = ⇡

4 after applying a second-
order Savitzky-Golay smoothing filter to the raw histogram
difference output. Note that the left panel displays a larger
disc (radius 50 pixels) for illustrative purposes.

3.1 Brightness, Color, Texture Gradients
The basic building block of the Pb contour detector is
the computation of an oriented gradient signal G(x, y, ✓)
from an intensity image I . This computation proceeds
by placing a circular disc at location (x, y) split into two
half-discs by a diameter at angle ✓. For each half-disc, we
histogram the intensity values of the pixels of I covered
by it. The gradient magnitude G at location (x, y) is
defined by the �2 distance between the two half-disc
histograms g and h:

�2(g, h) =
1
2

X

i

(g(i)� h(i))2

g(i) + h(i)
(9)

We then apply second-order Savitzky-Golay filtering
[63] to enhance local maxima and smooth out multiple
detection peaks in the direction orthogonal to ✓. This is
equivalent to fitting a cylindrical parabola, whose axis
is orientated along direction ✓, to a local 2D window
surrounding each pixel and replacing the response at the
pixel with that estimated by the fit.

Figure 4 shows an example. This computation is moti-
vated by the intuition that contours correspond to image
discontinuities and histograms provide a robust mech-
anism for modeling the content of an image region. A
strong oriented gradient response means a pixel is likely
to lie on the boundary between two distinct regions.

The Pb detector combines the oriented gradient sig-
nals obtained from transforming an input image into
four separate feature channels and processing each chan-
nel independently. The first three correspond to the
channels of the CIE Lab colorspace, which we refer to

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf

6

Fig. 5. Filters for creating textons. We use 8 oriented
even- and odd-symmetric Gaussian derivative filters and
a center-surround (difference of Gaussians) filter.

as the brightness, color a, and color b channels. For
grayscale images, the brightness channel is the image
itself and no color channels are used.

The fourth channel is a texture channel, which assigns
each pixel a texton id. These assignments are computed
by another filtering stage which occurs prior to the
computation of the oriented gradient of histograms.
This stage converts the input image to grayscale and
convolves it with the set of 17 Gaussian derivative and
center-surround filters shown in Figure 5. Each pixel is
associated with a (17-dimensional) vector of responses,
containing one entry for each filter. These vectors are
then clustered using K-means. The cluster centers define
a set of image-specific textons and each pixel is assigned
the integer id in [1, K] of the closest cluster center. Exper-
iments show choosing K = 32 textons to be sufficient.

We next form an image where each pixel has an
integer value in [1, K], as determined by its texton id.
An example can be seen in Figure 6 (left column, fourth
panel from top). On this image, we compute differences
of histograms in oriented half-discs in the same manner
as for the brightness and color channels.

Obtaining G(x, y, ✓) for arbitrary input I is thus the
core operation on which our local cues depend. In the
appendix, we provide a novel approximation scheme for
reducing the complexity of this computation.

3.2 Multiscale Cue Combination
We now introduce our own multiscale extension of the
Pb detector reviewed above. Note that Ren [28] intro-
duces a different, more complicated, and similarly per-
forming multiscale extension in work contemporaneous
with our own [3], and also suggests possible reasons
Martin et al. [2] did not see performance improvements
in their original multiscale experiments, including their
use of smaller images and their choice of scales.

In order to detect fine as well as coarse structures,
we consider gradients at three scales: [�

2 , �, 2�] for each
of the brightness, color, and texture channels. Figure 6
shows an example of the oriented gradients obtained for
each channel. For the brightness channel, we use � = 5
pixels, while for color and texture we use � = 10 pixels.
We then linearly combine these local cues into a single
multiscale oriented signal:

mPb(x, y, ✓) =
X

s

X

i

↵i,sGi,�(i,s)(x, y, ✓) (10)

where s indexes scales, i indexes feature channels
(brightness, color a, color b, texture), and Gi,�(i,s)(x, y, ✓)
measures the histogram difference in channel i between

Channel ✓ = 0 ✓ = ⇡
2 G(x, y)

mPb(x, y)

Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The
brightness and color a and b channels of Lab color space,
and the texton channel computed using image-specific
textons, followed by the input image. Rows: Next to each
channel, we display the oriented gradient of histograms
(as outlined in Figure 4) for ✓ = 0 and ✓ = ⇡

2 (horizontal
and vertical), and the maximum response over eight
orientations in [0, ⇡) (right column). Beside the original
image, we display the combination of oriented gradients
across all four channels and across three scales. The
lower right panel (outlined in red) shows mPb, the final
output of the multiscale contour detector.

6

Fig. 5. Filters for creating textons. We use 8 oriented
even- and odd-symmetric Gaussian derivative filters and
a center-surround (difference of Gaussians) filter.

as the brightness, color a, and color b channels. For
grayscale images, the brightness channel is the image
itself and no color channels are used.

The fourth channel is a texture channel, which assigns
each pixel a texton id. These assignments are computed
by another filtering stage which occurs prior to the
computation of the oriented gradient of histograms.
This stage converts the input image to grayscale and
convolves it with the set of 17 Gaussian derivative and
center-surround filters shown in Figure 5. Each pixel is
associated with a (17-dimensional) vector of responses,
containing one entry for each filter. These vectors are
then clustered using K-means. The cluster centers define
a set of image-specific textons and each pixel is assigned
the integer id in [1, K] of the closest cluster center. Exper-
iments show choosing K = 32 textons to be sufficient.

We next form an image where each pixel has an
integer value in [1, K], as determined by its texton id.
An example can be seen in Figure 6 (left column, fourth
panel from top). On this image, we compute differences
of histograms in oriented half-discs in the same manner
as for the brightness and color channels.

Obtaining G(x, y, ✓) for arbitrary input I is thus the
core operation on which our local cues depend. In the
appendix, we provide a novel approximation scheme for
reducing the complexity of this computation.

3.2 Multiscale Cue Combination
We now introduce our own multiscale extension of the
Pb detector reviewed above. Note that Ren [28] intro-
duces a different, more complicated, and similarly per-
forming multiscale extension in work contemporaneous
with our own [3], and also suggests possible reasons
Martin et al. [2] did not see performance improvements
in their original multiscale experiments, including their
use of smaller images and their choice of scales.

In order to detect fine as well as coarse structures,
we consider gradients at three scales: [�

2 , �, 2�] for each
of the brightness, color, and texture channels. Figure 6
shows an example of the oriented gradients obtained for
each channel. For the brightness channel, we use � = 5
pixels, while for color and texture we use � = 10 pixels.
We then linearly combine these local cues into a single
multiscale oriented signal:

mPb(x, y, ✓) =
X

s

X

i

↵i,sGi,�(i,s)(x, y, ✓) (10)

where s indexes scales, i indexes feature channels
(brightness, color a, color b, texture), and Gi,�(i,s)(x, y, ✓)
measures the histogram difference in channel i between

Channel ✓ = 0 ✓ = ⇡
2 G(x, y)

mPb(x, y)

Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The
brightness and color a and b channels of Lab color space,
and the texton channel computed using image-specific
textons, followed by the input image. Rows: Next to each
channel, we display the oriented gradient of histograms
(as outlined in Figure 4) for ✓ = 0 and ✓ = ⇡

2 (horizontal
and vertical), and the maximum response over eight
orientations in [0, ⇡) (right column). Beside the original
image, we display the combination of oriented gradients
across all four channels and across three scales. The
lower right panel (outlined in red) shows mPb, the final
output of the multiscale contour detector.

6

Fig. 5. Filters for creating textons. We use 8 oriented
even- and odd-symmetric Gaussian derivative filters and
a center-surround (difference of Gaussians) filter.

as the brightness, color a, and color b channels. For
grayscale images, the brightness channel is the image
itself and no color channels are used.

The fourth channel is a texture channel, which assigns
each pixel a texton id. These assignments are computed
by another filtering stage which occurs prior to the
computation of the oriented gradient of histograms.
This stage converts the input image to grayscale and
convolves it with the set of 17 Gaussian derivative and
center-surround filters shown in Figure 5. Each pixel is
associated with a (17-dimensional) vector of responses,
containing one entry for each filter. These vectors are
then clustered using K-means. The cluster centers define
a set of image-specific textons and each pixel is assigned
the integer id in [1, K] of the closest cluster center. Exper-
iments show choosing K = 32 textons to be sufficient.

We next form an image where each pixel has an
integer value in [1, K], as determined by its texton id.
An example can be seen in Figure 6 (left column, fourth
panel from top). On this image, we compute differences
of histograms in oriented half-discs in the same manner
as for the brightness and color channels.

Obtaining G(x, y, ✓) for arbitrary input I is thus the
core operation on which our local cues depend. In the
appendix, we provide a novel approximation scheme for
reducing the complexity of this computation.

3.2 Multiscale Cue Combination
We now introduce our own multiscale extension of the
Pb detector reviewed above. Note that Ren [28] intro-
duces a different, more complicated, and similarly per-
forming multiscale extension in work contemporaneous
with our own [3], and also suggests possible reasons
Martin et al. [2] did not see performance improvements
in their original multiscale experiments, including their
use of smaller images and their choice of scales.

In order to detect fine as well as coarse structures,
we consider gradients at three scales: [�

2 , �, 2�] for each
of the brightness, color, and texture channels. Figure 6
shows an example of the oriented gradients obtained for
each channel. For the brightness channel, we use � = 5
pixels, while for color and texture we use � = 10 pixels.
We then linearly combine these local cues into a single
multiscale oriented signal:

mPb(x, y, ✓) =
X

s

X

i

↵i,sGi,�(i,s)(x, y, ✓) (10)

where s indexes scales, i indexes feature channels
(brightness, color a, color b, texture), and Gi,�(i,s)(x, y, ✓)
measures the histogram difference in channel i between

Channel ✓ = 0 ✓ = ⇡
2 G(x, y)

mPb(x, y)

Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The
brightness and color a and b channels of Lab color space,
and the texton channel computed using image-specific
textons, followed by the input image. Rows: Next to each
channel, we display the oriented gradient of histograms
(as outlined in Figure 4) for ✓ = 0 and ✓ = ⇡

2 (horizontal
and vertical), and the maximum response over eight
orientations in [0, ⇡) (right column). Beside the original
image, we display the combination of oriented gradients
across all four channels and across three scales. The
lower right panel (outlined in red) shows mPb, the final
output of the multiscale contour detector.

Contour Detection and Hierarchical Image Segmentation P. Arbeláez. PAMI 2010.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf

10

Fig. 12. Oriented Watershed Transform. Left: Input boundary signal E(x, y) = max✓ E(x, y, ✓). Middle Left:

Watershed arcs computed from E(x, y). Note that thin regions give rise to artifacts. Middle: Watershed arcs with
an approximating straight line segment subdivision overlaid. We compute this subdivision in a scale-invariant manner
by recursively breaking an arc at the point maximally distant from the straight line segment connecting its endpoints, as
shown in Figure 13. Subdivision terminates when the distance from the line segment to every point on the arc is less
than a fixed fraction of the segment length. Middle Right: Oriented boundary strength E(x, y, ✓) for four orientations ✓.
In practice, we sample eight orientations. Right: Watershed arcs reweighted according to E at the orientation of their
associated line segments. Artifacts, such as the horizontal contours breaking the long skinny regions, are suppressed
as their orientations do not agree with the underlying E(x, y, ✓) signal.

Fig. 13. Contour subdivision. Left: Initial arcs color-
coded. If the distance from any point on an arc to the
straight line segment connecting its endpoints is greater
than a fixed fraction of the segment length, we subdivide
the arc at the maximally distant point. An example is
shown for one arc, with the dashed segments indicat-
ing the new subdivision. Middle: The final set of arcs
resulting from recursive application of the scale-invariant
subdivision procedure. Right: Approximating straight line
segments overlaid on the subdivided arcs.

This is done by computing E(x, y) = max✓ E(x, y, ✓),
the maximal response of the contour detector over ori-
entations. We take the regional minima of E(x, y) as
seed locations for homogeneous segments and apply
the watershed transform used in mathematical morphol-
ogy [68], [69] on the topographic surface defined by
E(x, y). The catchment basins of the minima, denoted
P0, provide the regions of the finest partition and the
corresponding watershed arcs, K0, the possible locations
of the boundaries.

Figure 11 shows an example of the standard water-
shed transform. Unfortunately, simply weighting each

arc by the mean value of E(x, y) for the pixels on
the arc can introduce artifacts. The root cause of this
problem is the fact that the contour detector produces a
spatially extended response around strong boundaries.
For example, a pixel could lie near but not on a strong
vertical contour. If this pixel also happens to belong to a
horizontal watershed arc, that arc would be erroneously
upweighted. Several such cases can be seen in Figure 11.
As we flood from all local minima, the initial watershed
oversegmentation contains many arcs that should be
weak, yet intersect nearby strong boundaries.

To correct this problem, we enforce consistency be-
tween the strength of the boundaries of K0 and the
underlying E(x, y, ✓) signal in a modified procedure,
which we call the Oriented Watershed Transform (OWT),
illustrated in Figure 12. As the first step in this reweight-
ing process, we estimate an orientation at each pixel
on an arc from the local geometry of the arc itself.
These orientations are obtained by approximating the
watershed arcs with line segments as shown in Figure 13.
We recursively subdivide any arc which is not well fit by
the line segment connecting its endpoints. By expressing
the approximation criterion in terms of the maximum
distance of a point on the arc from the line segment
as a fraction of the line segment length, we obtain a
scale-invariant subdivision. We assign each pixel (x, y)
on a subdivided arc the orientation o(x, y) 2 [0, ⇡) of the
corresponding line segment.

Next, we use the oriented contour detector output

10

Fig. 12. Oriented Watershed Transform. Left: Input boundary signal E(x, y) = max✓ E(x, y, ✓). Middle Left:

Watershed arcs computed from E(x, y). Note that thin regions give rise to artifacts. Middle: Watershed arcs with
an approximating straight line segment subdivision overlaid. We compute this subdivision in a scale-invariant manner
by recursively breaking an arc at the point maximally distant from the straight line segment connecting its endpoints, as
shown in Figure 13. Subdivision terminates when the distance from the line segment to every point on the arc is less
than a fixed fraction of the segment length. Middle Right: Oriented boundary strength E(x, y, ✓) for four orientations ✓.
In practice, we sample eight orientations. Right: Watershed arcs reweighted according to E at the orientation of their
associated line segments. Artifacts, such as the horizontal contours breaking the long skinny regions, are suppressed
as their orientations do not agree with the underlying E(x, y, ✓) signal.

Fig. 13. Contour subdivision. Left: Initial arcs color-
coded. If the distance from any point on an arc to the
straight line segment connecting its endpoints is greater
than a fixed fraction of the segment length, we subdivide
the arc at the maximally distant point. An example is
shown for one arc, with the dashed segments indicat-
ing the new subdivision. Middle: The final set of arcs
resulting from recursive application of the scale-invariant
subdivision procedure. Right: Approximating straight line
segments overlaid on the subdivided arcs.

This is done by computing E(x, y) = max✓ E(x, y, ✓),
the maximal response of the contour detector over ori-
entations. We take the regional minima of E(x, y) as
seed locations for homogeneous segments and apply
the watershed transform used in mathematical morphol-
ogy [68], [69] on the topographic surface defined by
E(x, y). The catchment basins of the minima, denoted
P0, provide the regions of the finest partition and the
corresponding watershed arcs, K0, the possible locations
of the boundaries.

Figure 11 shows an example of the standard water-
shed transform. Unfortunately, simply weighting each

arc by the mean value of E(x, y) for the pixels on
the arc can introduce artifacts. The root cause of this
problem is the fact that the contour detector produces a
spatially extended response around strong boundaries.
For example, a pixel could lie near but not on a strong
vertical contour. If this pixel also happens to belong to a
horizontal watershed arc, that arc would be erroneously
upweighted. Several such cases can be seen in Figure 11.
As we flood from all local minima, the initial watershed
oversegmentation contains many arcs that should be
weak, yet intersect nearby strong boundaries.

To correct this problem, we enforce consistency be-
tween the strength of the boundaries of K0 and the
underlying E(x, y, ✓) signal in a modified procedure,
which we call the Oriented Watershed Transform (OWT),
illustrated in Figure 12. As the first step in this reweight-
ing process, we estimate an orientation at each pixel
on an arc from the local geometry of the arc itself.
These orientations are obtained by approximating the
watershed arcs with line segments as shown in Figure 13.
We recursively subdivide any arc which is not well fit by
the line segment connecting its endpoints. By expressing
the approximation criterion in terms of the maximum
distance of a point on the arc from the line segment
as a fraction of the line segment length, we obtain a
scale-invariant subdivision. We assign each pixel (x, y)
on a subdivided arc the orientation o(x, y) 2 [0, ⇡) of the
corresponding line segment.

Next, we use the oriented contour detector output

9

Fig. 11. Watershed Transform. Left: Image. Middle Left: Boundary strength E(x, y). We regard E(x, y) as a
topographic surface and flood it from its local minima. Middle Right: This process partitions the image into catchment
basins P0 and arcs K0. There is exactly one basin per local minimum and the arcs coincide with the locations where
the floods originating from distinct minima meet. Local minima are marked with red dots. Right: Each arc weighted by
the mean value of E(x, y) along it. This weighting scheme produces artifacts, such as the strong horizontal contours
in the small gap between the two statues.

and spectral signals:

gPb(x, y, ✓) =
X

s

X

i

�i,sGi,�(i,s)(x, y, ✓) + � · sPb(x, y, ✓)

(14)
We subsequently rescale gPb using a sigmoid to match
a probabilistic interpretation. As with mPb (10), the
weights �i,s and � are learned by gradient ascent on the
F-measure using the BSDS training images.

3.4 Results
Qualitatively, the combination of the multiscale cues
with our globalization machinery translates into a re-
duction of clutter edges and completion of contours in
the output, as shown in Figure 9.

Figure 10 breaks down the contributions of the mul-
tiscale and spectral signals to the performance of gPb.
These precision-recall curves show that the reduction of
false positives due to the use of global information in
sPb is concentrated in the high thresholds, while gPb
takes the best of both worlds, relying on sPb in the high
precision regime and on mPb in the high recall regime.

Looking again at the comparison of contour detectors
on the BSDS300 benchmark in Figure 1, the mean im-
provement in precision of gPb with respect to the single
scale Pb is 10% in the recall range [0.1, 0.9].

4 SEGMENTATION
The nonmax suppressed gPb contours produced in the
previous section are often not closed and hence do not
partition the image into regions. These contours may still
be useful, e.g. as a signal on which to compute image
descriptors. However, closed regions offer additional

advantages. Regions come with their own scale estimates
and provide natural domains for computing features
used in recognition. Many visual tasks can also benefit
from the complexity reduction achieved by transforming
an image with millions of pixels into a few hundred or
thousand “superpixels” [67].

In this section, we show how to recover closed con-
tours, while preserving the gains in boundary quality
achieved in the previous section. Our algorithm, first
reported in [4], builds a hierarchical segmentation by
exploiting the information in the contour signal. We
introduce a new variant of the watershed transform
[68], [69], the Oriented Watershed Transform (OWT), for
producing a set of initial regions from contour detector
output. We then construct an Ultrametric Contour Map
(UCM) [35] from the boundaries of these initial regions.

This sequence of operations (OWT-UCM) can be seen
as generic machinery for going from contours to a hier-
archical region tree. Contours encoded in the resulting
hierarchical segmentation retain real-valued weights in-
dicating their likelihood of being a true boundary. For a
given threshold, the output is a set of closed contours
that can be treated as either a segmentation or as a
boundary detector for the purposes of benchmarking.

To describe our algorithm in the most general setting,
we now consider an arbitrary contour detector, whose
output E(x, y, ✓) predicts the probability of an image
boundary at location (x, y) and orientation ✓.

4.1 Oriented Watershed Transform
Using the contour signal, we first construct a finest
partition for the hierarchy, an over-segmentation whose
regions determine the highest level of detail considered.

Image Intensity

N
on
-B
ou
nd
ar
ie
s

Bo
un
da
rie
s

Figure 1: Local image features. In each row, the first panel shows the image patch. The following
panels show feature profiles along the line marked in each patch. The features are raw image intensity,
raw oriented energy , localized oriented energy , raw texture gradient , and localized
texture gradient . The vertical line in each profile marks the patch center. The challenge is to
combine these features in order to detect and localize boundaries.

We define the texture gradient (TG) to be the distance between these two histograms:

The texture gradient is computed at each pixel over 12 orientations and 3 half-octave
scales starting at of the image diagonal.

2.3 Localization

The underlying function we are trying to learn is tightly peaked around the location of
image boundaries marked by humans. In contrast, Figure 1 shows that the features we have
discussed so far don’t have this structure. By nature of the fact that they pool information
over some support, they produce smooth, spatially extended outputs. The texture gradient
is particularly prone to this effect, since the texture in a window straddling the boundary is
distinctly different than the textures on either side of the boundary. This often results in a
wide plateau or even double peaks in the texture gradient.

Since each pixel is classified independently, these spatially extended features are partic-
ularly problematic as both on-boundary pixels and nearby off-boundary pixels will have
large OE and TG. In order to make this spatial structure available to the classifier we trans-
form the raw OE and TG signals in order to emphasize local maxima. Given a feature

3

Image Intensity

N
on
-B
ou
nd
ar
ie
s

Bo
un
da
rie
s

Figure 1: Local image features. In each row, the first panel shows the image patch. The following
panels show feature profiles along the line marked in each patch. The features are raw image intensity,
raw oriented energy , localized oriented energy , raw texture gradient , and localized
texture gradient . The vertical line in each profile marks the patch center. The challenge is to
combine these features in order to detect and localize boundaries.

We define the texture gradient (TG) to be the distance between these two histograms:

The texture gradient is computed at each pixel over 12 orientations and 3 half-octave
scales starting at of the image diagonal.

2.3 Localization

The underlying function we are trying to learn is tightly peaked around the location of
image boundaries marked by humans. In contrast, Figure 1 shows that the features we have
discussed so far don’t have this structure. By nature of the fact that they pool information
over some support, they produce smooth, spatially extended outputs. The texture gradient
is particularly prone to this effect, since the texture in a window straddling the boundary is
distinctly different than the textures on either side of the boundary. This often results in a
wide plateau or even double peaks in the texture gradient.

Since each pixel is classified independently, these spatially extended features are partic-
ularly problematic as both on-boundary pixels and nearby off-boundary pixels will have
large OE and TG. In order to make this spatial structure available to the classifier we trans-
form the raw OE and TG signals in order to emphasize local maxima. Given a feature

3

“Bird Edge” Problem with Texture Gradients

Information Leakage across Orientations

7

Fig. 7. Spectral Pb. Left: Image. Middle Left: The thinned non-max suppressed multiscale Pb signal defines a sparse
affinity matrix connecting pixels within a fixed radius. Pixels i and j have a low affinity as a strong boundary separates
them, whereas i and k have high affinity. Middle: First four generalized eigenvectors resulting from spectral clustering.
Middle Right: Partitioning the image by running K-means clustering on the eigenvectors erroneously breaks smooth
regions. Right: Instead, we compute gradients of the eigenvectors, transforming them back into a contour signal.

Fig. 8. Eigenvectors carry contour information. Left: Image and maximum response of spectral Pb over
orientations, sPb(x, y) = max✓{sPb(x, y, ✓)}. Right Top: First four generalized eigenvectors, v1, ...,v4, used in
creating sPb. Right Bottom: Maximum gradient response over orientations, max✓{r✓vk(x, y)}, for each eigenvector.

two halves of a disc of radius �(i, s) centered at (x, y) and
divided by a diameter at angle ✓. The parameters ↵i,s

weight the relative contribution of each gradient signal.
In our experiments, we sample ✓ at eight equally spaced
orientations in the interval [0, ⇡). Taking the maximum
response over orientations yields a measure of boundary
strength at each pixel:

mPb(x, y) = max
✓

{mPb(x, y, ✓)} (11)

An optional non-maximum suppression step [22] pro-
duces thinned, real-valued contours.

In contrast to [2] and [28] which use a logistic regres-
sion classifier to combine cues, we learn the weights ↵i,s

by gradient ascent on the F-measure using the training
images and corresponding ground-truth of the BSDS.

3.3 Globalization

Spectral clustering lies at the heart of our globalization
machinery. The key element differentiating the algorithm
described in this section from other approaches [45], [47]

is the “soft” manner in which we use the eigenvectors
obtained from spectral partitioning.

As input to the spectral clustering stage, we construct
a sparse symmetric affinity matrix W using the interven-
ing contour cue [49], [64], [65], the maximal value of mPb
along a line connecting two pixels. We connect all pixels
i and j within a fixed radius r with affinity:

Wij = exp
✓
�max

p2ij
{mPb(p)}/⇢

◆
(12)

where ij is the line segment connecting i and j and ⇢ is
a constant. We set r = 5 pixels and ⇢ = 0.1.

In order to introduce global information, we define
Dii =

P
j Wij and solve for the generalized eigenvectors

{v0,v1, ...,vn} of the system (D � W)v = �Dv (2),
corresponding to the n+1 smallest eigenvalues 0 = �0 

�1  ...  �n. Figure 7 displays an example with four
eigenvectors. In practice, we use n = 16.

At this point, the standard Normalized Cuts approach
associates with each pixel a length n descriptor formed
from entries of the n eigenvectors and uses a clustering

Sky Breaking

Lots of Tricks

Learning to Detect Natural Image Boundaries Using Brightness and Texture
Contour Detection and Hierarchical Image Segmentation

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/martin-nips02.pdf
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf

Results

Human (0.95)

Pb (0.88)

Results

Human Human (0.96)

Pb (0.88)

Human (0.95)

Pb (0.63)

Human (0.90)

Pb (0.35)

For more:
http://www.eecs.berkeley.edu/Research/Projects
/CS/vision/bsds/bench/html/108082-color.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Contour Detection and Hierarchical Image Segmentation

Empirical Research 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iso−F

Recall

Pr
ec

is
io

n

[F = 0.80] Human
[F = 0.73] gPb−owt−ucm
[F = 0.71] gPb
[F = 0.64] Mean Shift − Comaniciu, Meer (2002)
[F = 0.64] Normalized Cuts − Cour, Benezit, Shi (2005)
[F = 0.61] Felzenszwalb, Huttenlocher (2004)
[F = 0.60] Canny
[F = 0.60] Canny−owt−ucm

Fig. 17. Boundary benchmark on the BSDS500. Com-
paring boundaries to human ground-truth allows us to
evaluate contour detectors [3], [22] (dotted lines) and seg-
mentation algorithms [4], [32], [33], [34] (solid lines) in the
same framework. Performance is consistent when going
from the BSDS300 (Figures 1 and 2) to the BSDS500
(above). Furthermore, the OWT-UCM algorithm pre-
serves contour detector quality. For both gPb and
Canny, comparing the resulting segment boundaries to
the original contours shows that our OWT-UCM algorithm
constructs hierarchical segmentations from contours with-
out losing performance on the boundary benchmark.

dataset for the best scale in each image (OIS), and the
average precision (AP) on the full recall range (equiva-
lently, the area under the precision-recall curve). Table 1
shows these quantities for the BSDS. Figures 2 and 17
display the full precision-recall curves on the BSDS300
and BSDS500 datasets, respectively. We find retraining
on the BSDS500 to be unnecessary and use the same
parameters learned on the BSDS300. Figure 18 presents
side by side comparisons of segmentation algorithms.

Of particular note in Figure 17 are pairs of curves
corresponding to contour detector output and regions
produced by running the OWT-UCM algorithm on that
output. The similarity in quality within each pair shows
that we can convert contours into hierarchical segmen-
tations without loss of boundary precision or recall.

4.4.2 Region Quality
Table 2 presents region benchmarks on the BSDS. For a
family of machine segmentations {Si}, associated with
different scales of a hierarchical algorithm or different
sets of parameters, we report three scores for the cov-
ering of the ground-truth by segments in {Si}. These
correspond to selecting covering regions from the seg-
mentation at a universal fixed scale (ODS), a fixed scale

Fig. 18. Pairwise comparison of segmentation algo-
rithms on the BSDS300. The coordinates of the red dots
are the boundary benchmark scores (F-measures) at the
optimal image scale for each of the two methods com-
pared on single images. Boxed totals indicate the number
of images where one algorithm is better. For example, the
top-left shows gPb-owt-ucm outscores NCuts on 99/100
images. When comparing with SWA, we further restrict
the output of the second method to match the number of
regions produced by SWA. All differences are statistically
significant except between Mean Shift and NCuts.

MSRC PASCAL 2008
ODS OIS Best ODS OIS Best

gPb-owt-ucm 0.66 0.75 0.78 0.45 0.58 0.61
Canny-owt-ucm 0.57 0.68 0.72 0.40 0.53 0.55

TABLE 3. Region benchmarks on MSRC and PASCAL
2008. Shown are scores for the segment covering criteria.

per image (OIS), or from any level of the hierarchy or
collection {Si} (Best). We also report the Probabilistic
Rand Index and Variation of Information benchmarks.

While the relative ranking of segmentation algorithms
remains fairly consistent across different benchmark cri-
teria, the boundary benchmark (Table 1 and Figure 17)
appears most capable of discriminating performance.
This observation is confirmed by evaluating a fixed hi-
erarchy of regions such as the Quad-Tree (with 8 levels).
While the boundary benchmark and segmentation cov-
ering criterion clearly separate it from all other segmen-
tation methods, the gap narrows for the Probablilistic
Rand Index and the Variation of Information.

4.4.3 Additional Datasets
We concentrated experiments on the BSDS because it is
the most complete dataset available for our purposes,
has been used in several publications, and has the advan-
tage of providing multiple human-labeled segmentations
per image. Table 3 reports the comparison between
Canny-owt-ucm and gPb-owt-ucm on two other publicly
available datasets:

12

hierarchy can be represented as an Ultrametric Contour
Map (UCM) [35], the real-valued image obtained by
weighting each boundary by its scale of disappearance.

Figure 14 presents an example of our method. The
UCM is a weighted contour image that, by construction,
has the remarkable property of producing a set of closed
curves for any threshold. Conversely, it is a convenient
representation of the region tree since the segmentation
at a scale k can be easily retrieved by thresholding the
UCM at level k. Since our notion of scale is the average
contour strength, the UCM values reflect the contrast
between neighboring regions.

4.3 Results
While the OWT-UCM algorithm can use any source of
contours for the input E(x, y, ✓) signal (e.g. the Canny
edge detector before thresholding), we obtain best re-
sults by employing the gPb detector [3] introduced in
Section 3. We report experiments using both gPb as well
as the baseline Canny detector, and refer to the resulting
segmentation algorithms as gPb-owt-ucm and Canny-
owt-ucm, respectively.

Figures 15 and 16 illustrate results of gPb-owt-ucm
on images from the BSDS500. Since the OWT-UCM
algorithm produces hierarchical region trees, obtaining a
single segmentation as output involves a choice of scale.
One possibility is to use a fixed threshold for all images
in the dataset, calibrated to provide optimal performance
on the training set. We refer to this as the optimal dataset
scale (ODS). We also evaluate performance when the
optimal threshold is selected by an oracle on a per-image
basis. With this choice of optimal image scale (OIS), one
naturally obtains even better segmentations.

4.4 Evaluation
To provide a basis of comparison for the OWT-UCM
algorithm, we make use of the region merging (Felz-
Hutt) [32], Mean Shift [34], Multiscale NCuts [33], and
SWA [31], [52] segmentation methods reviewed in Sec-
tion 2.2. We evaluate each method using the boundary-
based precision-recall framework of [2], as well as the
Variation of Information, Probabilistic Rand Index, and
segment covering criteria discussed in Section 2.3. The
BSDS serves as ground-truth for both the boundary
and region quality measures, since the human-drawn
boundaries are closed and hence are also segmentations.

4.4.1 Boundary Quality
Remember that the evaluation methodology developed
by [2] measures detector performance in terms of preci-
sion, the fraction of true positives, and recall, the fraction
of ground-truth boundary pixels detected. The global F-
measure, or harmonic mean of precision and recall at the
optimal detector threshold, provides a summary score.

In our experiments, we report three different quanti-
ties for an algorithm: the best F-measure on the dataset
for a fixed scale (ODS), the aggregate F-measure on the

BSDS300 BSDS500
ODS OIS AP ODS OIS AP

Human 0.79 0.79 � 0.80 0.80 �
gPb-owt-ucm 0.71 0.74 0.73 0.73 0.76 0.73
[34] Mean Shift 0.63 0.66 0.54 0.64 0.68 0.56
[33] NCuts 0.62 0.66 0.43 0.64 0.68 0.45
Canny-owt-ucm 0.58 0.63 0.58 0.60 0.64 0.58
[32] Felz-Hutt 0.58 0.62 0.53 0.61 0.64 0.56
[31] SWA 0.56 0.59 0.54 � � �
Quad-Tree 0.37 0.39 0.26 0.38 0.39 0.26
gPb 0.70 0.72 0.66 0.71 0.74 0.65
Canny 0.58 0.62 0.58 0.60 0.63 0.58

TABLE 1. Boundary benchmarks on the BSDS. Results
for seven different segmentation methods (upper table)
and two contour detectors (lower table) are given. Shown
are the F-measures when choosing an optimal scale for
the entire dataset (ODS) or per image (OIS), as well as
the average precision (AP). Figures 1, 2, and 17 show the
full precision-recall curves for these algorithms. Note that
the boundary benchmark has the largest discriminative
power among the evaluation criteria, clearly separating
the Quad-Tree from all the data-driven methods.

BSDS300
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.73 0.73 � 0.87 0.87 1.16 1.16
gPb-owt-ucm 0.59 0.65 0.75 0.81 0.85 1.65 1.47
[34] Mean Shift 0.54 0.58 0.66 0.78 0.80 1.83 1.63
[32] Felz-Hutt 0.51 0.58 0.68 0.77 0.82 2.15 1.79
Canny-owt-ucm 0.48 0.56 0.66 0.77 0.82 2.11 1.81
[33] NCuts 0.44 0.53 0.66 0.75 0.79 2.18 1.84
[31] SWA 0.47 0.55 0.66 0.75 0.80 2.06 1.75
[29] Total Var. 0.57 � � 0.78 � 1.81 �
[70] T+B Encode 0.54 � � 0.78 � 1.86 �
[30] Av. Diss. 0.47 � � 0.76 � 2.62 �
[30] ChanVese 0.49 � � 0.75 � 2.54 �
Quad-Tree 0.33 0.39 0.47 0.71 0.75 2.34 2.22

BSDS500
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.72 0.72 � 0.88 0.88 1.17 1.17
gPb-owt-ucm 0.59 0.65 0.74 0.83 0.86 1.69 1.48
[34] Mean Shift 0.54 0.58 0.66 0.79 0.81 1.85 1.64
[32] Felz-Hutt 0.52 0.57 0.69 0.80 0.82 2.21 1.87
Canny-owt-ucm 0.49 0.55 0.66 0.79 0.83 2.19 1.89
[33] NCuts 0.45 0.53 0.67 0.78 0.80 2.23 1.89
Quad-Tree 0.32 0.37 0.46 0.73 0.74 2.46 2.32

TABLE 2. Region benchmarks on the BSDS. For each
segmentation method, the leftmost three columns report
the score of the covering of ground-truth segments ac-
cording to optimal dataset scale (ODS), optimal image
scale (OIS), or Best covering criteria. The rightmost
four columns compare the segmentation methods against
ground-truth using the Probabilistic Rand Index (PRI) and
Variation of Information (VI) benchmarks, respectively.
Among the region benchmarks, the covering criterion has
the largest dynamic range, followed by PRI and VI.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf

Contour Detection and Hierarchical Image Segmentation. P. Arbeláez et al. PAMI 2010

Applications: Interactive Segmentation
16

Fig. 19. Interactive segmentation. Left: Image. Middle: UCM produced by gPb-owt-ucm (grayscale) with additional
user annotations (color dots and lines). Right: The region hierarchy defined by the UCM allows us to automatically
propagate annotations to unlabeled segments, resulting in the desired labeling of the image with minimal user effort.

• MSRC [71]
The MSRC object recognition database is composed
of 591 natural images with objects belonging to
21 classes. We evaluate performance using the
ground-truth object instance labeling of [11], which
is cleaner and more precise than the original data.

• PASCAL 2008 [8]
We use the train and validation sets of the segmen-
tation task on the 2008 PASCAL segmentation chal-
lenge, composed of 1023 images. This is one of the
most difficult and varied datasets for recognition.
We evaluate performance with respect to the object
instance labels provided. Note that only objects
belonging to the 20 categories of the challenge are
labeled, and 76% of all pixels are unlabeled.

4.4.4 Summary
The gPb-owt-ucm segmentation algorithm offers the best
performance on every dataset and for every benchmark
criterion we tested. In addition, it is straight-forward,
fast, has no parameters to tune, and, as discussed in
the following sections, can be adapted for use with top-
down knowledge sources.

5 INTERACTIVE SEGMENTATION
Until now, we have only discussed fully automatic image
segmentation. Human assisted segmentation is relevant
for many applications, and recent approaches rely on the
graph-cuts formalism [72], [73], [74] or other energy min-
imization procedure [75] to extract foreground regions.

For example, [72] cast the task of determining binary
foreground/background pixel assignments in terms of
a cost function with both unary and pairwise poten-
tials. The unary potentials encode agreement with es-
timated foreground or background region models and
the pairwise potentials bias neighboring pixels not sep-
arated by a strong boundary to have the same label.

They transform this system into an equivalent minimum
cut/maximum flow graph partitioning problem through
the addition of a source node representing the fore-
ground and a sink node representing the background.
Edge weights between pixel nodes are defined by the
pairwise potentials, while the weights between pixel
nodes and the source and sink nodes are determined by
the unary potentials. User-specified hard labeling con-
straints are enforced by connecting a pixel to the source
or sink with sufficiently large weight. The minimum cut
of the resulting graph can be computed efficiently and
produces a cost-optimizing assignment.

It turns out that the segmentation trees generated
by the OWT-UCM algorithm provide a natural starting
point for user-assisted refinement. Following the proce-
dure of [76], we can extend a partial labeling of regions
to a full one by assigning to each unlabeled region the
label of its closest labeled region, as determined by the
ultrametric distance (15). Computing the full labeling is
simply a matter of propagating information in a single
pass along the segmentation tree. Each unlabeled region
receives the label of the first labeled region merged with
it. This procedure, illustrated in Figure 19, allows a user
to obtain high quality results with minimal annotation.

6 MULTISCALE FOR OBJECT ANALYSIS

Our contour detection and segmentation algorithms cap-
ture multiscale information by combining local gradient
cues computed at three different scales, as described in
Section 3.2. We did not see any performance benefit on
the BSDS by using additional scales. However, this fact is
not an invitation to conclude that a simple combination
of a limited range of local cues is a sufficient solution
to the problem of multiscale image analysis. Rather,
it is a statement about the nature of the BSDS. The
fixed resolution of the BSDS images and the inherent
photographic bias of the dataset lead to the situation in

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/amfm_pami2010.pdf

Applications: Pre-processing for Object Detection

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders,
Selective Search for Object Recognition, IJCV 2013

http://koen.me/research/selectivesearch/

Holistically nested edge detection

https://arxiv.org/pdf/1504.06375.pdf

sults).

4.2. BSDS500 dataset

Figure 5. Results on the BSDS500 dataset. Our proposed HED frame-
work achieves the best result (ODS=.782). Compared to several recent
CNN-based edge detectors, our approach is also orders of magnitude faster.
See Table 4 for a detailed discussion.

We evaluate HED on the Berkeley Segmentation Dataset
and Benchmark (BSDS 500) [1] which is composed of 200
training, 100 validation, and 200 testing images. Each im-
age has manually annotated ground truth contours. Edge de-
tection accuracy is evaluated using three standard measures:
fixed contour threshold (ODS), per-image best threshold
(OIS), and average precision (AP). We apply a standard
non-maximal suppression technique to our edge maps to ob-
tain thinned edges for evaluation. The results are shown in
Figure 5 and Table 4.

Table 3. Results of single and averaged side output in HED on
the BSDS 500 dataset. The individual side output contributes to
the fused/averaged result. Note that the learned weighted-fusion
(Fusion-output) achieves best F-score, while directly averaging all
of the five layers (Average 1-5) produces better average precision.
Merging those two readily available outputs further boost the per-
formance.

ODS OIS AP
Side-output 1 .595 .620 .582
Side-output 2 .697 .715 .673
Side-output 3 .738 .756 .717
Side-output 4 .740 .759 .672
Side-output 5 .606 .611 .429
Fusion-output .782 .802 .787
Average 1-4 .760 .784 .800
Average 1-5 .774 .797 .822

Average 2-4 .766 .788 .798
Average 2-5 .777 .800 .814
Merged result .782 .804 .833

Side outputs To explicitly validate the side outputs, we
summarize the results produced by the individual side-

outputs at different scales in Table 3, including different
combinations of the multi-scale edge maps. We empha-
size here that all the side-output predictions are obtained
in one pass; this enables us to fully investigate different
configurations of combining the outputs at no extra cost.
There are several interesting observations from the results:
for instance, combining predictions from multiple scales
yields better performance; moreover, all the side-output lay-
ers contribute to the performance gain, either in F-score or
averaged precision. To see this, in Table 3, the side-output
layer 1 and layer 5 (the lowest and highest layers) achieve
similar relatively low performance. One might expect these
two side-output layers to not be useful in the averaged re-
sults. However this turns out not to be the case — for exam-
ple, the Average 1-4 achieves ODS=.760 and incorporating
the side-output layer 5, the averaged prediction achieves an
ODS=.774. We find similar phenomenon when considering
other ranges. As mentioned above, the predictions obtained
using different combination strategies are complementary,
and a late merging of the averaged predictions with learned
fusion-layer predictions leads to the best result. Another ob-
servation is, when compared to previous ”non-deep” meth-
ods, performance of all ”deep” methods drops more in the
high recall regime. This might indicate that deep learned
features are capable of (and favor) learning the global ob-
ject boundary — thus many weak edges are omitted. HED
is better than other deep learning based methods in the high
recall regime because deep supervision helps us to take the
low level predictions into account.

Table 4. Results on BSDS500. ⇤BSDS300 results,†GPU time
ODS OIS AP FPS

Human .80 .80 - -
Canny .600 .640 .580 15
Felz-Hutt [9] .610 .640 .560 10
BEL [5] .660⇤ - - 1/10
gPb-owt-ucm [1] .726 .757 .696 1/240
Sketch Tokens [24] .727 .746 .780 1
SCG [31] .739 .758 .773 1/280
SE-Var [6] .746 .767 .803 2.5
OEF [13] .749 .772 .817 -
DeepNets [21] .738 .759 .758 1/5†
N4-Fields [10] .753 .769 .784 1/6†
DeepEdge [2] .753 .772 .807 1/103†
CSCNN [19] .756 .775 .798 -
DeepContour [34] .756 .773 .797 1/30†

HED (ours) .782 .804 .833
2.5†,
1/12

Late merging to boost average precision We find that the
weighted-fusion layer output gives best performance in F-
score. However the average precision degrades compared
to directly averaging all the side outputs. This might due to
our focus on “global” object boundaries for the fusion-layer

7

https://arxiv.org/pdf/1504.06375.pdf

Crisp Boundary Detection using Pointwise Mutual Information
(Isola et al. ECCV 2014)

http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf

Pixel combinations that are unlikely to be together are edges

Algorithm: Spectral clusteringKernel density estimation

http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf

Crisp Boundary Detection using Pointwise Mutual Information

State of edge detection

Local edge detection is mostly solved
• Intensity gradient, color, texture
• HED on BSDS 500 is near human performance

Some room for improvement by taking
advantage of higher-level knowledge (e.g.,
objects)

Still hard to produce all objects within a small
number of regions

Source: Gregory, R. L. (1970). The Intelligent Eye. New York, NY: McGraw-Hill Paperbacks.

Are Edges an Input or an Output?

Recap

Recap

A Database of Human Segmented Natural Images and its Application to
Evaluating Segmentation Algorithms and Measuring Ecological Statistics

David Martin Charless Fowlkes Doron Tal Jitendra Malik
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

{dmartin,fowlkes,doron,malik}@eecs.berkeley.edu

Abstract

This paper presents a database containing ‘ground
truth’ segmentations produced by humans for images of a
wide variety of natural scenes. We define an error measure
which quantifies the consistency between segmentations of
differing granularities and find that different human seg-
mentations of the same image are highly consistent. Use of
this dataset is demonstrated in two applications: (1) eval-
uating the performance of segmentation algorithms and (2)
measuring probability distributions associated with Gestalt
grouping factors as well as statistics of image region prop-
erties.

1. Introduction

Two central problems in vision are image segmentation
and recognition1. Both problems are hard, and we do not
yet have any general purpose solution approaching human
level competence for either one.
While it is unreasonable to expect quick solutions to ei-

ther problem, there is one dimension on which research in
recognition is on much more solid grounds–it is consider-
ably easier to quantify the performance of computer vision
algorithms at recognition than at segmentation. Recogni-
tion is classification, and one can empirically estimate the
probability of misclassification by simply counting classifi-
cation errors on a test set. The ready availability of test sets
– two of most significant ones are the MNIST handwrit-
ten digit dataset and the FERET face data set–has meant
that different algorithms can be compared directly using the
same quantitative error measures. It is well accepted that
one cannot evaluate a recognition algorithm by showing a
few images of correct classification. In contrast, image seg-

1It could be argued that they are aspects of the same problem. We do
not necessarily disagree!

Figure 1: Sample of 10 images from the segmentation database. Each
image has been segmented by 3 different people. A total of 10 people are
represented in this data.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iso−F

Recall

Pr
ec

is
io

n

[F = 0.80] Human
[F = 0.73] gPb−owt−ucm
[F = 0.71] gPb
[F = 0.64] Mean Shift − Comaniciu, Meer (2002)
[F = 0.64] Normalized Cuts − Cour, Benezit, Shi (2005)
[F = 0.61] Felzenszwalb, Huttenlocher (2004)
[F = 0.60] Canny
[F = 0.60] Canny−owt−ucm

Fig. 17. Boundary benchmark on the BSDS500. Com-
paring boundaries to human ground-truth allows us to
evaluate contour detectors [3], [22] (dotted lines) and seg-
mentation algorithms [4], [32], [33], [34] (solid lines) in the
same framework. Performance is consistent when going
from the BSDS300 (Figures 1 and 2) to the BSDS500
(above). Furthermore, the OWT-UCM algorithm pre-
serves contour detector quality. For both gPb and
Canny, comparing the resulting segment boundaries to
the original contours shows that our OWT-UCM algorithm
constructs hierarchical segmentations from contours with-
out losing performance on the boundary benchmark.

dataset for the best scale in each image (OIS), and the
average precision (AP) on the full recall range (equiva-
lently, the area under the precision-recall curve). Table 1
shows these quantities for the BSDS. Figures 2 and 17
display the full precision-recall curves on the BSDS300
and BSDS500 datasets, respectively. We find retraining
on the BSDS500 to be unnecessary and use the same
parameters learned on the BSDS300. Figure 18 presents
side by side comparisons of segmentation algorithms.

Of particular note in Figure 17 are pairs of curves
corresponding to contour detector output and regions
produced by running the OWT-UCM algorithm on that
output. The similarity in quality within each pair shows
that we can convert contours into hierarchical segmen-
tations without loss of boundary precision or recall.

4.4.2 Region Quality
Table 2 presents region benchmarks on the BSDS. For a
family of machine segmentations {Si}, associated with
different scales of a hierarchical algorithm or different
sets of parameters, we report three scores for the cov-
ering of the ground-truth by segments in {Si}. These
correspond to selecting covering regions from the seg-
mentation at a universal fixed scale (ODS), a fixed scale

Fig. 18. Pairwise comparison of segmentation algo-
rithms on the BSDS300. The coordinates of the red dots
are the boundary benchmark scores (F-measures) at the
optimal image scale for each of the two methods com-
pared on single images. Boxed totals indicate the number
of images where one algorithm is better. For example, the
top-left shows gPb-owt-ucm outscores NCuts on 99/100
images. When comparing with SWA, we further restrict
the output of the second method to match the number of
regions produced by SWA. All differences are statistically
significant except between Mean Shift and NCuts.

MSRC PASCAL 2008
ODS OIS Best ODS OIS Best

gPb-owt-ucm 0.66 0.75 0.78 0.45 0.58 0.61
Canny-owt-ucm 0.57 0.68 0.72 0.40 0.53 0.55

TABLE 3. Region benchmarks on MSRC and PASCAL
2008. Shown are scores for the segment covering criteria.

per image (OIS), or from any level of the hierarchy or
collection {Si} (Best). We also report the Probabilistic
Rand Index and Variation of Information benchmarks.

While the relative ranking of segmentation algorithms
remains fairly consistent across different benchmark cri-
teria, the boundary benchmark (Table 1 and Figure 17)
appears most capable of discriminating performance.
This observation is confirmed by evaluating a fixed hi-
erarchy of regions such as the Quad-Tree (with 8 levels).
While the boundary benchmark and segmentation cov-
ering criterion clearly separate it from all other segmen-
tation methods, the gap narrows for the Probablilistic
Rand Index and the Variation of Information.

4.4.3 Additional Datasets
We concentrated experiments on the BSDS because it is
the most complete dataset available for our purposes,
has been used in several publications, and has the advan-
tage of providing multiple human-labeled segmentations
per image. Table 3 reports the comparison between
Canny-owt-ucm and gPb-owt-ucm on two other publicly
available datasets:

12

hierarchy can be represented as an Ultrametric Contour
Map (UCM) [35], the real-valued image obtained by
weighting each boundary by its scale of disappearance.

Figure 14 presents an example of our method. The
UCM is a weighted contour image that, by construction,
has the remarkable property of producing a set of closed
curves for any threshold. Conversely, it is a convenient
representation of the region tree since the segmentation
at a scale k can be easily retrieved by thresholding the
UCM at level k. Since our notion of scale is the average
contour strength, the UCM values reflect the contrast
between neighboring regions.

4.3 Results
While the OWT-UCM algorithm can use any source of
contours for the input E(x, y, ✓) signal (e.g. the Canny
edge detector before thresholding), we obtain best re-
sults by employing the gPb detector [3] introduced in
Section 3. We report experiments using both gPb as well
as the baseline Canny detector, and refer to the resulting
segmentation algorithms as gPb-owt-ucm and Canny-
owt-ucm, respectively.

Figures 15 and 16 illustrate results of gPb-owt-ucm
on images from the BSDS500. Since the OWT-UCM
algorithm produces hierarchical region trees, obtaining a
single segmentation as output involves a choice of scale.
One possibility is to use a fixed threshold for all images
in the dataset, calibrated to provide optimal performance
on the training set. We refer to this as the optimal dataset
scale (ODS). We also evaluate performance when the
optimal threshold is selected by an oracle on a per-image
basis. With this choice of optimal image scale (OIS), one
naturally obtains even better segmentations.

4.4 Evaluation
To provide a basis of comparison for the OWT-UCM
algorithm, we make use of the region merging (Felz-
Hutt) [32], Mean Shift [34], Multiscale NCuts [33], and
SWA [31], [52] segmentation methods reviewed in Sec-
tion 2.2. We evaluate each method using the boundary-
based precision-recall framework of [2], as well as the
Variation of Information, Probabilistic Rand Index, and
segment covering criteria discussed in Section 2.3. The
BSDS serves as ground-truth for both the boundary
and region quality measures, since the human-drawn
boundaries are closed and hence are also segmentations.

4.4.1 Boundary Quality
Remember that the evaluation methodology developed
by [2] measures detector performance in terms of preci-
sion, the fraction of true positives, and recall, the fraction
of ground-truth boundary pixels detected. The global F-
measure, or harmonic mean of precision and recall at the
optimal detector threshold, provides a summary score.

In our experiments, we report three different quanti-
ties for an algorithm: the best F-measure on the dataset
for a fixed scale (ODS), the aggregate F-measure on the

BSDS300 BSDS500
ODS OIS AP ODS OIS AP

Human 0.79 0.79 � 0.80 0.80 �
gPb-owt-ucm 0.71 0.74 0.73 0.73 0.76 0.73
[34] Mean Shift 0.63 0.66 0.54 0.64 0.68 0.56
[33] NCuts 0.62 0.66 0.43 0.64 0.68 0.45
Canny-owt-ucm 0.58 0.63 0.58 0.60 0.64 0.58
[32] Felz-Hutt 0.58 0.62 0.53 0.61 0.64 0.56
[31] SWA 0.56 0.59 0.54 � � �
Quad-Tree 0.37 0.39 0.26 0.38 0.39 0.26
gPb 0.70 0.72 0.66 0.71 0.74 0.65
Canny 0.58 0.62 0.58 0.60 0.63 0.58

TABLE 1. Boundary benchmarks on the BSDS. Results
for seven different segmentation methods (upper table)
and two contour detectors (lower table) are given. Shown
are the F-measures when choosing an optimal scale for
the entire dataset (ODS) or per image (OIS), as well as
the average precision (AP). Figures 1, 2, and 17 show the
full precision-recall curves for these algorithms. Note that
the boundary benchmark has the largest discriminative
power among the evaluation criteria, clearly separating
the Quad-Tree from all the data-driven methods.

BSDS300
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.73 0.73 � 0.87 0.87 1.16 1.16
gPb-owt-ucm 0.59 0.65 0.75 0.81 0.85 1.65 1.47
[34] Mean Shift 0.54 0.58 0.66 0.78 0.80 1.83 1.63
[32] Felz-Hutt 0.51 0.58 0.68 0.77 0.82 2.15 1.79
Canny-owt-ucm 0.48 0.56 0.66 0.77 0.82 2.11 1.81
[33] NCuts 0.44 0.53 0.66 0.75 0.79 2.18 1.84
[31] SWA 0.47 0.55 0.66 0.75 0.80 2.06 1.75
[29] Total Var. 0.57 � � 0.78 � 1.81 �
[70] T+B Encode 0.54 � � 0.78 � 1.86 �
[30] Av. Diss. 0.47 � � 0.76 � 2.62 �
[30] ChanVese 0.49 � � 0.75 � 2.54 �
Quad-Tree 0.33 0.39 0.47 0.71 0.75 2.34 2.22

BSDS500
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.72 0.72 � 0.88 0.88 1.17 1.17
gPb-owt-ucm 0.59 0.65 0.74 0.83 0.86 1.69 1.48
[34] Mean Shift 0.54 0.58 0.66 0.79 0.81 1.85 1.64
[32] Felz-Hutt 0.52 0.57 0.69 0.80 0.82 2.21 1.87
Canny-owt-ucm 0.49 0.55 0.66 0.79 0.83 2.19 1.89
[33] NCuts 0.45 0.53 0.67 0.78 0.80 2.23 1.89
Quad-Tree 0.32 0.37 0.46 0.73 0.74 2.46 2.32

TABLE 2. Region benchmarks on the BSDS. For each
segmentation method, the leftmost three columns report
the score of the covering of ground-truth segments ac-
cording to optimal dataset scale (ODS), optimal image
scale (OIS), or Best covering criteria. The rightmost
four columns compare the segmentation methods against
ground-truth using the Probabilistic Rand Index (PRI) and
Variation of Information (VI) benchmarks, respectively.
Among the region benchmarks, the covering criterion has
the largest dynamic range, followed by PRI and VI.

