SIFT keypoint detection

D. Lowe, Distinctive image features from scale-invariant keypoints, *IJCV* 60 (2), pp. 91-110, 2004

Slides from S. Lazebnik.
Keypoint detection with scale selection

- We want to extract keypoints with characteristic scales that are covariant w.r.t. the image transformation.
Basic idea

• Convolve the image with a “blob filter” at multiple scales and look for extrema of filter response in the resulting *scale space*

Source: L. Lazebnik
Blob detection

Find maxima and minima of blob filter response in space and scale

Source: L. Lazebnik

Source: N. Snavely
Blob filter

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]

Source: L. Lazebnik
Recall: Edge detection

$\frac{d}{dx}g$

$\text{Edge} = \text{maximum of derivative}$

Source: L. Lazebnik

Source: S. Seitz
Edge detection, Take 2

Edge = zero crossing of second derivative

Source: S. Seitz

Source: L. Lazebnik
From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is “matched” to the scale of the blob.

Source: L. Lazebnik
Scale selection

• We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response.

• However, Laplacian response decays as scale increases:

![Graph showing unnormalized Laplacian response for increasing σ]

Source: L. Lazebnik
Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as \(\sigma \) increases:

\[
\frac{1}{\sigma\sqrt{2\pi}}
\]

• To keep response the same (scale-invariant), must multiply Gaussian derivative by \(\sigma \)

• Laplacian is the second Gaussian derivative, so it must be multiplied by \(\sigma^2 \)

Source: L. Lazebnik
Effect of scale normalization

Original signal

Unnormalized Laplacian response

Scale-normalized Laplacian response

Source: L. Lazebnik
Blob detection in 2D

- Scale-normalized Laplacian of Gaussian:

\[
\nabla^2_{\text{norm}} g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)
\]

Source: L. Lazebnik
Blob detection in 2D

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
Blob detection in 2D

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle.
- The Laplacian is given by (up to scale):
 \[
 (x^2 + y^2 - 2\sigma^2) e^{-(x^2+y^2)/2\sigma^2}
 \]
- Therefore, the maximum response occurs at $\sigma = \frac{r}{\sqrt{2}}$.

Source: L. Lazebnik
Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

Source: L. Lazebnik
Scale-space blob detector: Example

Source: L. Lazebnik
Scale-space blob detector: Example

sigma = 11.9912

Source: L. Lazebnik
Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales
2. Find maxima of squared Laplacian response in scale-space

Source: L. Lazebnik
Scale-space blob detector: Example

Source: L. Lazebnik
Efficient implementation

- Approximating the Laplacian with a difference of Gaussians:

\[L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right) \]

(Laplacian)

\[\text{DoG} = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)

Source: L. Lazebnik
Efficient implementation

Source: L. Lazebnik
Eliminating edge responses

- Laplacian has strong response along edges

Source: L. Lazebnik
Eliminating edge responses

- Laplacian has strong response along edges

- Solution: filter based on Harris response function over neighborhoods containing the “blobs”
From feature detection to feature description

• To recognize the same pattern in multiple images, we need to match appearance “signatures” in the neighborhoods of extracted keypoints
 • But corresponding neighborhoods can be related by a scale change or rotation
 • We want to normalize neighborhoods to make signatures invariant to these transformations

Source: L. Lazebnik
Finding a reference orientation

• Create histogram of local gradient directions in the patch
• Assign reference orientation at peak of smoothed histogram

Source: L. Lazebnik
SIFT features

- Detected features with characteristic scales and orientations:

From keypoint detection to feature description

Detection is **covariant**:
\[\text{features(\text{transform(image)})} = \text{transform(features(image))} \]

Description is **invariant**:
\[\text{features(\text{transform(image)})} = \text{features(image)} \]

Source: L. Lazebnik
SIFT descriptors

- Inspiration: complex neurons in the primary visual cortex

D. Lowe, Distinctive image features from scale-invariant keypoints, *IJCV* 60 (2), pp. 91-110, 2004

Source: L. Lazebnik
Properties of SIFT

Extraordinarily robust detection and description technique

- Can handle changes in viewpoint
 - Up to about 60 degree out-of-plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night
- Fast and efficient—can run in real time
- Lots of code available