## **Fitting**

Computer Vision
CS 543 / ECE 549
University of Illinois

## **Fitting**

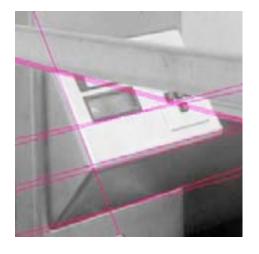
- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model





## **Fitting**

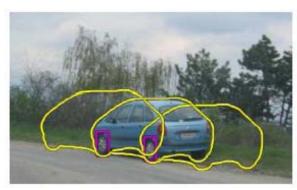
 Choose a parametric model to represent a set of features



simple model: lines



simple model: circles





complicated model: car

## Fitting Methods

- Global optimization / Search for parameters
  - Least squares fit
  - Robust least squares

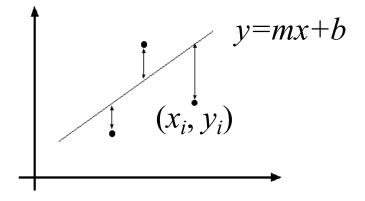
- Hypothesize and test
  - Generalized Hough transform
  - RANSAC

## Simple example: Fitting a line

## Least squares line fitting

- •Data:  $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation:  $y_i = m x_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$



$$E = \sum_{i=1}^{n} \left[ \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right]^2 = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \end{bmatrix}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

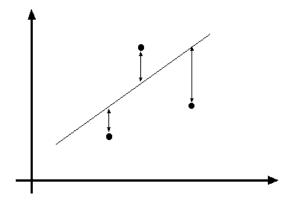
$$= \mathbf{y}^{T} \mathbf{y} - 2(\mathbf{A}\mathbf{p})^{T} \mathbf{y} + (\mathbf{A}\mathbf{p})^{T} (\mathbf{A}\mathbf{p})$$
$$\frac{dE}{dp} = 2\mathbf{A}^{T} \mathbf{A}\mathbf{p} - 2\mathbf{A}^{T} \mathbf{y} = 0$$

Matlab: 
$$p = A \setminus y$$
;

$$\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Longrightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

## Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

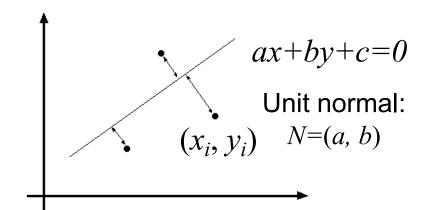


## Total least squares

If  $(a^2+b^2=1)$  then Distance between point  $(x_i, y_i)$  and line ax+by+c=0 is  $|ax_i+by_i+c|$ 



http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

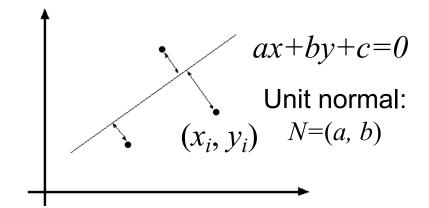


## Total least squares

If  $(a^2+b^2=1)$  then Distance between point  $(x_i, y_i)$  and line ax+by+c=0 is  $|ax_i+by_i+c|$ 

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$



## Total least squares

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$\frac{\partial E}{\partial c} = \sum_{i=1}^{n} 2(ax_i + by_i + c) = 0$$

Find 
$$(a,b,c)$$
 to minimize the sum of squared perpendicular distances 
$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$\frac{\partial E}{\partial c} = \sum_{i=1}^{n} 2(ax_i + by_i + c) = 0$$

$$C = -\frac{a}{n} \sum_{i=1}^{n} x_i - \frac{b}{n} \sum_{i=1}^{n} y_i = -a\bar{x} - b\bar{y}$$

$$E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix}^2 = \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}$$

minimize 
$$\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}$$
 s.t.  $\mathbf{p}^T \mathbf{p} = 1$   $\Rightarrow$  minimize  $\frac{\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}}{\mathbf{p}^T \mathbf{p}}$ 

Solution is eigenvector corresponding to smallest eigenvalue of A<sup>T</sup>A

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh\_quotient

### Recap: Two Common Optimization Problems

### Problem statement

Solution

minimize 
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$$

least squares solution to Ax = b

 $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$  (matlab)

### Problem statement

Solution

minimize 
$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$$
 s.t.  $\mathbf{x}^T \mathbf{x} = 1$ 

$$[\mathbf{v},\lambda] = \operatorname{eig}(\mathbf{A}^T\mathbf{A})$$

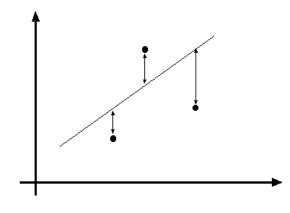
minimize 
$$\frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

$$\lambda_1 < \lambda_{2..n} : \mathbf{x} = \mathbf{v}_1$$

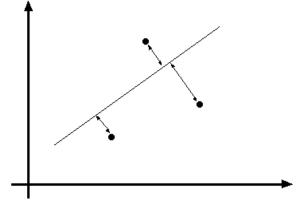
non - trivial lsq solution to  $\mathbf{A}\mathbf{x} = 0$ 

### Recap: Fitting Lines

• a. fit y = mx + b



• b. fit ax + by + c = 0



### Solution involves:

- 1. Eigen vector
- 2. Pseudo-inverse

- A. a -> 1, b-> 2
- B. a -> 2, b -> 1
- C. a -> 1, b -> 1
- D. a -> 2, b -> 2

## Least squares (global) optimization

### Good

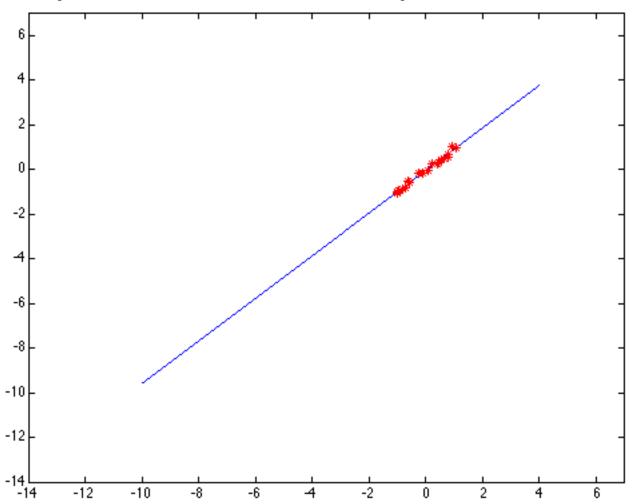
- Clearly specified objective
- Optimization is easy

### Bad

- May not be what you want to optimize
- Sensitive to outliers
  - Bad matches, extra points
- Doesn't allow you to get multiple good fits
  - Detecting multiple objects, lines, etc.

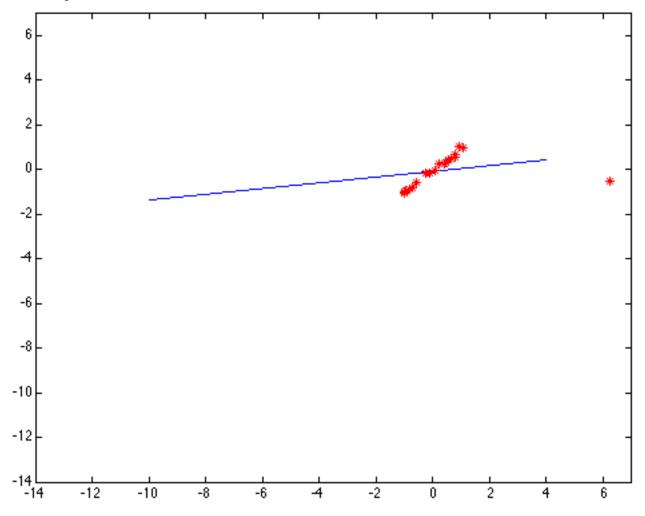
## Least squares: Robustness to noise

Least squares fit to the red points:



## Least squares: Robustness to noise

Least squares fit with an outlier:



Problem: squared error heavily penalizes outliers

Slide from L. Lazebnik

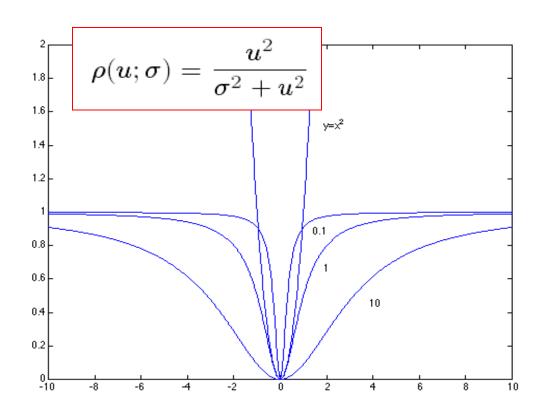
## Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \rho(\mathbf{u}_{i}(\mathbf{x}_{i},\boldsymbol{\theta});\boldsymbol{\sigma}) \qquad u^{2} = \sum_{i=1}^{n} (y_{i} - mx_{i} - b)^{2}$$

 $u_i(x_i, \theta)$  – residual of i<sup>th</sup> point w.r.t. model parameters  $\vartheta$   $\rho$  – robust function with scale parameter  $\sigma$ 



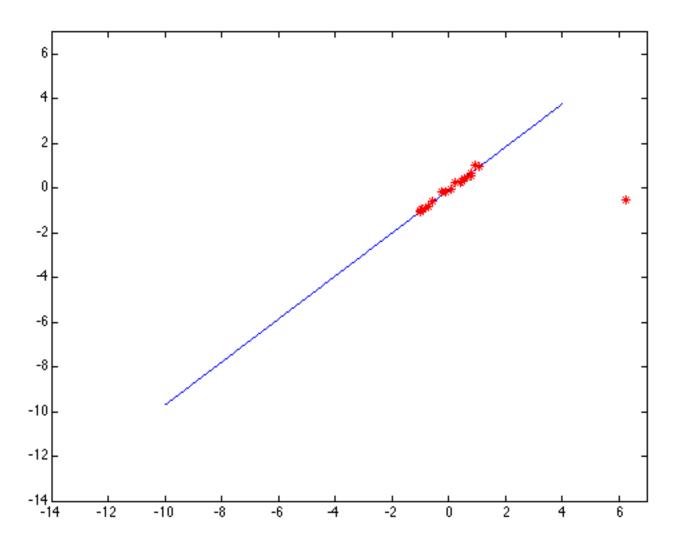
### The robust function $\rho$

- Favors a configuration with small residuals
- Constant penalty for large residuals

### **Robust Estimator**

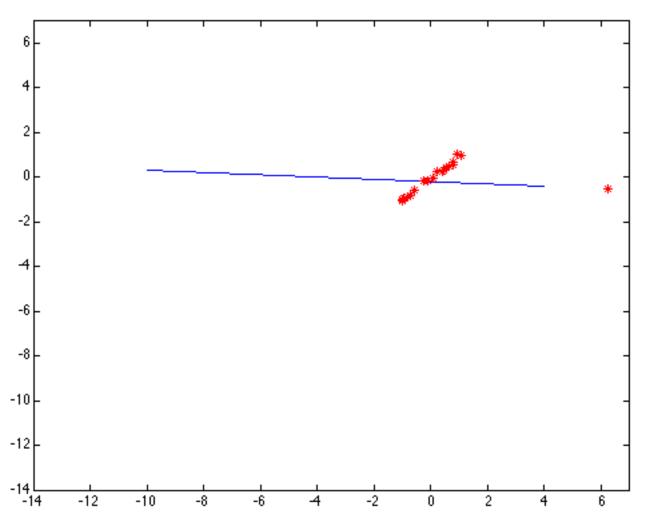
- 1. Initialize: e.g., choose  $\theta$  by least squares fit and  $\sigma = 1.5 \cdot \text{median}(error)$
- 2. Choose params to minimize:  $\sum_{i} \frac{error(\theta, data_{i})^{2}}{\sigma^{2} + error(\theta, data_{i})^{2}}$  E.g., numerical optimization
- 3. Compute new  $\sigma = 1.5 \cdot \text{median}(error)$
- 4. Repeat (2) and (3) until convergence

## Choosing the scale: Just right



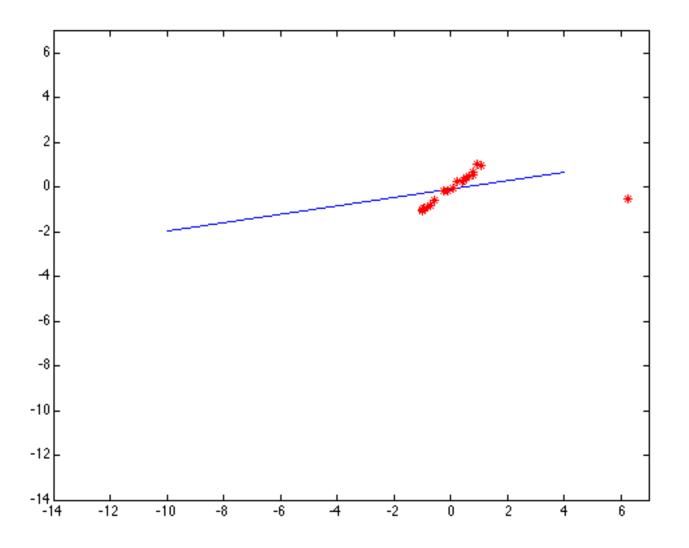
The effect of the outlier is minimized

## Choosing the scale: Too small



The error value is almost the same for every point and the fit is very poor

## Choosing the scale: Too large



Behaves much the same as least squares

# Other ways to search for parameters (for when no closed form solution exists)

#### Grid search

- 1. Propose several sets of parameters, evenly sampled in the joint set
- 2. Choose best (or top few) and sample joint parameters around the current best; repeat

#### Gradient descent

- 1. Provide initial position (e.g., random)
- 2. Locally search for better parameters by following gradient

## Hypothesize and test

- 1. Propose parameters
  - Try all possible
  - Each point votes for all consistent parameters
  - Repeatedly sample enough points to solve for parameters
- 2. Score the given parameters
  - Number of consistent points, possibly weighted by distance
- 3. Choose from among the set of parameters
  - Global or local maximum of scores
- 4. Possibly refine parameters using inliers

## Hough Transform: Outline

1. Create a grid of parameter values

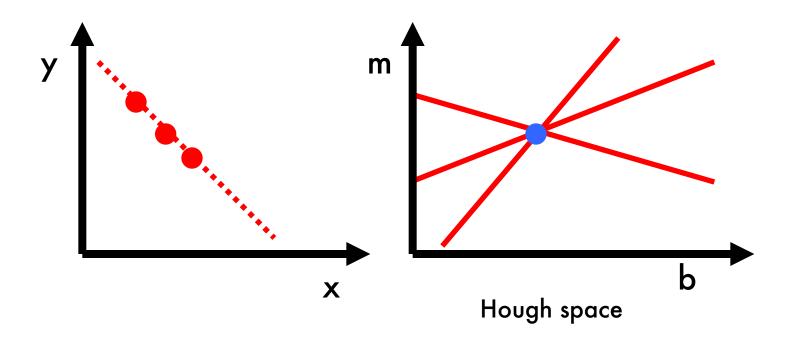
2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

## Hough transform

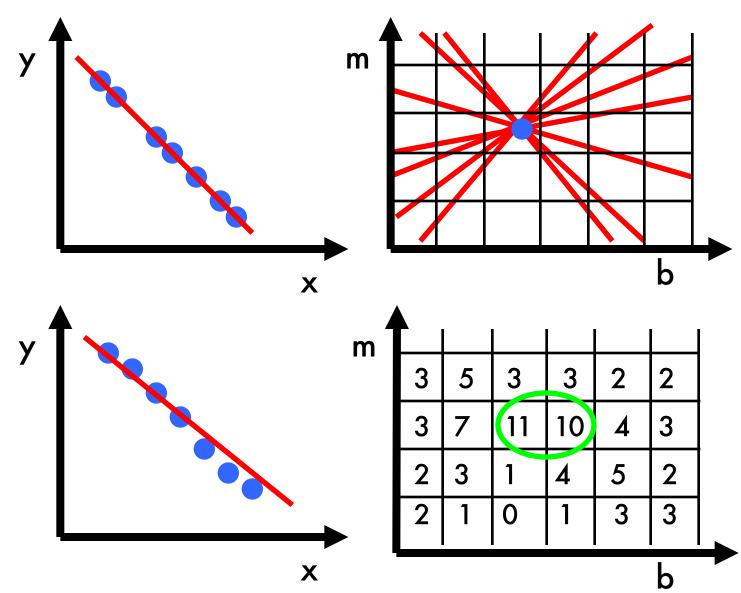
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best



$$y = m x + b$$

## Hough transform

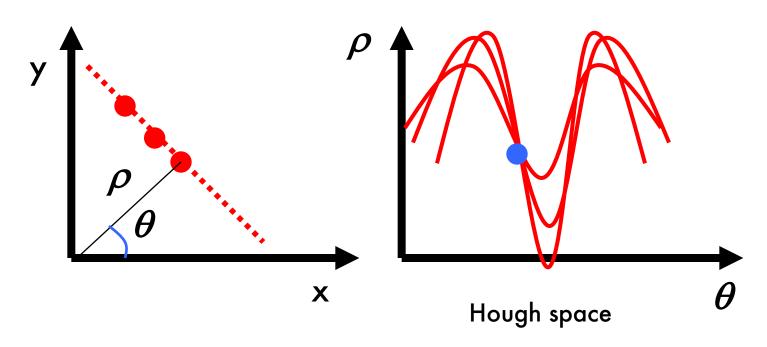


## Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

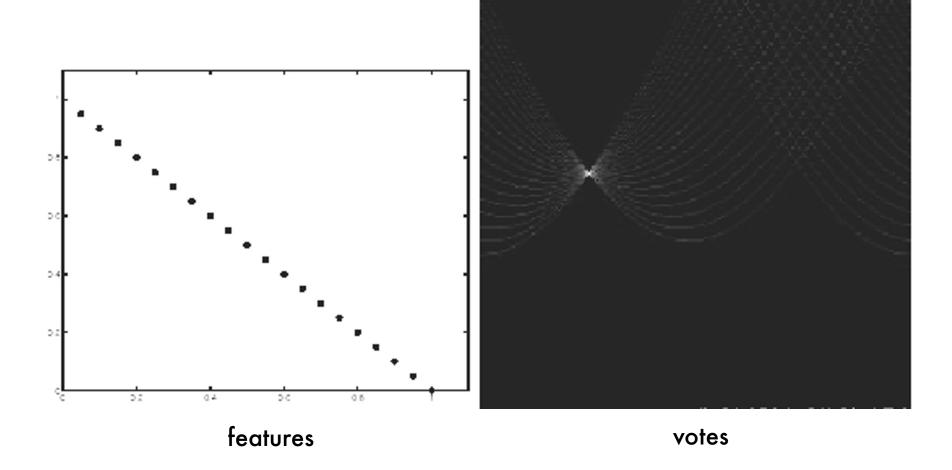
Issue: parameter space [m,b] is unbounded...

Use a polar representation for the parameter space



$$x\cos\theta + y\sin\theta = \rho$$

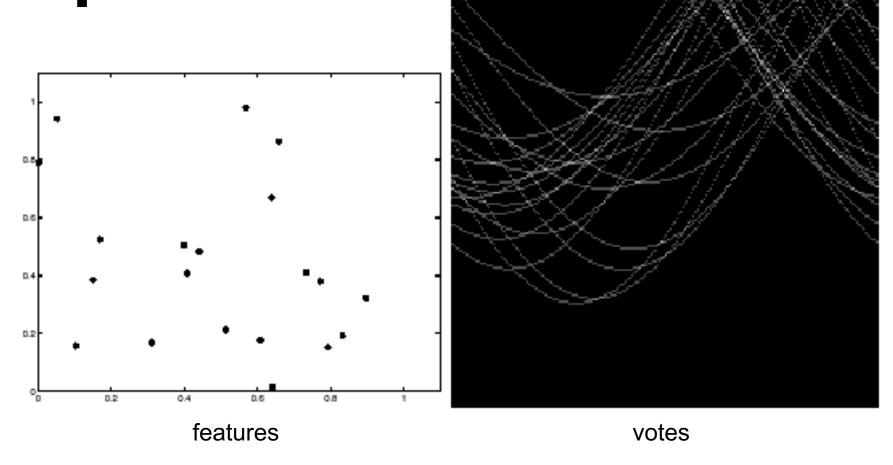
Hough transform - experiments



Hough transform experiments
Noisy data features votes

Need to adjust grid size or smooth

Hough transform - experiments



Issue: spurious peaks due to uniform noise

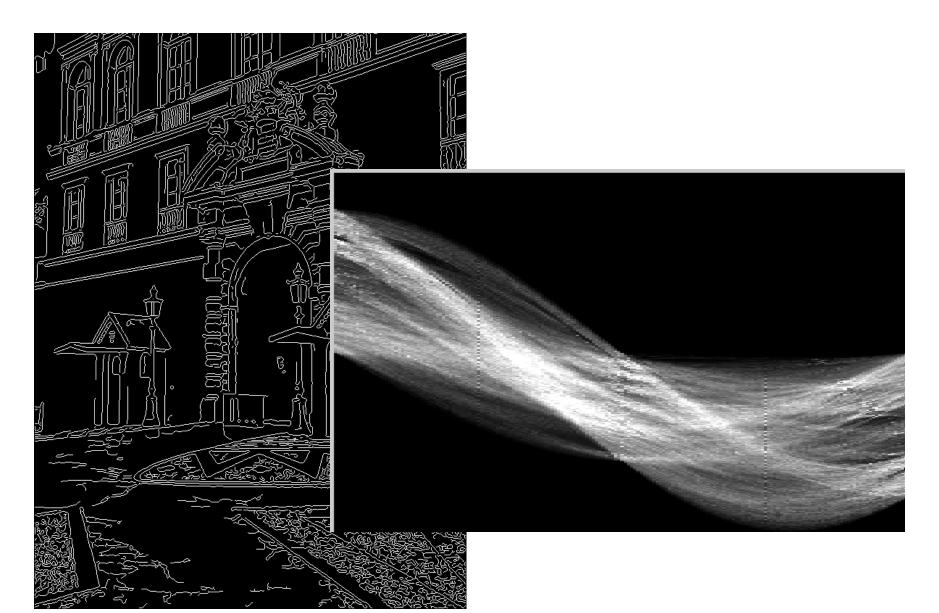
## 1. Image → Canny





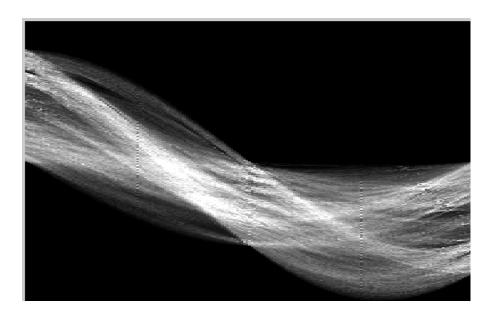
Slide from D. Hoiem

## 2. Canny → Hough votes



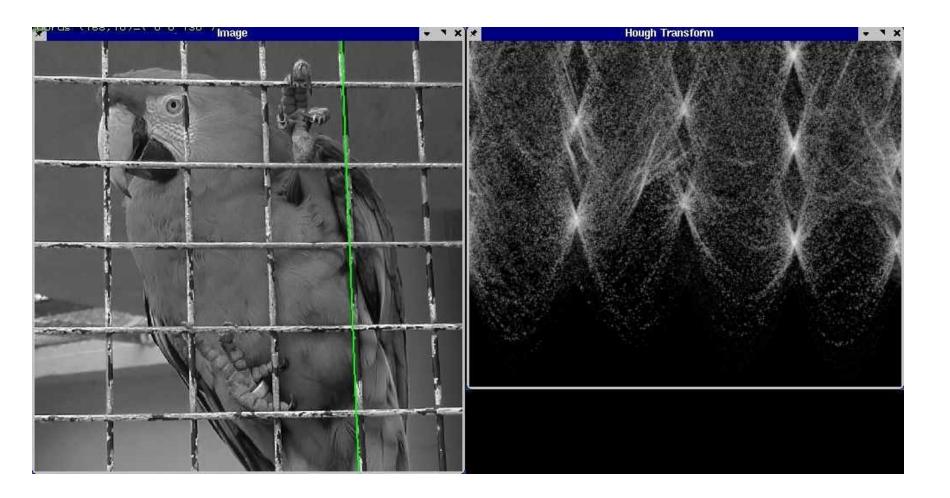
## 3. Hough votes → Edges

Find peaks and post-process





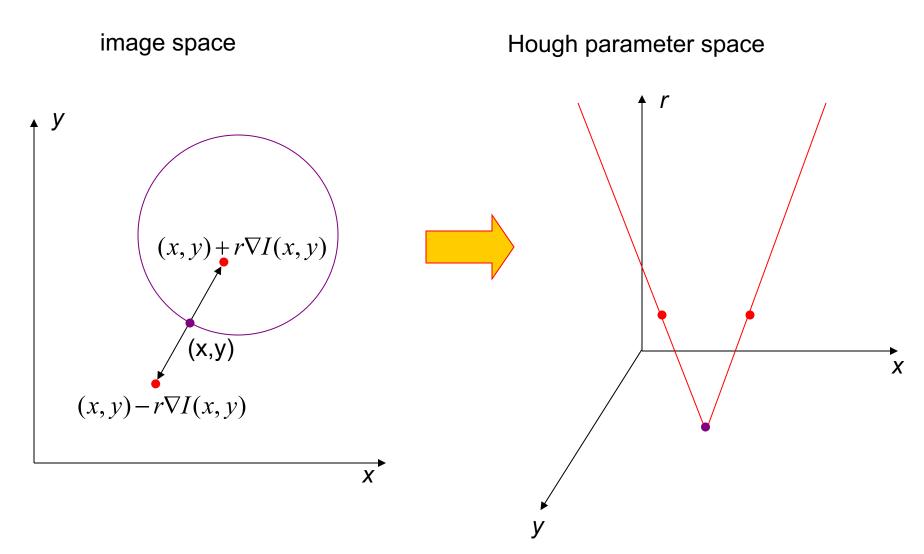
## Hough transform example



## Finding circles $(x_0, y_0, r)$ using Hough transform

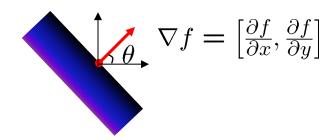
- Fixed r
- Variable r

## Hough transform for circles



## Incorporating image gradients

- When we detect an edge point, we also know its gradient orientation
- How does this constrain possible lines passing through the point?



$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

- Modified Hough transform:
- For each edge point (x,y)  $\theta$  = gradient orientation at (x,y)  $\rho$  =  $x \cos \theta + y \sin \theta$   $H(\theta, \rho) = H(\theta, \rho) + 1$ end

## Hough transform conclusions

#### Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

#### Bad

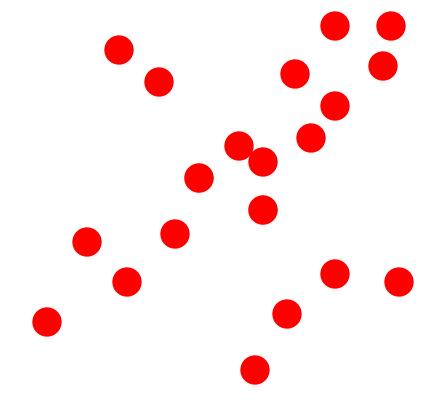
- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
  - Can be hard to find sweet spot
- Not suitable for more than a few parameters
  - grid size grows exponentially

### Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are position/scale/orientation)
- Object category recognition (parameters are position/scale)

(RANdom SAmple Consensus):

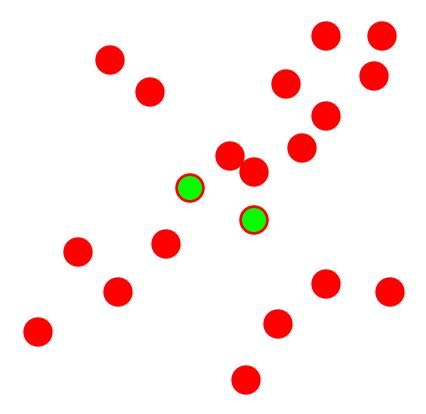
Fischler & Bolles in '81.



### Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

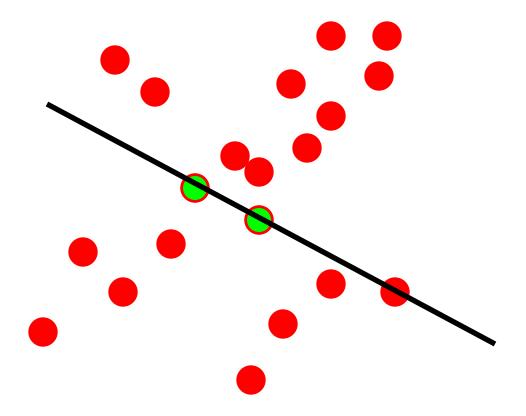
Line fitting example



### Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

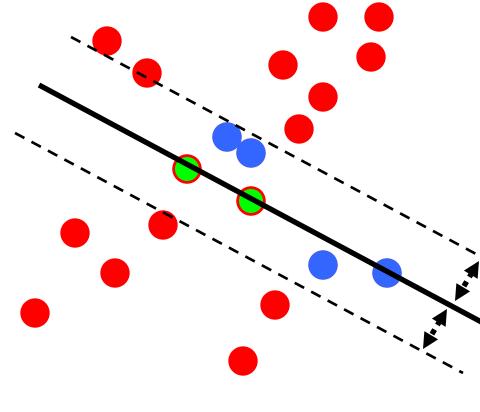
Line fitting example



### Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

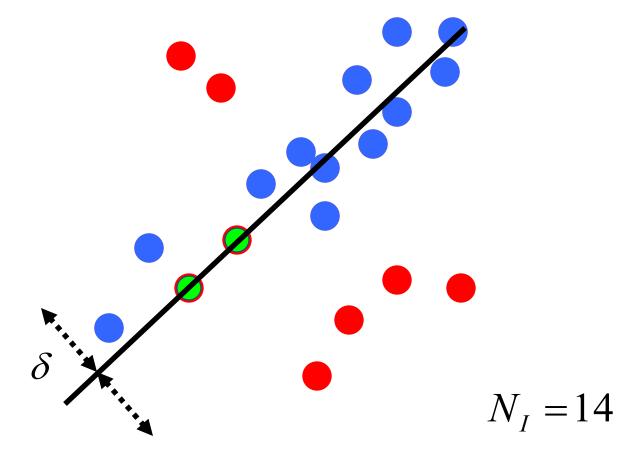
Line fitting example



$$N_I = 6$$

### Algorithm:

- Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model



### Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

## How to choose parameters?

- Number of samples N
  - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
  - Minimum number needed to fit the model
- Distance threshold  $\delta$ 
  - Choose  $\delta$  so that a good point with noise is likely (e.g., prob=0.95) within threshold
  - Zero-mean Gaussian noise with std. dev.  $\sigma$ :  $t^2=3.84\sigma^2$

$$N = log(1-p)/log(1-(1-e)^s)$$

|   | proportion of outliers $e$ |     |     |            |            |           |           |
|---|----------------------------|-----|-----|------------|------------|-----------|-----------|
| S | 5%                         | 10% | 20% | 25%        | 30%        | 40%       | 50%       |
| 2 | 2                          | 3   | 5   | 6          | 7          | 11        | 17        |
| 3 | 3                          | 4   | 7   | 9          | 11         | 19        | 35        |
| 4 | 3                          | 5   | 9   | 13         | 1 <i>7</i> | 34        | <b>72</b> |
| 5 | 4                          | 6   | 12  | 1 <i>7</i> | 26         | <i>57</i> | 146       |
| 6 | 4                          | 7   | 16  | 24         | 37         | 97        | 293       |
| 7 | 4                          | 8   | 20  | 33         | 54         | 163       | 588       |
| 8 | 5                          | 9   | 26  | 44         | 78         | 272       | 1177      |

### RANSAC conclusions

### Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

### Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not as good for getting multiple fits (though one solution is to remove inliers after each fit and repeat)

### Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

## Fitting Summary

- Least Squares Fit
  - closed form solution
  - robust to noise
  - not robust to outliers
- Robust Least Squares
  - improves robustness to noise
  - requires iterative optimization
- Hough transform
  - robust to noise and outliers
  - can fit multiple models
  - only works for a few parameters (1-4 typically)
- RANSAC
  - robust to noise and outliers
  - works with a moderate number of parameters (e.g, 1-8)