Introduction to Recognition

Computer Vision
CS 543 / ECE 549
University of lllinois

Many Slides from D. Hoiem, L. Lazebnik.
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Recognition as 3D Matching
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Find these landmarks ...In these images

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html



http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html

Recognition as 3D Matching
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Recognizing solid objects by alignment with an image. Huttenlocher and Ullman IJCV 1990.



https://link.springer.com/article/10.1007/BF00054921

“Instance”
Recognition

|”

“Category-leve
Recognition

Fig. & The output of the recognirer; (2) grey-level image input, (b) Canny edges, (c) odge segments, () recovered imstances.

Recognizing solid objects by alignment with an image. Huttenlocher and Ullman IJCV 1990.



https://link.springer.com/article/10.1007/BF00054921

Common recognition tasks
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Image classification and tagging
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Object detection
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Activity recognition

="« shopping

— A -
i 11 T = ik
. i
i

giL

% - rolling a cart
e sitting

|- talking

Adapted from
Fei-Fei Li




Semantic segmentation
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Semantic segmentation
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Detection, semantic segmentation, instance
segmentation

person, sheep, dog ;
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semantic segmentation instance segmentation

Image source



https://arxiv.org/pdf/1405.0312.pdf

Image description

This is a busy street in an Asian city.
™ Mountains and a large palace or
| fortress loom in the background. In the
foreground, we see colorful souvenir
ot mu:u stalls and people walking around and
il shopping. One person in the lower left
is pushing an empty cart, and a couple
—== Of people in the middle are sitting,
T pOSSIb|y posing for a photograph

Adapted from
Fei-Fei Li




Many vision problems involve categorization

Image: Classify as indoor/outdoor, which room, what
objects are there, etc.

Object Detection: classify location (bounding box or
region) as object or non-object

Semantic Segmentation: classify pixel into an object,
material, part, etc.

Action Recognition: classify a frame or sequence into an
action type



Basic Approach: Supervised Learning
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* Do you know about the following? (Pick all)
a) Nearest Neighbor Classifiers
b) Support Vector Machines
c) Kernelized Support Vector Machines
d) Decision Tress

e) Random Forests



Classifiers: Nearest neighbor
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f(x) = label of the training example nearest to x

* All we need is a distance or similarity function for our inputs
* No training required!



K-nearest neighbor classifier

the data NN classifier

 Which classifier is more robust to outliers?

Credit: Andrej Karpathy, http://cs231n.qgithub.io/classification/



http://cs231n.github.io/classification/

Linear classifiers
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* Find a linear function to separate the classes:

f(x) = sign(w - x + b)



Linear classifiers

e When the data is linearly separable, there may
be more than one separator (hyperplane)

Which separator
IS best?



Support vector machines

e Find hyperplane that maximizes the margin
between the positive and negative examples

. ° X, positive (y, =1): X, -w+b2>1

x; negative(y, =—1): x,-w+b<-1

° For support vectors, X, -wW+b==1

e Distance between point | X, W+b|
and hyperplane: | w

Therefore, the margin is 2/ ||w||

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin hyperplane

1. Maximize margin 2/ ||w||

2. Correctly classify all training data:
X; positive (y, =1): X, -W+b2=>1

X, negative(y, =—-1): x,-w+b<-1

* Quadratic optimization problem:

. mlgIEHWH subjectto y,(w-x,+b)=>1

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

SVM parameter learning

N ST .
 Separable data: mll,HEHWH subjectto  y.(w-x,+b)=>1

\ } \ }

| |
Maximize Classify training data correctly
margin

* Non-separable data:

w.b
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Maximize Minimize classification mistakes
margin




SVM parameter learning

w.b
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min EHWH +C§max(0,l—yl.(w-xi+b))

Hinge Loss

Margin

Demo: http://cs.stanford.edu/people/karpathy/svmijs/demo



http://cs.stanford.edu/people/karpathy/svmjs/demo

Nonlinear SVMs

e General idea: the original input space can
always be mapped to some higher-
dimensional feature space where the training
set is separable
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Input Space Feature Space

Imaqge source



http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and

Nonlinear SVMs

* Linearly separable dataset in 1D:
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* Non-separable dataset in 1D:
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 We can map the data to a higher-dimensional space:
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Slide credit: Andrew Moore



The kernel trick

e General idea: the original input space can always
be mapped to some higher-dimensional feature
space where the training set is separable

e The kernel trick: instead of explicitly computing

the lifting transformation ¢(x), define a kernel
function K such that

K(x,y) = o(x) - o(y)

. (to be valid, the kernel function must satisfy
Mercer’s condition)



The kernel trick

e Linear SVM decision function:

W-X-I—bzzi ayX X +b

/

learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

The kernel trick

e Linear SVM decision function:
W-X+b= Zl, ayX X +b
e Kernel SVM decision function:
Zaiyl.ga(xl.)-go(x) +b= Zaiyl.K(Xi,x) +b

e This gives a nonlinear decision boundary in the
original feature space

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Polynomial kernel: K(x,y)=(c+x-y)*
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Gaussian kernel

 Also known as the radial basis function
(RBF) kernel:

K(x,y) —eXP(——HX | j

K(x, y)

[Ix -yl



Gaussian kernel
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Digit Classification Case Study



The MNIST DATABASE of handwritten digits
Yann LeCun & Corinna Cortes

* Has a training set of 60 K
examples (6K examples for
each digit), and a test set of
10K examples.

* Each digitis a 28 x 28 pixel grey
level image. The digit itself
occupies the central 20 x 20
pixels, and the center of mass
lies at the center of the box.

NP P~-~DOWIONN
NCOCARNLDRQLN~ o
- B ONQwE UV
O+ QA Y
SO e G
NV AR COCND —WE W
YRAPAMNPSYN &N
LWL G YO X

k.
&
-
5
Z
/
q
Ly
2
]

VY RANWwWwWWhWhoNug9 L



Generalization Error

Fixed classifier

Error

Generalization Error

Number of Training Examples



Bias-Variance Trade-off

E(MSE) = noise? + bias? + variance

e AN

Error due to variance

Unavoidable Error due to parameter estimates
error incorrect from training samples
assumptions

) 11

See the following for explanation of bias-variance (also Bishop’s “Neural
Networks” book):
* http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf



http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Bias and Variance

Error = noise? + bias? + variance

Test Error

High Bias
Low Variance

. Low Bias
CompleXIty High Variance



Back to the case study

Error Rate

Performance on MNIST Dataset
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What are the right features?

Depend on what you want to know!

*Object: shape

— Local shape info, shading, shadows, texture
*Scene : geometric layout

— linear perspective, gradients, line segments
*Material properties: albedo, feel, hardness

— Color, texture
*Action: motion

— Optical flow, tracked points



Stuff vs Objects

* recognizing cloth fabric vs recognizing cups




Feature Design Process

1.
2.
3.

Start with a model
Look at errors on development set

Think of features that can improve
performance

Develop new model, test whether new
features help.

. If not happy, go to step 1.
. “Ablations”: Simplify system, prune out

features that don’t help anymore in presence
of other features.



Features vs Classifiers

Performance on MNIST Dataset
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“Classic” recognition pipeline

Image
Pixels

Class
label




Categorization involves features and a classifier
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New training setup with moderate sized

datasets

/ Training \

[ Training

Labels

|

4

-

\_

Tune CNN features and
Neural Network classifier
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