From image classification to object detection

Image classification

Object detection

Slides from L. Lazebnik

Image source
What are the challenges of object detection?

- Images may contain more than one class, multiple instances from the same class
- Bounding box localization
- Evaluation
Outline

• Task definition and evaluation
• Generic object detection before deep learning
 • Sliding windows
 • HoG, DPMs (Components, Parts)
 • Region Classification Methods

• Deep detection approaches
 • R-CNN
 • Fast R-CNN
 • Faster R-CNN
 • SSD
Object detection evaluation

- At test time, predict bounding boxes, class labels, and confidence scores
- For each detection, determine whether it is a true or false positive
 - PASCAL criterion: $\text{Area}(\text{GT} \cap \text{Det}) / \text{Area}(\text{GT} \cup \text{Det}) > 0.5$
 - For multiple detections of the same ground truth box, only one considered a true positive
Object detection evaluation

• At test time, predict bounding boxes, class labels, and confidence scores
• For each detection, determine whether it is a true or false positive
• For each class, plot Recall-Precision curve and compute Average Precision (area under the curve)
• Take mean of AP over classes to get mAP

Precision:
true positive detections / total detections

Recall:
true positive detections / total positive test instances
PASCAL VOC Challenge (2005-2012)

- 20 challenge classes:
 - Person
 - Animals: bird, cat, cow, dog, horse, sheep
 - Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train
 - Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

- Dataset size (by 2012): 11.5K training/validation images, 27K bounding boxes, 7K segmentations

http://host.robots.ox.ac.uk/pascal/VOC/
Progress on PASCAL detection

PASCAL VOC

Before CNNs

mean Average Precision (mAP)
Newer benchmark: COCO

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- 250,000 people with keypoints

http://cocodataset.org/#home
COCO detection metrics

<table>
<thead>
<tr>
<th>Average Precision (AP):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
</tr>
<tr>
<td>AP\text{IoU=.50}</td>
</tr>
<tr>
<td>AP\text{IoU=.75}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AP Across Scales:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP\text{small}</td>
</tr>
<tr>
<td>AP\text{medium}</td>
</tr>
<tr>
<td>AP\text{large}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Recall (AR):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR\text{max=1}</td>
</tr>
<tr>
<td>AR\text{max=10}</td>
</tr>
<tr>
<td>AR\text{max=100}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AR Across Scales:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR\text{small}</td>
</tr>
<tr>
<td>AR\text{medium}</td>
</tr>
<tr>
<td>AR\text{large}</td>
</tr>
</tbody>
</table>

- Leaderboard: http://cocodataset.org/#detection-leaderboard
- Current best mAP: ~52%
- Official COCO challenges no longer include detection
- More emphasis on instance segmentation and dense segmentation
Detection before deep learning
Detection before deep learning

- 2 basic approaches
 - Sliding window detection
 - Proposal-driven detection
Conceptual approach: Sliding window detection

- Slide a window across the image and evaluate a detection model at each location
 - Thousands of windows to evaluate: efficiency and low false positive rates are essential
 - Difficult to extend to a large range of scales, aspect ratios
Histogarms of oriented gradients (HOG)

- Partition image into blocks and compute histogram of gradient orientations in each block

Pedestrian detection with HOG

• Train a pedestrian template using a linear support vector machine

positive training examples

negative training examples

Pedestrian detection with HOG

• Train a pedestrian template using a linear support vector machine
• At test time, convolve feature map with template
• Find local maxima of response
• For multi-scale detection, repeat over multiple levels of a HOG pyramid

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
Discriminative part-based models

- Single rigid template usually not enough to represent a category
 - Many objects (e.g. humans) are articulated, or have parts that can vary in configuration

- Many object categories look very different from different viewpoints, or from instance to instance
Discriminative part-based models

Root filter Part filters Deformation weights

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010
Discriminative part-based models

Multiple components

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010
Discriminative part-based models

Progress on PASCAL detection

PASCAL VOC

Before CNNs

mean Average Precision (mAP)

year

2006 2007 2008 2009 2010 2011 2012
Conceptual approach: Proposal-driven detection

- Generate and evaluate a few hundred region proposals
 - Proposal mechanism can take advantage of low-level perceptual organization cues
 - Proposal mechanism can be category-specific or category-independent, hand-crafted or trained
 - Classifier can be slower but more powerful
Multiscale Combinatorial Grouping

- Region Proposals
Multiscale Combinatorial Grouping

- Use hierarchical segmentation: start with small superpixels and merge based on diverse cues

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014
Region Proposals for Detection

- Feature extraction: color SIFT, codebook of size 4K, spatial pyramid with four levels = 360K dimensions

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for Object Recognition, IJCV 2013
Detection Now
R-CNN: Region proposals + CNN features

Source: R. Girshick

Multiscale Combinatorial Grouping

- Region Proposals

P. Arbelaez. et al., Multiscale Combinatorial Grouping, CVPR 2014
R-CNN details

- **Regions**: ~2000 Selective Search proposals
- **Network**: AlexNet *pre-trained* on ImageNet (1000 classes), *fine-tuned* on PASCAL (21 classes)
- **Final detector**: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- **Bounding box regression** to refine box locations
- **Non-maximum Suppression**
- **Performance**: mAP of **53.7%** on PASCAL 2010 (vs. **35.1%** for Selective Search and **33.4%** for Deformable Part Models)
Non-maximum Suppression

dog: 0.6

dog: 0.55

dog: 0.6
Bounding box regression

Ground truth box

Target offset to predict*

Predicted offset

Region proposal (a.k.a default box, prior, reference, anchor)

Predicted box

*Typically in transformed, normalized coordinates
R-CNN pros and cons

• **Pros**
 • Accurate!
 • Any deep architecture can immediately be “plugged in”

• **Cons**
 • Not a single end-to-end system
 • Fine-tune network with softmax classifier (log loss)
 • Train post-hoc linear SVMs (hinge loss)
 • Train post-hoc bounding-box regressions (least squares)
 • Training is slow (84h), takes a lot of disk space
 • 2000 CNN passes per image
 • Inference (detection) is slow (47s / image with VGG16)
Fast R-CNN

Forward whole image through ConvNet

Conv5 feature map of image

RoI Pooling layer

Bounding-box regressors

Fully-connected layers

Linear + softmax

Linear

Softmax classifier

Region proposals

FCs

ConvNet

Source: R. Girshick, Fast R-CNN, ICCV 2015
RoI pooling

- “Crop and resample” a fixed-size feature representing a region of interest out of the outputs of the last conv layer
 - Use nearest-neighbor interpolation of coordinates, max pooling

Source: R. Girshick, K. He
RoI pooling illustration

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88</td>
<td>0.44</td>
<td>0.14</td>
<td>0.16</td>
<td>0.37</td>
<td>0.77</td>
<td>0.96</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>0.19</td>
<td>0.45</td>
<td>0.57</td>
<td>0.16</td>
<td>0.63</td>
<td>0.29</td>
<td>0.71</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>0.26</td>
<td>0.82</td>
<td>0.64</td>
<td>0.54</td>
<td>0.73</td>
<td>0.59</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>0.34</td>
<td>0.76</td>
<td>0.84</td>
<td>0.29</td>
<td>0.75</td>
<td>0.62</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td>0.74</td>
<td>0.21</td>
<td>0.39</td>
<td>0.34</td>
<td>0.03</td>
<td>0.33</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.14</td>
<td>0.16</td>
<td>0.13</td>
<td>0.73</td>
<td>0.65</td>
<td>0.96</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>0.19</td>
<td>0.69</td>
<td>0.09</td>
<td>0.86</td>
<td>0.88</td>
<td>0.07</td>
<td>0.01</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>0.83</td>
<td>0.24</td>
<td>0.97</td>
<td>0.04</td>
<td>0.24</td>
<td>0.35</td>
<td>0.50</td>
<td>0.91</td>
<td></td>
</tr>
</tbody>
</table>

Image source
Prediction

- For each RoI, network predicts probabilities for C+1 classes (class 0 is background) and four bounding box offsets for C classes.
Fast R-CNN training

Log loss + smooth L1 loss

Multi-task loss

Linear + softmax

Linear

FCs

Trainable

ConvNet

Source: R. Girshick

R. Girshick, Fast R-CNN, ICCV 2015
Multi-task loss

- Loss for ground truth class y, predicted class probabilities $P(y)$, ground truth box b, and predicted box \hat{b}:

$$L(y, P, b, \hat{b}) = -\log P(y) + \lambda \mathbb{I}[y \geq 1]L_{\text{reg}}(b, \hat{b})$$

- Softmax loss
- Regression loss

- Regression loss: *smooth* L^1 *loss* on top of log space offsets relative to proposal

$$L_{\text{reg}}(b, \hat{b}) = \sum_{i=x,y,w,h} \text{smooth}_{L^1}(b_i - \hat{b}_i)$$

**smooth}_{L^1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| - 0.5 & \text{otherwise} \end{cases}$$
Bounding box regression

Ground truth box

Target offset to predict*

Loss

Predicted offset

Region proposal (a.k.a default box, prior, reference, anchor)

Predicted box

*Typically in transformed, normalized coordinates
Fast R-CNN results

<table>
<thead>
<tr>
<th></th>
<th>Fast R-CNN</th>
<th>R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train time (h)</td>
<td>9.5</td>
<td>84</td>
</tr>
<tr>
<td>- Speedup</td>
<td>8.8x</td>
<td>1x</td>
</tr>
<tr>
<td>Test time / image</td>
<td>0.32s</td>
<td>47.0s</td>
</tr>
<tr>
<td>Test speedup</td>
<td>146x</td>
<td>1x</td>
</tr>
<tr>
<td>mAP</td>
<td>66.9%</td>
<td>66.0%</td>
</tr>
</tbody>
</table>

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

(vs. 53.7% for AlexNet)

Source: R. Girshick
Faster R-CNN

Region proposal network (RPN)

- Slide a small window (3x3) over the conv5 layer
 - Predict object/no object
 - Regress bounding box coordinates with reference to anchors (3 scales x 3 aspect ratios)
One network, four losses

- Classification loss
- Bounding-box regression loss

Region Proposal Network

proposals

Rol pooling

feature map

CNN

Source: R. Girshick, K. He
Faster R-CNN results

<table>
<thead>
<tr>
<th>system</th>
<th>time</th>
<th>07 data</th>
<th>07+12 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-CNN</td>
<td>~50s</td>
<td>66.0</td>
<td>-</td>
</tr>
<tr>
<td>Fast R-CNN</td>
<td>~2s</td>
<td>66.9</td>
<td>70.0</td>
</tr>
<tr>
<td>Faster R-CNN</td>
<td>198ms</td>
<td>69.9</td>
<td>73.2</td>
</tr>
</tbody>
</table>

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet
Object detection progress

mean Average Precision (mAP)

year

Before CNNs

After CNNs

Faster R-CNN

Fast R-CNN

R-CNNv1
Streamlined detection architectures

- The Faster R-CNN pipeline separates proposal generation and region classification:
 - RPN
 - Region Proposals
 - Conv feature map of the entire image
 - Region Proposals
 - RoI pooling
 - RoI features
 - Classification + Regression
 - Detections

- Is it possible to do detection in one shot?
 - Conv feature map of the entire image
 - Classification + Regression
 - Detections
SSD

- Similarly to RPN, use anchors and directly predict class-specific bounding boxes.
SSD: Results (PASCAL 2007)

- More accurate *and* faster than YOLO and Faster R-CNN

<table>
<thead>
<tr>
<th>Method</th>
<th>mAP</th>
<th>FPS</th>
<th>batch size</th>
<th># Boxes</th>
<th>Input resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faster R-CNN (VGG16)</td>
<td>73.2</td>
<td>7</td>
<td>1</td>
<td>~6000</td>
<td>~1000 × 600</td>
</tr>
<tr>
<td>Fast YOLO</td>
<td>52.7</td>
<td>155</td>
<td>1</td>
<td>98</td>
<td>448 × 448</td>
</tr>
<tr>
<td>YOLO (VGG16)</td>
<td>66.4</td>
<td>21</td>
<td>1</td>
<td>98</td>
<td>448 × 448</td>
</tr>
<tr>
<td>SSD300</td>
<td>74.3</td>
<td>46</td>
<td>1</td>
<td>8732</td>
<td>300 × 300</td>
</tr>
<tr>
<td>SSD512</td>
<td>76.8</td>
<td>19</td>
<td>1</td>
<td>24564</td>
<td>512 × 512</td>
</tr>
<tr>
<td>SSD300</td>
<td>74.3</td>
<td>59</td>
<td>8</td>
<td>8732</td>
<td>300 × 300</td>
</tr>
<tr>
<td>SSD512</td>
<td>76.8</td>
<td>22</td>
<td>8</td>
<td>24564</td>
<td>512 × 512</td>
</tr>
</tbody>
</table>
Multi-resolution prediction

- SSD predicts boxes of different size from different conv maps, but each level of resolution has its own predictors and higher-level context does not get propagated back to lower-level feature maps.
- Can we have a more elegant multi-resolution prediction architecture?
Feature Pyramid Networks

Abstract

Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fundamental challenge in computer vision. Feature pyramids built upon image pyramids (for short we call these featurized image pyramids) form the basis of a standard solution [1] (Fig. 1(a)). These pyramids are scale-invariant in the sense that an object's scale change is offset by shifting its level in the pyramid. Intuitively, this property enables a model to detect objects across a large range of scales by scanning the model over both positions and pyramid levels. Featurized image pyramids were heavily used in the era of hand-engineered features [5, 25]. They were so critical that object detectors like DPM [7] required dense scale sampling to achieve good results (e.g., 10 scales per octave). For recognition tasks, engineered features have largely been replaced with features computed by deep convolutional networks (ConvNets) [19, 20]. Aside from being capable of representing higher-level semantics, ConvNets are also more robust to variance in scale and thus facilitate recognition from features computed on a single input scale [15, 11, 29] (Fig. 1(b)). But even with this robustness, pyramids are still needed to get the most accurate results. All recent top entries in the ImageNet [33] and COCO [21] detection challenges use multi-scale testing on featurized image pyramids (e.g., [16, 35]). The principle advantage of featurizing each level of an image pyramid is that it produces a multi-scale feature representation in which all levels are semantically strong, including the high-resolution levels. Nevertheless, featurizing each level of an image pyramid has obvious limitations. Inference time increases considerably (e.g., by four times [11]), making this approach impractical for real applications. Moreover, training deep

Feature pyramid networks

- Improve predictive power of lower-level feature maps by adding contextual information from higher-level feature maps.
- Predict different sizes of bounding boxes from different levels of the pyramid (but share parameters of predictors).

<table>
<thead>
<tr>
<th>Faster R-CNN</th>
<th>proposals</th>
<th>feature</th>
<th>head</th>
<th>lateral?</th>
<th>top-down?</th>
<th>AP@0.5</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(*) baseline from He et al. [16]^†</td>
<td>RPN, C_4</td>
<td>C_4</td>
<td>conv5</td>
<td></td>
<td></td>
<td>47.3</td>
<td>26.3</td>
</tr>
<tr>
<td>(a) baseline on conv4</td>
<td>RPN, C_4</td>
<td>C_4</td>
<td>conv5</td>
<td></td>
<td></td>
<td>53.1</td>
<td>31.6</td>
</tr>
<tr>
<td>(b) baseline on conv5</td>
<td>RPN, C_5</td>
<td>C_5</td>
<td>2fc</td>
<td></td>
<td></td>
<td>51.7</td>
<td>28.0</td>
</tr>
<tr>
<td>(c) FPN</td>
<td>RPN, ${P_k}$</td>
<td>${P_k}$</td>
<td>2fc</td>
<td>✓</td>
<td>✓</td>
<td>56.9</td>
<td>33.9</td>
</tr>
</tbody>
</table>

Review: Fast R-CNN

R. Girshick, Fast R-CNN, ICCV 2015
Review: Faster R-CNN

Review: RPN

- Slide a small window (3x3) over the conv5 layer
 - Predict object/no object
 - Regress bounding box coordinates with reference to anchors (3 scales x 3 aspect ratios)
Review: SSD

Summary: Object detection with CNNs

• R-CNN: region proposals + CNN on cropped, resampled regions
• Fast R-CNN: region proposals + RoI pooling on top of a conv feature map
• Faster R-CNN: RPN + RoI pooling
• Next generation of detectors
 • Direct prediction of BB offsets, class scores on top of conv feature maps
 • Get better context by combining feature maps at multiple resolutions
Instance segmentation

Evaluation

- Average Precision like detection, except region IoU as opposed to box IoU.

B. Hariharan et al., *Simultaneous Detection and Segmentation*, ECCV 2014
Mask R-CNN

- Mask R-CNN = Faster R-CNN + FCN on RoIs

Mask branch: separately predict segmentation for each possible class

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)
RoIAlign vs. RoIPool

- RoIPool: nearest neighbor quantization

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)
RoIAlign vs. RoIPool

- RoIPool: nearest neighbor quantization
- RoIAlign: bilinear interpolation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)
Mask R-CNN

- From RoIAlign features, predict class label, bounding box, and segmentation mask.

Validation image with box detection shown in red

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)
Example results
Example results
Instance segmentation results on COCO

<table>
<thead>
<tr>
<th></th>
<th>backbone</th>
<th>AP</th>
<th>AP$_{50}$</th>
<th>AP$_{75}$</th>
<th>AP$_S$</th>
<th>AP$_M$</th>
<th>AP$_L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNC [10]</td>
<td>ResNet-101-C4</td>
<td>24.6</td>
<td>44.3</td>
<td>24.8</td>
<td>4.7</td>
<td>25.9</td>
<td>43.6</td>
</tr>
<tr>
<td>FCIS [26] +OHEM</td>
<td>ResNet-101-C5-dilated</td>
<td>29.2</td>
<td>49.5</td>
<td>-</td>
<td>7.1</td>
<td>31.3</td>
<td>50.0</td>
</tr>
<tr>
<td>FCIS+++ [26] +OHEM</td>
<td>ResNet-101-C5-dilated</td>
<td>33.6</td>
<td>54.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mask R-CNN</td>
<td>ResNet-101-C4</td>
<td>33.1</td>
<td>54.9</td>
<td>34.8</td>
<td>12.1</td>
<td>35.6</td>
<td>51.1</td>
</tr>
<tr>
<td>Mask R-CNN</td>
<td>ResNet-101-FPN</td>
<td>35.7</td>
<td>58.0</td>
<td>37.8</td>
<td>15.5</td>
<td>38.1</td>
<td>52.4</td>
</tr>
<tr>
<td>Mask R-CNN</td>
<td>ResNeXt-101-FPN</td>
<td>37.1</td>
<td>60.0</td>
<td>39.4</td>
<td>16.9</td>
<td>39.9</td>
<td>53.5</td>
</tr>
</tbody>
</table>

AP at different IoU thresholds

AP for different size instances

<table>
<thead>
<tr>
<th>align?</th>
<th>bilinear?</th>
<th>agg.</th>
<th>AP</th>
<th>AP$_{50}$</th>
<th>AP$_{75}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoIPool [12]</td>
<td></td>
<td>max</td>
<td>26.9</td>
<td>48.8</td>
<td>26.4</td>
</tr>
<tr>
<td>RoIWarp [10]</td>
<td>✓</td>
<td>max</td>
<td>27.2</td>
<td>49.2</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>ave</td>
<td>27.1</td>
<td>48.9</td>
<td>27.1</td>
</tr>
<tr>
<td>RoIAlign</td>
<td>✓</td>
<td>✓</td>
<td>max</td>
<td>30.2</td>
<td>51.0</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>ave</td>
<td>30.3</td>
<td>51.2</td>
</tr>
</tbody>
</table>

(c) **RoIAlign** (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by \(\sim 3\) points and AP$_{75}$ by \(\sim 5\) points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

Abstract
We propose and study a task we name \textit{panoptic segmentation} (PS). Panoptic segmentation unifies the typically distinct tasks of \textit{semantic segmentation} (assign a class label to each pixel) and \textit{instance segmentation} (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel \textit{panoptic quality} (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation.

1. Introduction
In the early days of computer vision, things – countable objects such as people, animals, tools – received the dominant share of attention. Questioning the wisdom of this trend, Adelson [1] elevated the importance of studying systems that recognize stuff – amorphous regions of similar texture or material such as grass, sky, road. This dichotomy between stuff and things persists to this day, reflected in both the division of visual recognition tasks and in the specialized algorithms developed for stuff and thing tasks.

Studying stuff is most commonly formulated as a task known as \textit{semantic segmentation}, see Figure 1b. As stuff is amorphous and uncountable, this task is defined as simply assigning a class label to each pixel in an image (note that semantic segmentation treats thing classes as stuff).

In contrast, studying things is typically formulated as the task of \textit{object detection} or \textit{instance segmentation}, where the goal is to detect each object and delineate it with a bounding box or segmentation mask, respectively, see Figure 1c.

While seemingly related, the datasets, details, and metrics for these two visual recognition tasks vary substantially. The schism between semantic and instance segmentation has led to a parallel rift in the methods for these tasks. Stuff classifiers are usually built on fully convolutional nets [30] with dilations [52], while object detectors often use object proposals [15] and are region-based [37, 14]. Overall algorithmic progress on these tasks has been incredible in the past decade, yet, something important may be overlooked by focusing on these tasks in isolation.

A natural question emerges: Can there be a reconciliation between stuff and things? And what is the most effective design of a unified vision system that generates rich and coherent scene segmentations? These questions are particularly important given their relevance in real-world applications, such as autonomous driving or augmented reality.

Interestingly, while semantic and instance segmentation dominate current work, in the pre-deep learning era there...
Keypoint prediction

- Given K keypoints, train model to predict K \(m \times m \) one-hot maps