Filtering
(in Frequency
Domain)

CS 543 / ECE 549 — Saurabh Gupta

Many slides from Derek Hoiem.

While we wait,

Who do you see in
this picture? FFS

A. Albert Einstein &
B. Marilyn Monroe @
C. None of these




Today’s Class

Fourier transforms

Filtering in frequency domain
Sampling

Image Pyramids



Why does the Gaussian give a nice
smooth image, but the square filter give
edgy artifacts?

Gaussian Box filter




Thinking in terms of frequency



Jean Baptiste Joseph Fourier (1768-1830)

-

. . ...the manner in which the author arrives at these
had cra Zy idea ( 1807) ) equations is not exempt of difficulties and...his

Any univariate function can | analysis to integrate them still leaves something to be

rewritten as a weighted sum|  desired on the score of generality and even rigour.
sines and cosines of differen
frequencies.

e Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

e Butit’s (mostly) true!
— called Fourier Series

~

J

— there are some subtle
restrictions

Slides: Efros



A sum of sines

Our building block:
Asin(ax + @)

Add enough of them to get
any signal f(x) you want!

f(target)=

f] + f2+ f3...+ fn+...




Frequency Spectra
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Fourier Transform

* Fourier transform stores the magnitude and phase at
each frequency

— Magnitude encodes how much signal there is at a
particular frequency

— Phase encodes spatial information (indirectly)

— For mathematical convenience, this is often notated in
terms of complex numbers

 Amplitude: A = \/R(a))z + I(w)?

—1 [(w)
R(w)

* Phase: ¢ = tan



Computing the Fourier Transform

* H(w) = Flh(x)]

» Continuous:
e H(w) = ffoooh(x)e_ijdx

* Discrete:
+ H(k) = + ZNZ3 h(x)e/2mhx/N

» Euler’'s Formula:
o e/ = cos(nx) + j sin(nx)



Properties of Fourier Transforms

* Linearity:
— Flax(t) + by(t)] = aF[x(¢)] + bF[y(t)]

* Fourier transform of a real signal is symmetric
about the origin

* The energy of the signal is the same as the
energy of its Fourier transform

See Szeliski Book (3.4)



The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

—Flg = h] = FlglF[h]

* The inverse Fourier transform of the product of
two Fourier transforms is the convolution of the
two inverse Fourier transforms

—F~tghl = F~ gl * F'[A]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!



Other signals

* We can also think of all kinds of other signals
the same way

H De. EE zabeth ¢
Yeak vh... L acc dcnh\Jj TeoK
the @uner transform of @y cat ...

gﬁ Meaw

xkcd.com



lmages
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Strong horizontal gradients

Diagonal Frequencies
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Low frequencies Strong vertical gradients




Fourier analysis in images

Intensity Image

N
N\

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Filtering in spatial domain 10| 1

Original
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Filtering in frequency domain *

FFT

Original Filter FFT Magnitude

FFT Log Magnitude

P

_Image FFT .* Filter FFT

e

Inverse FFT




Why does the Gaussian give a nice
smooth image, but the square filter give
edgy artifacts?

Gaussian Box filter




Filtering in frequency domain
(Box) .
FFT l

Filter FFT Magnitude

x-
1

Image FFT .* Filter FFT

Original FFT Log Magnitude

Inverse FFT




Filtering in frequency domain n
(Gaussian)

FFT

Original

Filter FFT Magnitude

x-

Image FFT .* Filter FFT

FFT Log Magnitude

FFT

Inverse FFT




Filtering in frequency domain (Gaussian)
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Filtering in frequency domain (Gaussian)

o=1 o=5




Filtering in frequency domain (Gaussian)




Sampling

Why does a lower resolution image still make
sense to us? What do we lose?

.....

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/

Subsampling by a factor of 2
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Throw away every other row and
column to create a 1/2 size image



Aliasing problem

AWAWAWAWAWA
\/\/\/V\/V

Source: S. Marschner




Aliasing problem

1D example (sinewave):

SVErZVAlyRY Y

Source: S. Marschner



Aliasing problem

e Sub-sampling may be dangerous....

* Characteristic errors may appear:

— “Wagon wheels rolling the wrong way in
movies” See

— “Checkerboards disintegrate in ray tracing”

— “Striped shirts look funny on color television”

Source: D. Forsyth


https://en.wikipedia.org/wiki/Wagon-wheel_effect

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[t camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDRPB

frame 0O frame 1 frame 2 frame 3 frame 4
Il I I I -
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz



Aliasing in graphics

Disintegrating textures

Source: A. Efros



Sampling and aliasing

256x256 [28x128 64x64 32x32 [6x16
RN R R W R s SRR

Slide from Derek Hoiem.



Aliasing in Frequency Domain

Ittty

No Aliasing
Fourier
Signal Transform Magnitude
Spectrum
b B R ' -
Sample Copy and
Shift
Sampled  Fourier
Signal Transform Magnitude
B A Spectrum

AV VAN

Cut out by
multiplication
¢ With box filter

Magnitude
Spectrum

A

Accurately
Reconstructed {:n verse
Signal ourier
Transform
‘ > Ee

Aliasing
Fourier
Signal Transform Magnitude
Spectrum
& > E + >
Sample Copy and
Shift
Sampled  Fourier
Signal Transform Magnitude
—_— Spectrum
Cut out by
! | multiplication
naccurately with box filt
Reconstructed ~ InVverse . o
; Fourier
Signal
Transform Magnitude
-— /.1\ Spectrum
- : < 1 i

Source: Forsyth and

Ponce




Nyquist-Shannon Sampling Theorem

* When sampling a signal at discrete intervals, the
sampling frequency mustbe > 2 xf__,

* f .. =maxfrequency of the input signal

* This will allows to reconstruct the original
perfectly from the sampled version

Po 40 [ 4% /% &
AT VI VS

AN
\// \ bac

Slide from Derek Hoiem.




Anti-aliasing

Solutions:
 Sample more often

* Getrid of all frequencies that are greater
than half the new sampling frequency
— Will lose information
— But it’s better than aliasing

— Apply a smoothing filter

Slide from Derek Hoiem.



Algorithm for downsampling by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter
3. Sample every other pixel

Slide from Derek Hoiem.



Anti-aliasing
256x256 128x128 64x64 32x32 16x16
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Forsyth and Ponce 2002



Subsampling without pre-filtering

Ny “i U A
s : .

| 1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz



Subsampling with Gaussian pre-filtering

Gaussian 1/2

Slide by Steve Seitz



Gaussian pyramid (Repeated blurring and
samplmg)

’ \\// WS

F“

Source: Forsyth



Laplacian pyramid

Source: Forsyth



Creating the Difference of Gaussian Pyramid

Smooth, then

downsample
Image = G; l

Downsample
(Smooth(G,)

L

Downsample
(Smooth(G,))

Gs

G Smooth
3 " (Upsample(G,))

Use same filter for smoothing in each step
(e.g., Gaussian with o = 2)
» Downsample/upsample with “nearest”

interpolation
Leopard, Elephant image from Olivia and Torralba



Creating the Difference of Gaussian Pyramid

Smooth, then /]\ /¥\Spatia| Response
|

downsample

Downsample Downsample

(Smooth(G,)) (SMOOth(G) g G,

L

Smooth

Use same filter for smoothing in each step
(e.g., Gaussian with o = 2)

» Downsample/upsample with “nearest”
interpolation



Creating the Difference of Gaussian Pyramid

Smooth, then i ';.‘ Frequency Response
downsample LA ik
Image = G; !
G,

Downsample
(Smooth(G,)

L

Downsample
(Smooth(G,))

G Smooth
3 " (Upsample(G,))

i | Use same filter for smoothing in each step
(e.g., Gaussian with o = 2)

Downsample/upsample with “nearest”
interpolation




Creating the Difference of Gaussian Pyramid

Smooth, then

downsample
Image = G; |

Downsample

Downsample
(Smooth(G,)

G Smooth
3 T (Upsample(G,))

» Can also use Smooth(G,), but then reverse

=7 S isn’t the exact same.

» Technically, this is a Difference of Gaussian
pyramid and not a Laplacian pyramid.




Images in a Difference of Gaussian Pyramid




Dali: “Gala Contemplati



Images in a Difference of Gaussian Pyramid

Dali: “Gala Contemplating the Mediterranean Sea” (1976)



Reconstructing from Diff of Gauss Pyramid

G1 = L1 +
Smooth(Upsample(G,)) Gy=L,+ Gs=L,+
Image = G; Smooth(Upsample(G;))  Smooth(Upsample(G,))

Gs

Use same filter for smoothing as in deconstruction
Upsample with “nearest” interpolation
Reconstruction will be nearly lossless



Application: Image Blending

(d (e)

(d)

€9) (b

Laplacian pyramid blending (Burt and Adelson 1983b)



Blending




Alpha Blending / Feathering
.,. C

Iblend Odleft T (1 O(')Irlght




Affect of Window Size




Affect of Window Size




Good Window Size

“Optimal” Window: smooth but not ghosted



What is the Optimal Window?

e To avoid seams

— window = size of largest prominent feature

* To avoid ghosting

— window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

« largest frequency <= 2*size of smallest frequency
« image frequency content should occupy one “octave” (power of two)

Z



What if the Frequency Spread is Wide

* |dea (Burt and Adelson)
— Compute I:Ieft = FFT(IIeft)r Fright = FFT(Iright)
— Decompose Fourier image into octaves (bands)
* Fieft = Fiert™  Flen” + .

— Feather corresponding octaves F.q, with F g
e Can compute inverse FFT and feather in spatial domain

— Sum feathered octave images in frequency domain
* Better implemented in spatial domain



Octaves in the Spatial Domain

Lowpass Images

* Bandpass Images



level k-2

Pyramid Blending
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ramid Blending




laplacian

level
4

laplacian

level
2

laplacian

level
0

(a)

left pyramid

right pyramid

blended pyramid



Blending Regions

AT :" .




Laplacian Pyramid: Blending

* General Approach:

1. Build Laplacian pyramids LA and LB from images
A and B

2. Build a Gaussian pyramid GR from selected region
R

3. Form a combined pyramid LS from LA and LB
using nodes of GR as weights:
o LS(i,j) = GR(Lj,)*LA(Lj) + (1-GR(1,j)) *LB(L,j)

4. Collapse the LS pyramid to get the final blended
Image



Major uses of image pyramids

* Compression

Object detection
— Scale search
— Features

* Detecting stable interest points

Registration
— Course-to-fine



Recap

 Sometimes it makes sense
to think of filtering in the
frequency domain

— Fourier analysis

e Sampling and Aliasing

* I[mage Pyramids




