
While we wait,

Who do you see in
this picture?

Filtering
(in Frequency

Domain)

Many slides from Derek Hoiem.

CS 543 / ECE 549 – Saurabh Gupta A. Albert Einstein
B. Marilyn Monroe
C. None of these

Today’s Class

• Fourier transforms
• Filtering in frequency domain
• Sampling
• Image Pyramids

Gaussian Box filter

Why does the Gaussian give a nice
smooth image, but the square filter give
edgy artifacts?

Thinking in terms of frequency

Jean Baptiste Joseph Fourier (1768-1830)
had crazy idea (1807):

Any univariate function can be
rewritten as a weighted sum of
sines and cosines of different
frequencies.

• Don’t believe it?
– Neither did Lagrange,

Laplace, Poisson and
other big wigs

– Not translated into
English until 1878!

• But it’s (mostly) true!
– called Fourier Series
– there are some subtle

restrictions

...the manner in which the author arrives at these
equations is not exempt of difficulties and...his

analysis to integrate them still leaves something to be
desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre

Slides: Efros

A sum of sines
Our building block:

Add enough of them to get
any signal f(x) you want!

)+fwxAsin(

Frequency Spectra

!"#$%&'($)&*'''

f x = $1, if frac x < 0.5
−1, otherwise

+,#%-&%'.%$/01,%2*
4
𝜋

sin 2𝜋. 1. 𝑥
1

+
sin 2𝜋. 3. 𝑥

3
+
sin 2𝜋. 5. 𝑥

5
+ …

1 Term 2nd Term 2 Terms

2 Terms 3rd Term 3 Terms

101 Terms31 Terms15 Terms

Fourier Transform
• Fourier transform stores the magnitude and phase at

each frequency
– Magnitude encodes how much signal there is at a

particular frequency
– Phase encodes spatial information (indirectly)
– For mathematical convenience, this is often notated in

terms of complex numbers

• Amplitude: 𝐴 = 𝑅 𝜔 ! + 𝐼 𝜔 !

• Phase: 𝜙 = 𝑡𝑎𝑛"# $ %
&(%)

Computing the Fourier Transform

• 𝐻 𝜔 = ℱ ℎ 𝑥

• Continuous:
• 𝐻 𝜔 = ∫!"

" ℎ 𝑥 𝑒!#$%𝑑𝑥

• Discrete:
• 𝐻 𝑘 = &

'
∑%()'!& ℎ(𝑥)𝑒!#*+,%/'

• Euler’s Formula:
• 𝑒#.% = cos 𝑛𝑥 + 𝑗 sin(𝑛𝑥)

Properties of Fourier Transforms

• Linearity:
– ℱ 𝑎𝑥 𝑡 + 𝑏𝑦 𝑡 = 𝑎ℱ 𝑥 𝑡 + 𝑏ℱ[𝑦 𝑡]

• Fourier transform of a real signal is symmetric
about the origin

• The energy of the signal is the same as the
energy of its Fourier transform

See Szeliski Book (3.4)

The Convolution Theorem

• The Fourier transform of the convolution of two
functions is the product of their Fourier transforms
–ℱ 𝑔 ∗ ℎ = ℱ 𝑔 ℱ[ℎ]

• The inverse Fourier transform of the product of
two Fourier transforms is the convolution of the
two inverse Fourier transforms
–ℱ!& 𝑔ℎ = ℱ!& 𝑔 ∗ ℱ!& ℎ

• Convolution in spatial domain is equivalent to
multiplication in frequency domain!

Other signals
• We can also think of all kinds of other signals

the same way

xkcd.com

Images

𝐻 𝑘, 𝑙 =
1
𝑀𝑁

?
/()

0!&

?
.()

'!&

ℎ(𝑚, 𝑛)𝑒!#*+
,
0/1

2
'.

Strong horizontal gradients

Strong vertical gradientsLow frequencies

Diagonal Frequencies

Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Filtering in spatial domain

10-1

20-2

10-1

* =

Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Gaussian Box filter

Why does the Gaussian give a nice
smooth image, but the square filter give
edgy artifacts?

Filtering in frequency domain
(Box)

FFT

FFT

Inverse FFT

=

Filtering in frequency domain
(Gaussian)

FFT

FFT

Inverse FFT

=

Filtering in frequency domain (Gaussian)
Sp

at
ia

l D
om

ai
n

Fr
eq

ue
nc

y
D

om
ai

n

Filtering in frequency domain (Gaussian)

Filtering in frequency domain (Gaussian)

Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Sampling

http://www.flickr.com/photos/igorms/136916757/

Throw away every other row and
column to create a 1/2 size image

Subsampling by a factor of 2

• 1D example (sinewave):

Source: S. Marschner

Aliasing problem

Source: S. Marschner

• 1D example (sinewave):

Aliasing problem

• Sub-sampling may be dangerous….
• Characteristic errors may appear:

– “Wagon wheels rolling the wrong way in
movies” See

– “Checkerboards disintegrate in ray tracing”
– “Striped shirts look funny on color television”

Source: D. Forsyth

Aliasing problem

https://en.wikipedia.org/wiki/Wagon-wheel_effect

Aliasing in video

Slide by Steve Seitz

Source: A. Efros

Aliasing in graphics

Sampling and aliasing

Slide from Derek Hoiem.

Aliasing in Frequency Domain

Source: Forsyth and Ponce

No Aliasing Aliasing

• When sampling a signal at discrete intervals, the
sampling frequency must be ³ 2 ´ fmax

• fmax = max frequency of the input signal
• This will allows to reconstruct the original

perfectly from the sampled version

good

bad

v v v

Nyquist-Shannon Sampling Theorem

Slide from Derek Hoiem.

Anti-aliasing

Solutions:
• Sample more often

• Get rid of all frequencies that are greater
than half the new sampling frequency
– Will lose information
– But it’s better than aliasing
– Apply a smoothing filter

Slide from Derek Hoiem.

Algorithm for downsampling by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter
3. Sample every other pixel

Slide from Derek Hoiem.

Anti-aliasing

Forsyth and Ponce 2002

Subsampling without pre-filtering

1/4 (2x zoom) 1/8 (4x zoom)1/2

Slide by Steve Seitz

Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2

Slide by Steve Seitz

Gaussian pyramid (Repeated blurring and
sampling)

Source: Forsyth

Laplacian pyramid

Source: Forsyth

Creating the Difference of Gaussian Pyramid

Downsample
(Smooth(G1))

Smooth
(Upsample(G2))

Image = G1

L1

G2

G4

L2 L3

• Use same filter for smoothing in each step
(e.g., Gaussian with 𝜎 = 2)

• Downsample/upsample with “nearest”
interpolation

Downsample
(Smooth(G2))

Smooth, then
downsample

G3

G1
Smooth

(Upsample(G3))

Smooth
(Upsample(G4))G2

G3- - -

Leopard, Elephant image from Olivia and Torralba

Creating the Difference of Gaussian Pyramid

Downsample
(Smooth(G1))

Smooth
(Upsample(G2))

Image = G1

L1

G2

G4

L2 L3

G3

• Use same filter for smoothing in each step
(e.g., Gaussian with 𝜎 = 2)

• Downsample/upsample with “nearest”
interpolation

Downsample
(Smooth(G2))

Smooth, then
downsample

G3

G1
Smooth

(Upsample(G3))

Smooth
(Upsample(G4))G2

G3- - -

Spatial Response

Creating the Difference of Gaussian Pyramid

Downsample
(Smooth(G1))

Smooth
(Upsample(G2))

Image = G1

L1

G2

G4

L2 L3

G3

• Use same filter for smoothing in each step
(e.g., Gaussian with 𝜎 = 2)

• Downsample/upsample with “nearest”
interpolation

Downsample
(Smooth(G2))

Smooth, then
downsample

G3

G1
Smooth

(Upsample(G3))

Smooth
(Upsample(G4))G2

G3- - -

Frequency Response

Creating the Difference of Gaussian Pyramid

Downsample
(Smooth(G1))

Smooth
(Upsample(G2))

Image = G1

L1

G2

G4

L2 L3

G3

• Can also use Smooth(G1), but then reverse
isn’t the exact same.

• Technically, this is a Difference of Gaussian
pyramid and not a Laplacian pyramid.

Downsample
(Smooth(G2))

Smooth, then
downsample

G3

G1
Smooth

(Upsample(G3))

Smooth
(Upsample(G4))G2

G3- - -

154 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

space: � =

frequency: � =

low-pass lower-pass

Figure 3.35 The difference of two low-pass filters results in a band-pass filter. The dashed
blue lines show the close fit to a half-octave Laplacian of Gaussian.

cent levels, the authors claim that coarse-to-fine algorithms perform better. In the image-
processing community, half-octave pyramids combined with checkerboard sampling grids
are known as quincunx sampling (Feilner, Van De Ville, and Unser 2005). In detecting multi-
scale features (Section 4.1.1), it is often common to use half-octave or even quarter-octave
pyramids (Lowe 2004; Triggs 2004). However, in this case, the subsampling only occurs
at every octave level, i.e., the image is repeatedly blurred with wider Gaussians until a full
octave of resolution change has been achieved (Figure 4.11).

3.5.4 Wavelets

While pyramids are used extensively in computer vision applications, some people use wavelet
decompositions as an alternative. Wavelets are filters that localize a signal in both space
and frequency (like the Gabor filter in Table 3.2) and are defined over a hierarchy of scales.
Wavelets provide a smooth way to decompose a signal into frequency components without
blocking and are closely related to pyramids.

Wavelets were originally developed in the applied math and signal processing communi-
ties and were introduced to the computer vision community by Mallat (1989). Strang (1989);
Simoncelli and Adelson (1990b); Rioul and Vetterli (1991); Chui (1992); Meyer (1993) all
provide nice introductions to the subject along with historical reviews, while Chui (1992) pro-
vides a more comprehensive review and survey of applications. Sweldens (1997) describes
the more recent lifting approach to wavelets that we discuss shortly.

Wavelets are widely used in the computer graphics community to perform multi-resolution
geometric processing (Stollnitz, DeRose, and Salesin 1996) and have also been used in com-
puter vision for similar applications (Szeliski 1990b; Pentland 1994; Gortler and Cohen 1995;
Yaou and Chang 1994; Lai and Vemuri 1997; Szeliski 2006b), as well as for multi-scale ori-
ented filtering (Simoncelli, Freeman, Adelson et al. 1992) and denoising (Portilla, Strela,

Images in a Difference of Gaussian Pyramid

Dali: “Gala Contemplating the Mediterranean Sea” (1976)

Dali: “Gala Contemplating the Mediterranean Sea” (1976)

Images in a Difference of Gaussian Pyramid

Reconstructing from Diff of Gauss Pyramid

Image = G1

L1

G2

G4

L2 L3

G3

G3 = L3 +
Smooth(Upsample(G4))

G2 = L2 +
Smooth(Upsample(G3))

G1 = L1 +
Smooth(Upsample(G2))

• Use same filter for smoothing as in deconstruction
• Upsample with “nearest” interpolation
• Reconstruction will be nearly lossless

Application: Image Blending
160 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) c� 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c) regular splice, (d) pyramid blend.

3.5.5 Application: Image blending

One of the most engaging and fun applications of the Laplacian pyramid presented in Sec-
tion 3.5.3 is the creation of blended composite images, as shown in Figure 3.41 (Burt and
Adelson 1983b). While splicing the apple and orange images together along the midline
produces a noticeable cut, splining them together (as Burt and Adelson (1983b) called their
procedure) creates a beautiful illusion of a truly hybrid fruit. The key to their approach is
that the low-frequency color variations between the red apple and the orange are smoothly
blended, while the higher-frequency textures on each fruit are blended more quickly to avoid
“ghosting” effects when two textures are overlaid.

To create the blended image, each source image is first decomposed into its own Lapla-
cian pyramid (Figure 3.42, left and middle columns). Each band is then multiplied by a
smooth weighting function whose extent is proportional to the pyramid level. The simplest
and most general way to create these weights is to take a binary mask image (Figure 3.43c)
and to construct a Gaussian pyramid from this mask. Each Laplacian pyramid image is then

3.5 Pyramids and wavelets 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) c� 1983 ACM.
The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid
(taken from levels 0, 2, and 4). The left and middle columns show the original apple and
orange images weighted by the smooth interpolation functions, while the right column shows
the averaged contributions.

Laplacian pyramid blending (Burt and Adelson 1983b)

Blending

Alpha Blending / Feathering

0
1

0
1

+

=
Iblend = aIleft + (1-a)Iright

Affect of Window Size

0

1 left

right
0

1

Affect of Window Size

0

1

0

1

Good Window Size

0

1

“Optimal” Window: smooth but not ghosted

What is the Optimal Window?
• To avoid seams

– window = size of largest prominent feature

• To avoid ghosting
– window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain
• largest frequency <= 2*size of smallest frequency
• image frequency content should occupy one “octave” (power of two)

FFT

What if the Frequency Spread is Wide

• Idea (Burt and Adelson)
– Compute Fleft = FFT(Ileft), Fright = FFT(Iright)
– Decompose Fourier image into octaves (bands)

• Fleft = Fleft1 + Fleft2 + …
– Feather corresponding octaves Fleft

i with Fright
i

• Can compute inverse FFT and feather in spatial domain
– Sum feathered octave images in frequency domain

• Better implemented in spatial domain

FFT

Octaves in the Spatial Domain

• Bandpass Images

Lowpass Images

Pyramid Blending

0

1

0

1

0

1

Left pyramid Right pyramidblend

Pyramid Blending

laplacian
level

4

laplacian
level

2

laplacian
level

0

left pyramid right pyramid blended pyramid

Blending Regions

Laplacian Pyramid: Blending
• General Approach:

1. Build Laplacian pyramids LA and LB from images
A and B

2. Build a Gaussian pyramid GR from selected region
R

3. Form a combined pyramid LS from LA and LB
using nodes of GR as weights:
• LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)

4. Collapse the LS pyramid to get the final blended
image

Major uses of image pyramids

• Compression

• Object detection
– Scale search
– Features

• Detecting stable interest points

• Registration
– Course-to-fine

Recap
• Sometimes it makes sense

to think of filtering in the
frequency domain
– Fourier analysis

• Sampling and Aliasing

• Image Pyramids

