Corner Detection

CS 543 / ECE 549 - Saurabh Gupta

Slides from S. Lazebnik.

Why extract keypoints?

- Motivation: panorama stitching
- We have two images - how do we combine them?

Why extract keypoints?

- Motivation: panorama stitching
- We have two images - how do we combine them?

Step 1: extract keypoints
 Step 2: match keypoint features

Why extract keypoints?

- Motivation: panorama stitching
- We have two images - how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features
Step 3: align images

Characteristics of good keypoints

- Compactness and efficiency
- Many fewer keypoints than image pixels
- Saliency
- Each keypoint is distinctive
- Locality
- A keypoint occupies a relatively small area of the image; robust to clutter and occlusion
- Repeatability
- The same keypoint can be found in several images despite geometric and photometric transformations

Applications

Keypoints are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Database indexing and retrieval

- Object recognition

Corner detection: Basic idea

Corner detection: Basic idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner":
significant change in all directions

Corner Detection: Derivation

Change in appearance of window W for the shift $[u, v]$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
I(x, y)
$$

$$
E(u, v)
$$

Corner Detection: Derivation

Change in appearance of window W for the shift $[u, v]$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
I(x, y)
$$

$$
E(u, v)
$$

Corner Detection: Derivation

Change in appearance of window W for the shift $[u, v]$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

$$
E(u, v)
$$

Corner Detection: Derivation

First-order Taylor approximation for small motions [u, v]:

$$
I(x+u, y+v) \approx I(x, y)+I_{x} u+I_{y} v
$$

Let's plug this into $E(u, v)$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

Corner Detection: Derivation

$E(u, v)$ can be locally approximated by a quadratic surface:

$$
E(u, v) \approx u^{2} \sum_{x, y} I_{x}^{2}+2 u v \sum_{x, y} I_{x} I_{y}+v^{2} \sum_{x, y} I_{y}^{2}
$$

In which directions does this surface have the fastest/slowest change?

Corner Detection: Derivation

$E(u, v)$ can be locally approximated by a quadratic surface:

$$
\begin{aligned}
E(u, v) & \approx u^{2} \sum_{x, y} I_{x}^{2}+2 u v \sum_{x, y} I_{x} I_{y}+v^{2} \sum_{x, y} I_{y}^{2} \\
& =\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
\sum_{x, y} I_{x}^{2} & \sum_{x, y} I_{x} I_{y} \\
\sum_{x, y} I_{x} I_{y} & \sum_{x, y} I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

Second moment matrix M

Interpreting the second moment matrix

A horizontal "slice" of $E(u, v)$ is given by the equation of an ellipse:

$$
\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\mathrm{const}
$$

Interpreting the second moment matrix

Consider the axis-aligned case (gradients are either horizontal or vertical):

$$
\begin{array}{r}
M=\left[\begin{array}{cc}
\sum_{x, y} I_{x}^{2} & \sum_{x, y} I_{x} I_{y} \\
\sum_{x, y} I_{x} I_{y} & \sum_{x, y} I_{y}^{2}
\end{array}\right] \\
{\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=1}
\end{array}
$$

Interpreting the second moment matrix

Consider the axis-aligned case (gradients are either horizontal or vertical):

$$
M=\left[\begin{array}{cc}
\sum_{x, y} I_{x}^{2} & \sum_{x, y} I_{x} I_{y} \\
\sum_{x, y} I_{x} I_{y} & \sum_{x, y} I_{y}^{2}
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

If either a or b is close to 0 , then this is not a corner, so we want locations where both are large

Interpreting the second moment matrix

In the general case, need to diagonalize M :

$$
M=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R :

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues of M :

Corner response function

$$
R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

α : constant (0.04 to 0.06)

The Harris corner detector

1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around each pixel:

$$
M=\left[\begin{array}{cc}
\sum_{x, y} w(x, y) I_{x}^{2} & \sum_{x, y} w(x, y) I_{x} I_{y} \\
\sum_{x, y} w(x, y) I_{x} I_{y} & \sum_{x, y} w(x, y) I_{y}^{2}
\end{array}\right]
$$

C.Harris and M.Stephens, A Combined Corner and Edge Detector, Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

The Harris corner detector

1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around each pixel
3. Compute corner response function R
C.Harris and M.Stephens, A Combined Corner and Edge Detector, Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Harris Detector: Steps

Harris Detector: Steps

Compute corner response R

The Harris corner detector

1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function (nonmaximum suppression)
C.Harris and M.Stephens, A Combined Corner and Edge Detector, Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Harris Detector: Steps

Find points with large corner response: $R>$ threshold

Harris Detector: Steps

Take only the points of local maxima of R

Harris Detector: Steps

Robustness of corner features

- What happens to corner features when the image undergoes geometric or photometric transformations?

Affine intensity change

$$
\square \leadsto \square \rightarrow a I+b
$$

- Only derivatives are used, so invariant to intensity shift $I \rightarrow I+b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

- Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

Corner
All points will be classified as edges

Corner location is not covariant w.r.t. scaling!

