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Fitting lines to point sets

In general, fit a function from a given function 
class to samples from the function



Fitting: Overview
• If we know which points belong to the line, how 

do we find the “optimal” line parameters?
– Least squares

• What if there are outliers?
– Robust fitting, RANSAC

• What if there are many lines?
– Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
– Model selection (not covered)



Simple example: Fitting a line
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Least squares line fitting
•Data: (x1, y1), …, (xn, yn)
•Line equation: yi = m xi + b
•Find (m, b) to minimize 
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Matlab: p = A \ y;

Modified from S. Lazebnik



Problem with “vertical” least squares
• Not rotation-invariant
• Fails completely for 

vertical lines
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Total least squares
If (a2+b2=1) then 
Distance between point (xi, yi) and line 
ax+by+c=0  is  |axi + byi + c|
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Unit normal: 

N=(a, b)

Slide modified from S. Lazebnik

proof: 
http://mathworld.wolfram.com/Point-
LineDistance2-Dimensional.html

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html


Total least squares
If (a2+b2=1) then 
Distance between point (xi, yi) and line 
ax+by+c=0  is  |axi + byi + c|

Find (a, b, c) to minimize the sum of 
squared perpendicular distances
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N=(a, b)
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Total least squares
Find (a, b, c) to minimize the sum of 
squared perpendicular distances
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Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient
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http://en.wikipedia.org/wiki/Rayleigh_quotient


Recap: Two Common Optimization Problems

Problem statement Solution
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Problem statement Solution
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(matlab)
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Recap: Fitting Lines

Slide from D. Hoiem

• a. fit y = mx + b

• b. fit ax + by + c = 0

Solution involves:
• 1. Eigen vector
• 2. Pseudo-inverse

• A. a -> 1, b-> 2
• B. a -> 2, b -> 1
• C. a -> 1, b -> 1
• D. a -> 2, b -> 2



Least squares (global) optimization
Good
• Clearly specified objective
• Optimization is easy

Bad
• May not be what you want to optimize 
• Sensitive to outliers

– Bad matches, extra points
• Doesn’t allow you to get multiple good fits

– Detecting multiple objects, lines, etc.
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Least squares: Robustness to noise
• Least squares fit to the red points:
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Least squares: Robustness to noise
• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Slide from L. Lazebnik



Robust least squares (to deal with outliers)
General approach: 

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ
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The robust function ρ
• Favors a configuration 
with small residuals
• Constant penalty for large 
residuals
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Robust Estimator 

1. Initialize: e.g., choose 𝜃 by least squares fit and

2. Choose params to minimize:
– E.g., numerical optimization

3. Compute new 

4. Repeat (2) and (3) until convergence
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Choosing the scale: Just right

The effect of the outlier is minimized
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The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small
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Choosing the scale: Too large

Behaves much the same as least squares

Slide from L. Lazebnik



Fitting: Overview
• If we know which points belong to the line, how 

do we find the “optimal” line parameters?
– Least squares

• What if there are outliers?
– Robust fitting, RANSAC

• What if there are many lines?
– Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
– Model selection (not covered)



Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, 
incrementing those values in grid

3. Find maximum or local maxima in grid

Slide from D. Hoiem



x

y

b

m

y = m x + b

Hough transform

Given a set of points, find the curve or line that 
explains the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 

Hough space
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Hough transform
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y

Hough transform

Issue : parameter space [m,b] is unbounded…

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 

Hough space

rqq =+   siny  cosx

 q
r

Use a polar representation for the parameter space 

 q

r
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features votes

Hough transform -
experiments

Slide from S. Savarese



features votes

Need to adjust grid size or smooth

Hough transform -
experiments

Noisy data

Slide from S. Savarese



Issue: spurious peaks due to uniform noise
features votes

Hough transform -
experiments

Slide from S. Savarese



1. Image à Canny

Slide from D. Hoiem



2. Canny à Hough votes

Slide from D. Hoiem



3. Hough votes à Edges 

Find peaks and post-process

Slide from D. Hoiem



Hough transform example

http://ostatic.com/files/images/ss_hough.jpgSlide from D. Hoiem



Finding circles (x0, y0, r) using Hough transform

• Fixed r
• Variable r

Slide from D. Hoiem



Hough transform for circles 
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image space Hough parameter space
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Incorporating image gradients
• When we detect an edge point, 

we also know its gradient 
orientation

• How does this constrain 
possible lines passing through
the point?

• Modified Hough transform:

• For each edge point (x,y) 
θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end

Slide from L. Lazebnik



Hough transform conclusions
Good
• Robust to outliers: each point votes separately
• Fairly efficient (much faster than trying all sets of parameters)
• Provides multiple good fits

Bad
• Some sensitivity to noise
• Bin size trades off between noise tolerance, precision, and 

speed/memory
– Can be hard to find sweet spot

• Not suitable for more than a few parameters
– grid size grows exponentially

Common applications
• Line fitting (also circles, ellipses, etc.)
• Object instance recognition (parameters are 

position/scale/orientation)
• Object category recognition  (parameters are position/scale)

Slide from D. Hoiem



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Slide from D. Hoiem



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

Slide from D. Hoiem



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Slide from D. Hoiem



d

RANSAC

6=IN

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Slide from D. Hoiem
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RANSAC

14=IN
Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide from D. Hoiem



How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold d
– Choose d so that a good point with noise is likely (e.g., prob=0.95) within threshold
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

( ) ( )( )se11log/p1logN ---=
proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

modified from  M. PollefeysSlide from D. Hoiem



RANSAC conclusions
Good
• Robust to outliers
• Applicable for larger number of objective function parameters than 

Hough transform
• Optimization parameters are easier to choose than Hough 

transform

Bad
• Computational time grows quickly with fraction of outliers and 

number of parameters 
• Not as good for getting multiple fits (though one solution is to 

remove inliers after each fit and repeat)

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)
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Fitting Summary
• Least Squares Fit 

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)
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