Fitting

Computer Vision
CS 543 / ECE 549
University of Illinois

Fitting lines to point sets

In general, fit a function from a given function class to samples from the function

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
- Least squares
- What if there are outliers?
- Robust fitting, RANSAC
- What if there are many lines?
- Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
- Model selection (not covered)

Simple example: Fitting a line

Least squares line fitting

-Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
-Line equation: $y_{i}=m x_{i}+b$
\bullet-Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$$
\begin{array}{rlr}
E & =\sum_{i=1}^{n}\left(\left[\begin{array}{ll}
x_{i} & 1
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]-y_{i}\right)^{2}=\left\|\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]\right\|^{2}=\|\mathbf{A p}-\mathbf{y}\|^{2} \\
& =\mathbf{y}^{T} \mathbf{y}-2(\mathbf{A p})^{T} \mathbf{y}+(\mathbf{A p})^{T}(\mathbf{A p}) & \\
& \frac{d E}{d p}=2 \mathbf{A}^{T} \mathbf{A p}-2 \mathbf{A}^{T} \mathbf{y}=0 & \\
& \text { Matlab: } \mathrm{p}=\mathrm{A} \backslash \mathrm{y} ;
\end{array}
$$

$$
\mathbf{A}^{T} \mathbf{A p}=\mathbf{A}^{T} \mathbf{y} \Rightarrow \mathbf{p}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

If $\left(a^{2}+b^{2}=1\right)$ then
Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y+c=0$ is $\left|a x_{i}+b y_{i}+c\right|$
proof:
http://mathworld.wolfram.com/Point-

Total least squares

If $\left(a^{2}+b^{2}=1\right)$ then
Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y+c=0$ is $\left|a x_{i}+b y_{i}+c\right|$

Find (a, b, c) to minimize the sum of
 squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}+c\right)^{2}
$$

Total least squares

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}+c\right)^{2}
$$

$\frac{\partial E}{\partial c}=\sum_{i=1}^{n} 2\left(a x_{i}+b y_{i}+c\right)=0$

$$
c=-\frac{a}{n} \sum_{i=1}^{n} x_{i}-\frac{b}{n} \sum_{i=1}^{n} y_{i}=-a \bar{x}-b \bar{y}
$$

$$
E=\sum_{i=1}^{n}\left(a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right)^{2}=\left\|\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|^{2}=\mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A p}
$$

$$
\operatorname{minimize} \mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A p} \text { s.t. } \mathbf{p}^{T} \mathbf{p}=1 \Rightarrow \operatorname{minimize} \frac{\mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{p}}{\mathbf{p}^{T} \mathbf{p}}
$$

Solution is eigenvector corresponding to smallest eigenvalue of $A^{\top} A$

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient

Recap: Two Common Optimization Problems

Problem statement

Solution

$$
\begin{aligned}
\mathbf{x} & =\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \\
\mathbf{x} & =\mathbf{A} \backslash \mathbf{b} \quad \text { (matlab) }
\end{aligned}
$$

Problem statement

Solution

minimize $\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A x}$ s.t. $\mathbf{x}^{T} \mathbf{x}=1$
$\operatorname{minimize} \frac{\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A x}}{\mathbf{x}^{T} \mathbf{x}}$

$$
\begin{gathered}
{[\mathbf{v}, \lambda]=\operatorname{eig}\left(\mathbf{A}^{T} \mathbf{A}\right)} \\
\lambda_{1}<\lambda_{2 . n}: \mathbf{x}=\mathbf{v}_{1}
\end{gathered}
$$

non - trivial lsq solution to $\mathbf{A x}=0$

Recap: Fitting Lines

- a. fit $y=m x+b$

- b. fit $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$

Solution involves:

- 1. Eigen vector
- 2. Pseudo-inverse
- A. a -> 1, b-> 2
- B. a -> 2, b -> 1
- C. a -> 1, b -> 1
- D. a -> 2, b -> 2

Least squares (global) optimization

Good

- Clearly specified objective
- Optimization is easy

Bad

- May not be what you want to optimize
- Sensitive to outliers
- Bad matches, extra points
- Doesn't allow you to get multiple good fits
- Detecting multiple objects, lines, etc.

Least squares: Robustness to noise

- Least squares fit to the red points:

Least squares: Robustness to noise

- Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust least squares (to deal with outliers)

General approach:
minimize

$$
\sum_{\mathrm{i}} \rho\left(\mathrm{u}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \boldsymbol{\theta}\right) ; \boldsymbol{\sigma}\right) \quad u^{2}=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$u_{i}\left(x_{i}, \theta\right)-$ residual of i^{t} point w.r.t. model parameters ϑ ρ - robust function with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Constant penalty for large residuals

Robust Estimator

1. Initialize: e.g., choose θ by least squares fit and $\sigma=1.5 \cdot$ median (error)
2. Choose params to minimize: $\sum_{i} \frac{\operatorname{error}\left(\theta, \text { data }_{i}\right)^{2}}{\sigma^{2}+\operatorname{error}\left(\theta, \text { data }_{i}\right)^{2}}$ - E.g., numerical optimization
3. Compute new $\sigma=1.5 \cdot$ median(error)
4. Repeat (2) and (3) until convergence

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

Choosing the scale: Too large

Behaves much the same as least squares

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
- Least squares
- What if there are outliers?
- Robust fitting, RANSAC
- What if there are many lines?
- Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
- Model selection (not covered)

Hough Transform: Outline

1. Create a grid of parameter values
2. Each point votes for a set of parameters, incrementing those values in grid
3. Find maximum or local maxima in grid

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

$$
y=m x+b
$$

Hough transform

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959
Issue : parameter space [m, b] is unbounded...
Use a polar representation for the parameter space

$$
\mathrm{x} \cos \boldsymbol{\theta}+\mathrm{y} \sin \boldsymbol{\theta}=\boldsymbol{\rho}
$$

Hough transform experiments

features

Hough transform experiments
 Noisy data

Need to adjust grid size or smooth

Hough transform experiments

features

votes

Issue: spurious peaks due to uniform noise

1. Image \rightarrow Canny

2. Canny \rightarrow Hough votes

3. Hough votes \rightarrow Edges

Find peaks and post-process

Hough transform example

Finding circles $\left(x_{0}, y_{0}, r\right)$ using Hough transform

- Fixed r
- Variable r

Hough transform for circles

image space

Incorporating image gradients

- When we detect an edge point, we also know its gradient orientation
- How does this constrain possible lines passing through the point?

$$
\begin{aligned}
& \text { ん } \nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] \\
& \theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
\end{aligned}
$$

- Modified Hough transform:
- For each edge point (x, y)

$$
\theta=\text { gradient orientation at }(x, y)
$$

$$
\rho=x \cos \theta+y \sin \theta
$$

$$
H(\theta, \rho)=H(\theta, \rho)+1
$$

end

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
- Can be hard to find sweet spot
- Not suitable for more than a few parameters
- grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are position/scale/orientation)
- Object category recognition (parameters are position/scale)

RANSAC

(RANdom SAmple Consensus) :
Fischler \& Bolles in " 81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

$$
N_{I}=6
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Number of sampled points s
- Minimum number needed to fit the model
- Distance threshold δ
- Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$

$$
\mathrm{N}=\log (1-\mathrm{p}) / \log \left(1-(1-e)^{\mathrm{s}}\right)
$$

proportion of outliers e							
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not as good for getting multiple fits (though one solution is to remove inliers after each fit and repeat)

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Fitting Summary

- Least Squares Fit
- closed form solution
- robust to noise
- not robust to outliers
- Robust Least Squares
- improves robustness to noise
- requires iterative optimization
- Hough transform
- robust to noise and outliers
- can fit multiple models
- only works for a few parameters (1-4 typically)
- RANSAC
- robust to noise and outliers
- works with a moderate number of parameters (e.g, 1-8)

