Geometry of a single camera

Slides from Derek Hoiem, Svetlana Lazebnik



Our goal: Recovery of 3D structure

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the
analysis of paintings, Proc. Computers and the History of Art, 2002



http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Things aren’t always as they appear...
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http://en.wikipedia.org/wiki/Ames_room

Single-view ambiguity
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Single-view ambiguity




Single-view ambiguity

Rashad Alakbarov shadow sculptures


https://shadowsculptures.wordpress.com/2015/04/28/rashad-alakbarov/

Anamorphic perspective

Image source



http://www.issueno206.com/kurt-wenner-3d-pavement-art/

Our goal: Recovery of 3D structure

 When certain assumptions ¢ |n general, we need

hold, we can recover multi-view geometry
structure from a single view
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« But first, we need to understand the geometry of a
single camera...



https://www.3dflow.net/elementsCV/S4.xhtml
https://www.3dflow.net/elementsCV/S4.xhtml

Camera calibration

A world coordinate system
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 Normalized (camera) coordinate system: camera
center is at the origin, the principal axis is the z-axis,
x and y axes of the image plane are parallel to x and y
axes of the world

« Camera calibration: figuring out transformation from
world coordinate system to image coordinate system



Review: Pinhole camera model
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Principal point
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Principal point (p): point where principal axis intersects the
Image plane

Normalized coordinate system: origin of the image is at the
principal point

Image coordinate system: origin is in the corner



Principal point offset
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Principal point offset
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Principal point offset
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Pixel coordinates

m,, pixels per meter in horizontal direction,
m, pixels per meter in vertical direction
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Camera rotation and translation

* In general, the camera

aum . coordinate frame will be
| Rt o related to the world
‘ 2 coordinate frame by a
camera < rotation and a translation

coordinate system world coordinate
system

Conversion from world to camera coordinate system
(in non-homogeneous coordinates):

coords. of point coords. of camera center
in camera frame in world frame

coords. of a point
in world frame



Camera rotation and translation
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3D transformation
matrix (4 x 4)



Camera rotation and translation

X, =R(X-C) x_ |} “RCly
0 1

3D transformation
matrix (4 x 4)



Camera rotation and translation

*

'R —-RC
x =K|[1]0] X
0 1
2D / 3D transformation
i matrix (4 x 4
transformatlon perspective ( )
matrix (3 x 3) orojection

matrix (3 x 4)



Camera rotation and translation

x =K|R | -RC[x



Camera rotation and translation

x=K[R|t]Xx t=-RC



Camera parameters

* Intrinsic parameters

Principal point coordinates

m, f
Focal length K = "
1

Pixel magnification factors
Skew (non-rectangular pixels)
Radial distortion

radial distortion

correction
—

linear image




Camera parameters P = K[R t]

* |Intrinsic parameters

* Principal point coordinates

* Focal length

« Pixel magnification factors

« Skew (non-rectangular pixels)
* Radial distortion

« Extrinsic parameters

» Rotation and translation relative P — K[R — RG:I

to world coordinate system

coords. of
camera center
in world frame

« What is the projection of the
camera center?

6 The camera center is the

PC =K[R —RC] 1 =0 null space of the
| projection matrix!




Camera calibration
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Camera calibration

* Given n points with known 3D coordinates X;
and known image projections x;, estimate the
camera parameters

P?



Camera calibration: Linear method
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Two linearly independent equations



Camera calibration: Linear method
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P has 11 degrees of freedom

One 2D/3D correspondence gives us two linearly
iIndependent equations
* 6 correspondences needed for a minimal solution
Homogeneous least squares: find p minimizing ||Ap||?
« Solution given by eigenvector of ATA with smallest eigenvalue

0

=0 Ap



Camera calibration: Linear method

0" X; —»X|
X{ OT _’XIX{ /Pl\

0 Xf; _)/nXZ \P3/
X' 0 —x X

n

* Note: for coplanar points that satisfy II’X=0,
we will get degenerate solutions (11,0,0),
(0,IL1,0), or (0,0.II)



Camera calibration: Linear vs. nonlinear

 Linear calibration is easy to formulate and solve,
but it doesn’t directly tell us the camera parameters

Ax * ok
Ay|=|* *
y) * ok

*

*

*

*

*

X

Y
z
_1_

. x=K[R t|X

 |n practice, non-linear methods are preferred
« Write down objective function in terms of intrinsic and extrinsic

parameters

» Define error as sum of squared distances between measured 2D
points and estimated projections of 3D points

* Minimize error using Newton’s method or other non-linear

optimization

« Can model radial distortion and impose constraints such as known

focal length and orthogonality



Homography Example

Camera Center

Slide from A. Efros, S. Seitz, D. Hoiem



Problem set-up

x = K [R 1] X
x' =K' [R't] X
t=t'=0

X'=HX where H=K R'R'K
Typically only R and f will change (4 parameters),
but, in general, H has 8 parameters



A taste of multi-view geometry: Triangulation

» Given projections of a 3D point in two or more
iImages (with known camera matrices), find
the coordinates of the point




Triangulation

* Given projections of a 3D point in two or more
iImages (with known camera matrices), find
the coordinates of the point




Triangulation

 We want to intersect the two visual rays

corresponding to x4 and Xx,, but because of

noise and numerical errors, they don’'t meet
exactly




Triangulation: Geometric approach

* Find shortest segment connecting the two
viewing rays and let X be the midpoint of that
segment

X
X1 )i




Triangulation: Nonlinear approach

Find X that minimizes

d* (%, PX) +d* (X, P,X)




Triangulation: Linear approach

Ax, =PX x,xPX=0 [x, ]PX=0
4Lx,=P,X x,xP,X=0 [x, P, X=0

Cross product as matrix multiplication:

axb=| a 0 —a_ |b |=]a




Triangulation: Linear approach

Ax, =PX x,xPX=0 [x, ]PX=0
4Lx,=P,X x,xP,X=0 [x, P, X=0

L]

Two independent equations each in terms of
three unknown entries of X



Camera calibration revisited

« What if world coordinates of reference 3D
points are not known?

* We can use scene features such as vanishing
points

Slide from Efros, Photo from Criminisi



Camera calibration revisited

« What if world coordinates of reference 3D
points are not known?

* We can use scene features such as vanishing
points
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Slide from Efros, Photo from Criminisi



Recall: Homogenous Coordinates

Points

Points at infinity

Lines

Lines passing through 2 points

Intersection of 2 lines

Intersection of 2 parallel lines?



Recall: Homogenous Coordinates

Points 0 —d, 4a,
axb=| a_ 0 -—a
Points at infinity
—-a, a, 0 |

Lines

Lines passing through 2 points

Intersection of 2 lines

Intersection of 2 parallel lines?




Recall: Vanishing points

image plane
\ [l . .
vanishing point v
e

.§

camera

line in the scene

 All lines having the same direction share the same
vanishing point



Computing vanishing points
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X, is a point at infinity, v is its projection: v =PX_

The vanishing point depends only on line direction
All lines having direction d intersect at X,



Calibration from vanishing points

« Consider a scene with three orthogonal vanishing
directions:

| v,

* Note: v,4, v, are finite vanishing points and v; is an
infinite vanishing point



Calibration from vanishing points

« Consider a scene with three orthogonal vanishing
directions:

| v,

* We can align the world coordinate system with
these directions



Calibration from vanishing points
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 p,=P(1,0,0,0)! — the vanishing point in the x direction

« Similarly, p, and p; are the vanishing points in the y
and z directions

 p,=P(0,0,0,1)' — projection of the origin of the world
coordinate system

« Problem: we can only know the four columns up to

independent scale factors, additional constraints
needed to solve for them



Calibration from vanishing points

* Let us align the world coordinate system with three
orthogonal vanishing directions in the scene:
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Calibration from vanishing points

* Let us align the world coordinate system with three
orthogonal vanishing directions in the scene:

1
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- Orthogonality constraint: e;e, =0
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Calibration from vanishing points

* Let us align the world coordinate system with three
orthogonal vanishing directions in the scene:

1
e, =0
0

- Orthogonality constraint: e;e, =0

€, =

0
1
0

0

e,=|0

1

v;K'K v, =0

Av. = KRe,

e. = AR'Kv,

« Rotation disappears, each pair of vanishing points
gives constraint on focal length and principal point



Calibration from vanishing points
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Horizon line

1 finite vanishing point, 2 finite vanishing points, 3 finite vanishing points
2 infinite vanishing points 1 infinite vanishing point

Cannot recover focal Can solve for focal length, principal point
length, principal point is
the third vanishing point




Rotation from vanishing points

Constraints on vanishing points: 4,v; = KRe,
After solving for the calibration matrix:

AK7'v, = Re,
1

Notice: Re,=[r, r, r,] | 0 |=r
0

Thus, r, =4AK",

Get A; by using the constraint |r/||>= 1.



Calibration from vanishing points: Summary

« Solve for K (focal length, principal point) using three
orthogonal vanishing points

« Get rotation directly from vanishing points once
calibration matrix is known

 Advantages
* No need for calibration chart, 2D-3D correspondences
« Could be completely automatic

« Disadvantages
* Only applies to certain kinds of scenes
« Inaccuracies in computation of vanishing points
« Problems due to infinite vanishing points



Application: Single View Reconstruction

s === = S Lt

Piero della Francesca, Flagellation, ca. 1455
« Find heights (Hint: estimate horizon)
* Find location on ground
« Find pattern of the ground (Hint: homography)
A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the

analysis of paintings,
Proc. Computers and the History of Art, 2002



http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Application: Single View Reconstruction

« Are the heights of the two groups of people

consistent with one another?
« Measure heights using Christ as reference

S e e

Piero della Francesca, Flagellation, ca. 1455

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the
analysis of paintings,
Proc. Computers and the History of Art, 2002



http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Application: 3D modeling from a single image

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the

analysis of paintings,
Proc. Computers and the History of Art, 2002



http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Measurements on planes

:

N W A

Approach: unwarp then measure
What kind of warp is this?




Image rectification

—

} ‘ bR \
To unwarp (rectify) an image

» solve for homography H given p and p’
— how many points are necessary to solve for H?



Image rectification: example

Piero della Francesca, Flagellation, ca. 1455



Application: 3D modeling from a single image

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the
analysis of paintings,
Proc. Computers and the History of Art, 2002



http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Application: Fully automatic modeling

D. Hoiem, A.A. Efros, and M. Hebert, Automatic Photo Pop-up, SIGGRAPH 2005.

http://dhoiem.cs.illinois.edu/projects/popup/popup movie 450 250.mp4



http://dhoiem.cs.illinois.edu/publications/popup.pdf
http://dhoiem.cs.illinois.edu/projects/popup/popup_movie_450_250.mp4

Application: Object detection

D. Hoiem, A.A. Efros, and M. Hebert, Putting Objects in Perspective, CVPR 2006



https://web.engr.illinois.edu/~dhoiem/publications/hoiem_cvpr06.pdf

Application: Image editing

Inserting synthetic objects into images:
http://vimeo.com/28962540

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem, Rendering Synthetic Objects into

Legacy Photographs, SIGGRAPH Asia 2011



http://vimeo.com/28962540
http://kevinkarsch.com/publications/sa11-lowres.pdf
http://kevinkarsch.com/publications/sa11-lowres.pdf

Preview: Structure from motion

Figure credit:
Noah Snavely
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« Given 2D point correspondences between multiple images, compute
the camera parameters and the 3D points



Preview: Structure from motion

\
Camera 1 \ Camera 3

Camera 2
Ryt R,.t, \ Rj,t;
« Structure: Given known cameras and projections of the same 3D
point in two or more images, compute the 3D coordinates of that point

« Triangulation!



Preview: Structure from motion
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» Motion: Given a set of known 3D points seen by a camera, compute
the camera parameters
« Calibration!

Camera 2



Useful reference

Multiple View
Geometry

In computer vision

Richard Hartley and Andrew Zisserman




