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Structure from motion

Camera 3
R3,t3

Camera 1
Camera 2R1,t1 R2,t2

• Structure: Given known cameras and projections of the same 3D 
point in two or more images, compute the 3D coordinates of that point

?



Structure from motion

Camera 3
R3,t3

Camera 1
Camera 2R1,t1 R2,t2

• Motion: Given a set of known 3D points seen by a camera, compute 
the camera parameters

? ? ?



Structure from motion

Camera 1
Camera 2R1,t1 R2,t2

• Bootstrapping the process: Given a set of 2D point correspondences 
in two images, compute the camera parameters

? ?



Two-view geometry



• Epipolar Plane – plane containing baseline (1D family)
• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center
= vanishing points of the motion direction

• Baseline – line connecting the two camera centers

Epipolar geometry
X

x x’



• Epipolar Plane – plane containing baseline (1D family)
• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center
= vanishing points of the motion direction
• Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)

• Baseline – line connecting the two camera centers

Epipolar geometry
X

x x’



Example 1
• Converging cameras



Example 2
• Motion parallel to the image plane



Example 3



Example 3

• Motion is perpendicular to the image plane
• Epipole is the “focus of expansion” and the principal point



Motion perpendicular to image plane

http://vimeo.com/48425421

http://vimeo.com/48425421


Epipolar constraint

• If we observe a point x in one image, where 
can the corresponding point x’ be in the other 
image?

x x’

X



• Potential matches for x have to lie on the corresponding 
epipolar line l’.

• Potential matches for x’ have to lie on the corresponding 
epipolar line l.

Epipolar constraint

x x’

X

x’

X

x’

X



Epipolar constraint example
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x x’

Epipolar constraint: Calibrated case
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x x’

Epipolar constraint: Calibrated case

• Intrinsic and extrinsic parameters of the cameras are known, 
world coordinate system is set to that of the first camera 

• Then the projection matrices are given by K[I | 0] and K’[R | t]
• We can multiply the projection matrices (and the image points) 

by the inverse of the calibration matrices to get normalized
image coordinates:

𝑥!"#$ = 𝐾%&𝑥'()*+ = 𝐼 0 𝑋 𝑥′!"#$ = 𝐾′%&𝑥′'()*+ = 𝑅 𝑡 𝑋



X

x x’

Epipolar constraint: Calibrated case
Derivation



X

x x’

Epipolar constraint: Calibrated case
Derivation
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Epipolar constraint: Calibrated case

R
t

The vectors 𝑅𝑥, 𝑡, and 𝑥′ are coplanar 
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Epipolar constraint: Calibrated case

R
t

The vectors 𝑅𝑥, 𝑡, and 𝑥′ are coplanar 
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Simplification

𝑥,. 𝑡× 𝑅𝑥 = 0
𝑥,. 𝑡× 𝑅𝑥 = 0

𝑥,.𝐸𝑥 = 0

Recall:
𝑎 × 𝑏 = [𝑎×]𝑏

=
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Epipolar constraint: Calibrated case

The vectors 𝑅𝑥, 𝑡, and 𝑥′ are coplanar 
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Essential Matrix
(Longuet-Higgins, 1981)

x’ 

𝑥, ⋅ 𝑡 × 𝑅𝑥 = 0 𝑥,. 𝑡× 𝑅𝑥 = 0 𝑥,.𝐸𝑥 = 0



X

x x’

Epipolar constraint: Calibrated case

• E x is the epipolar line associated with x (l' = E x)
• Recall: a line is given by 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 or

𝑥,.𝐸𝑥 = 0

𝒍𝑻𝒙 = 𝟎, where 𝒍 =
𝑎
𝑏
𝑐
, 𝒙 =

𝑥
𝑦
1



X

x x’

Epipolar constraint: Calibrated case

• E x is the epipolar line associated with x (l' = E x)
• ETx' is the epipolar line associated with x' (l = ETx')
• E e = 0   and   ETe' = 0
• E is singular (rank two)
• E has five degrees of freedom 

𝑥,.𝐸𝑥 = 0



Epipolar constraint: Uncalibrated case

• The calibration matrices K and K’ of the two 
cameras are unknown

• We can write the epipolar constraint in terms 
of unknown normalized coordinates:

X

x x’

!𝑥!"𝐸 !𝑥 = 0 !𝑥 = 𝐾#$𝑥 , '𝑥′ = 𝐾′#$𝑥′



Epipolar constraint: Uncalibrated case

X

x x’

Fundamental Matrix
(Faugeras and Luong, 1992)

!𝑥 = 𝐾#$𝑥
'𝑥′ = 𝐾′#$𝑥′

!𝑥!"𝐸 !𝑥 = 0 𝑥!"𝐹𝑥 = 0 with 𝐹 = 𝐾!#"𝐸𝐾#$



Epipolar constraint: Uncalibrated case

• F x is the epipolar line associated with x (l' = F x)
• FTx' is the epipolar line associated with x' (l = FTx')
• F e = 0   and   FTe' = 0
• F is singular (rank two)
• F has seven degrees of freedom

X

x x’

!𝑥!"𝐸 !𝑥 = 0 𝑥!"𝐹𝑥 = 0 with 𝐹 = 𝐾!#"𝐸𝐾#$



Estimating the fundamental matrix



The eight-point algorithm

)1,,(,)1,,( vuvu T ¢¢=¢= xx



The eight-point algorithm

Enforce rank-2 
constraint (take SVD 
of F and throw out the 
smallest singular value)
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Solve homogeneous 
linear system using 
eight or more matches



Problem with eight-point algorithm

𝑢,𝑢 𝑢,𝑣 𝑢, 𝑣,𝑢 𝑣,𝑣 𝑣, 𝑢 𝑣

𝑓&&
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𝑓1&
𝑓10

= −1



𝑢,𝑢 𝑢,𝑣 𝑢, 𝑣,𝑢 𝑣,𝑣 𝑣, 𝑢 𝑣

𝑓&&
𝑓&0
𝑓&1
𝑓0&
𝑓00
𝑓01
𝑓1&
𝑓10

= −1

Problem with eight-point algorithm

Poor numerical conditioning
Can be fixed by rescaling the data



The normalized eight-point algorithm

• Center the image data at the origin, and scale it so 
the mean squared distance between the origin and 
the data points is 2 pixels

• Use the eight-point algorithm to compute F from the 
normalized points

• Enforce the rank-2 constraint (for example, take SVD 
of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units: 
if T and T’ are the normalizing transformations in the 
two images, than the fundamental matrix in original 
coordinates is T’T F T

(Hartley, 1995)



Seven-point algorithm
• Set up least squares system with seven pairs 

of correspondences and solve for null space 
(two vectors) using SVD 

• Solve for linear combination of null space 
vectors that satisfies det(F)=0

Source: D. Hoiem



Nonlinear estimation

• Linear estimation minimizes the sum of squared algebraic
distances between points x’i and epipolar lines F xi (or 
points xi and epipolar lines FTx’i):

• Nonlinear approach: minimize sum of squared geometric
distances

( !xi
T
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∑ F xi )
2
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Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel



The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/


From epipolar geometry to camera calibration

• Estimating the fundamental matrix is known 
as “weak calibration”

• If we know the calibration matrices of the two 
cameras, we can estimate the essential 
matrix: E = K’TFK

• The essential matrix gives us the relative 
rotation and translation between the cameras, 
or their extrinsic parameters

• Alternatively, if the calibration matrices are 
known, the five-point algorithm can be used 
to estimate relative camera pose

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf


Recap (Two-view Geometry)

Epipolar geometry terminology Derived the Epipolar constraint

𝑥,.𝐸𝑥 = 𝑥,. 𝑡× 𝑅𝑥 = 0
Essential Matrix

𝑥%&𝐹𝑥 = 0 with 𝐹 = 𝐾%'&𝐸𝐾'(

Fundamental Matrix

Properties of Essential and Fundamental Matrix

Estimation of Fundamental Matrix from point correspondences



Questions?
𝐸 = 𝑡× 𝑅
• Why does E only have 5 degree of freedom?
• Why is 𝐸𝑒 = 0? Or why is 𝐸0𝑒1 = 0? 
• Why does 𝐸 have rank 2?
• What are the singular values of 𝐸?
• Can you recover 𝑡 and 𝑅 from 𝐸?



Translation and Rotation from E

Source: Hartley and Zisserman

𝑊 =
0 −1 0
1 0 0
0 0 1

Z =
0 1 0
−1 0 0
0 0 0


