Structure from motion

Outline

- Representative SfM pipeline
 - Incremental SfM
 - Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
 - Factorization
- SfM in practice

Structure from motion

 Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates

Representative SFM pipeline

N. Snavely, S. Seitz, and R. Szeliski, <u>Photo tourism: Exploring photo collections in 3D</u>, SIGGRAPH 2006.

http://phototour.cs.washington.edu/

Feature detection

Detect SIFT features

Feature detection

Detect SIFT features

Match features between each pair of images

Use RANSAC to estimate fundamental matrix between each pair

Use RANSAC to estimate fundamental matrix between each pair

Use RANSAC to estimate fundamental matrix between each pair

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

$$\lambda_{ij} \mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

$$\lambda_{ij}\mathbf{x}_{ij}=\mathbf{P}_i\mathbf{X}_j, \quad i=1,\ldots,m, \quad j=1,\ldots,n$$

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}
- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation Q:

$$X \rightarrow QX, P \rightarrow PQ^{-1}$$

We can solve for structure and motion when

$$2mn >= 11m + 3n - 15$$

For two cameras, at least 7 points are needed

Projective SFM: Two-camera case

- Compute fundamental matrix F between the two views
- First camera matrix: [I|0]
- Second camera matrix: [A |b]
- where, b is the epipole (i.e. $F^Tb = 0$) and $A = [b_{\times}]F$

9.5.3 Canonical cameras given F

We have shown that F determines the camera pair up to a projective transformation of 3-space. We will now derive a specific formula for a pair of cameras with canonical form given F. We will make use of the following characterization of the fundamental matrix F corresponding to a pair of camera matrices:

Result 9.12. A non-zero matrix F is the fundamental matrix corresponding to a pair of camera matrices P and P' if and only if P'^TFP is skew-symmetric.

Proof. The condition that P'^TFP is skew-symmetric is equivalent to $\mathbf{X}^TP'^TFP\mathbf{X} = 0$ for all \mathbf{X} . Setting $\mathbf{x}' = P'\mathbf{X}$ and $\mathbf{x} = P\mathbf{X}$, this is equivalent to $\mathbf{x}'^TF\mathbf{x} = 0$, which is the defining equation for the fundamental matrix.

Projective SFM: Two-camera case

- Compute fundamental matrix F between the two views
- First camera matrix: [I|0]
- Second camera matrix: [A |b]
- where, b is the epipole (i.e. $F^Tb = 0$) and $A = [b_{\times}]F$

Result 9.13. Let F be a fundamental matrix and S any skew-symmetric matrix. Define the pair of camera matrices

$$P = [I \mid 0]$$
 and $P' = [SF \mid e'],$

where e' is the epipole such that $e'^TF = 0$, and assume that P' so defined is a valid camera matrix (has rank 3). Then F is the fundamental matrix corresponding to the pair (P, P').

Result 9.14. The camera matrices corresponding to a fundamental matrix F may be chosen as $P = [I \mid 0]$ and $P' = [[e']_{\times}F \mid e']$.

Incremental structure from motion

 Initialize motion from two images using fundamental matrix

Initialize structure by triangulation

•For each additional view:

 Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration

Incremental structure from motion

- Initialize motion from two images using fundamental matrix
- Initialize structure by triangulation
- •For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – triangulation

Incremental structure from motion

- Initialize motion from two images using fundamental matrix
- Initialize structure by triangulation
- •For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – triangulation

points

cameras

•Refine structure and motion: bundle adjustment

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimize reprojection error

Incremental SFM

- Pick a pair of images with lots of inliers (and preferably, good EXIF data)
 - Initialize intrinsic parameters (focal length, principal point) from EXIF
 - Estimate extrinsic parameters (R and t) using <u>five-point</u> <u>algorithm</u>
 - Use triangulation to initialize model points
- While remaining images exist
 - Find an image with many feature matches with images in the model
 - Run RANSAC on feature matches to register new image to model
 - Triangulate new points
 - Perform bundle adjustment to re-optimize everything

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006

Outline

- Representative SfM pipeline
 - Incremental SfM
 - Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
 - Factorization
- SfM in practice

Which way is the cube rotating?

• A. Left to right

Necker cube

Is SFM always uniquely solvable?

Necker cube

Is SFM always uniquely solvable?

Necker reversal

• If we scale the entire scene by some factor *k* and, at the same time, scale the camera matrices by the factor of 1/*k*, the projections of the scene points in the image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

 If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same:

$$\mathbf{x} = \mathbf{PX} = \left(\frac{1}{k}\mathbf{P}\right)(k\mathbf{X})$$

It is impossible to recover the absolute scale of the scene!

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same
- More generally, if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change:

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same
- More generally, if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change:

$$\mathbf{x} = \mathbf{P}\mathbf{X} = (\mathbf{P}\mathbf{Q}^{-1})(\mathbf{Q}\mathbf{X})$$

Types of ambiguity

Projective 15dof	$\begin{bmatrix} A & t \\ v^T & v \end{bmatrix}$	Preserves intersection and tangency
Affine 12dof	$\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$	Preserves parallellism, volume ratios
Similarity 7dof	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{bmatrix}$	Preserves angles, ratios of length
Euclidean 6dof	$\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$	Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean

Slide from L. Lazebnik.

Projective ambiguity

 With no constraints on the camera calibration matrix or on the scene, we can reconstruct up to a projective ambiguity

Projective ambiguity

Slide from L. Lazebnik.

Affine ambiguity

• If we impose parallelism constraints, we can get a reconstruction up to an *affine* ambiguity

Affine ambiguity

Similarity ambiguity

 A reconstruction that obeys orthogonality constraints on camera parameters and/or scene

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}_{\mathbf{S}}^{-1}\right)\left(\mathbf{Q}_{\mathbf{S}}\mathbf{X}\right)$$

Similarity ambiguity

Slide from L. Lazebnik.

Outline

- Representative SfM pipeline
 - Incremental SfM
 - Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
 - Factorization
- SfM in practice

Special Case: Affine structure from motion

• Let's start with *affine* or *weak perspective* cameras (the math is easier)

Recall: Orthographic Projection

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Slide from L. Lazebnik.

Affine cameras

Orthographic Projection

Parallel Projection

Slide from L. Lazebnik.

Affine cameras

 A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

$$\mathbf{P} = [3 \times 3 \text{ affine}] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} [4 \times 4 \text{ affine}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix}$$

 Affine projection is a linear mapping + translation in non-homogeneous coordinates

Given: m images of n fixed 3D points:

$$\mathbf{x}_{ij} = \mathbf{A}_i \, \mathbf{X}_j + \mathbf{b}_i, \quad i = 1, ..., m, j = 1, ..., n$$

- Problem: use the mn correspondences \mathbf{x}_{ij} to estimate m projection matrices \mathbf{A}_i and translation vectors \mathbf{b}_i , and n points \mathbf{X}_j
- The reconstruction is defined up to an arbitrary affine transformation Q (12 degrees of freedom):

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{Q}^{-1}, \qquad \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix} \rightarrow \mathbf{Q} \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix}$$

- We have 2*mn* knowns and 8*m* + 3*n* unknowns (minus 12 dof for affine ambiguity)
- Thus, we must have $2mn \ge 8m + 3n 12$
- For two views, we need four point correspondences

 Centering: subtract the centroid of the image points in each view

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_{i} \mathbf{X}_{k} + \mathbf{b}_{i})$$

$$= \mathbf{A}_{i} \left(\mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right) = \mathbf{A}_{i} \hat{\mathbf{X}}_{j}$$

- For simplicity, set the origin of the world coordinate system to the centroid of the 3D points
- After centering, each normalized 2D point is related to the 3D point X_i by

$$\hat{\mathbf{x}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & \ddots & & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} \quad \text{cameras}$$

$$\hat{\mathbf{x}}_{m1} \quad \hat{\mathbf{x}}_{m2} \quad \cdots \quad \hat{\mathbf{x}}_{mn}$$
points (n)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$
cameras
$$(2m \times 3)$$

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

Singular value decomposition of D:

Singular value decomposition of D:

Obtaining a factorization from SVD:

Obtaining a factorization from SVD:

Affine ambiguity

- The decomposition is not unique. We get the same D
 by using any 3×3 matrix C and applying the
 transformations M → MC, S →C⁻¹S
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example)

Eliminating the affine ambiguity

- Transform each projection matrix A to another matrix AC to get orthographic projection
 - Image axes are perpendicular and scale is 1

• This translates into 3*m* equations:

$$(\mathbf{A}_i \mathbf{C})(\mathbf{A}_i \mathbf{C})^T = \mathbf{A}_i (\mathbf{C} \mathbf{C}^T) \mathbf{A}_i = \mathbf{Id}, \qquad i = 1, ..., m$$

- Solve for L = CC^T
- Recover C from L by Cholesky decomposition: L = CC^T
- Update M and S: M = MC, S = C⁻¹S

Reconstruction results

C. Tomasi and T. Kanade, <u>Shape and motion from image streams under orthography:</u>
<u>A factorization method</u>, IJCV 1992

Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

- Possible solution: decompose matrix into dense subblocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NPcomplete (equivalent to finding maximal cliques in a graph)

Dealing with missing data

Incremental bilinear refinement

- (1) Perform factorization on a dense sub-block
- (2) Solve for a new
 3D point visible by
 at least two known
 cameras
 (triangulation)
- (3) Solve for a new camera that sees at least three known 3D points (calibration)

Outline

- Representative SfM pipeline
 - Incremental SfM
 - Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
 - Factorization
- SfM in practice

The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Eliminating outliers
- Dealing with repetitions and symmetries

Repetitive structures

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf

The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Eliminating outliers
- Dealing with repetitions and symmetries
- Handling multiple connected components
- Closing loops
- Making the whole thing efficient!
 - See, e.g., <u>Towards Linear-Time Incremental Structure from Motion</u>

SFM software

- Bundler
- OpenSfM
- OpenMVG
- VisualSFM
- See also <u>Wikipedia's list of toolboxes</u>

Outline

- Representative SfM pipeline
 - Incremental SfM
 - Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
 - Factorization
- SfM in practice