## Structure from motion

Slides from L. Lazebnik, N. Snavely, M. Herbert

## Outline

- Representative SfM pipeline
- Incremental SfM
- Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
- Factorization
- SfM in practice


## Structure from motion

- Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates


Camera 1
$R_{1}, t_{1}$ ?
Camera 2

$$
R_{2}, t_{2}
$$



${ }^{2} \begin{gathered}\text { Camera } 3 \\ R_{3}, t_{3}\end{gathered}$

Slide credit: Noah Snavely

## Representative SFM pipeline


N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006.
Slide from L. Lazebnik. http://phototour.cs.washington.edu/

## Feature detection

## Detect SIFT features



## Feature detection

## Detect SIFT features



## Feature matching

Match features between each pair of images


## Feature matching

Use RANSAC to estimate fundamental matrix between each pair


## Feature matching

## Use RANSAC to estimate fundamental matrix between each pair



Slide from L. Lazebnik.

## Feature matching

Use RANSAC to estimate fundamental matrix between each pair


## Image connectivity graph


(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

## Projective structure from motion

- Given: $m$ images of $n$ fixed 3D points

$$
\lambda_{i j} \mathbf{X}_{\mathbf{X} i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate $m$ projection matrices $\mathbf{P}_{i}$ and $n$ 3D points $\mathbf{X}_{j}$ from the $m n$ correspondences $\mathbf{x}_{i j}$



## Projective structure from motion

- Given: $m$ images of $n$ fixed 3D points

$$
\lambda_{i j} \mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate $m$ projection matrices $\mathbf{P}_{i}$ and $n$ 3D points $\mathbf{X}_{j}$ from the $m n$ correspondences $\mathbf{x}_{i j}$
- With no calibration info, cameras and points can only be recovered up to a $4 \times 4$ projective transformation $\mathbf{Q}$ :

$$
\mathbf{X} \rightarrow \mathbf{Q X}, \mathbf{P} \rightarrow \mathbf{P Q}^{-1}
$$

- We can solve for structure and motion when

$$
2 m n>=11 m+3 n-15
$$

- For two cameras, at least 7 points are needed


## Projective SFM: Two-camera case

- Compute fundamental matrix $\mathbf{F}$ between the two views
- First camera matrix: [I|0]
- Second camera matrix: $[A \mid b]$
- where, $b$ is the epipole (i.e. $F^{T} b=0$ ) and $A=\left[b_{\times}\right] F$


### 9.5.3 Canonical cameras given $F$

We have shown that F determines the camera pair up to a projective transformation of 3-space. We will now derive a specific formula for a pair of cameras with canonical form given F . We will make use of the following characterization of the fundamental matrix F corresponding to a pair of camera matrices:

Result 9.12. A non-zero matrix F is the fundamental matrix corresponding to a pair of camera matrices P and $\mathrm{P}^{\prime}$ if and only if $\mathrm{P}^{\prime \top} \mathrm{FP}$ is skew-symmetric.

Proof. The condition that $P^{\prime \top} F P$ is skew-symmetric is equivalent to $X^{\top} P^{\prime \top} F P X=0$ for all $\mathbf{X}$. Setting $\mathbf{x}^{\prime}=\mathrm{P}^{\prime} \mathbf{X}$ and $\mathbf{x}=\mathbf{P} \mathbf{X}$, this is equivalent to $\mathbf{x}^{\prime \top} \mathbf{F x}=0$, which is the defining equation for the fundamental matrix.

## Projective SFM: Two-camera case

- Compute fundamental matrix $\mathbf{F}$ between the two views
- First camera matrix: [I|0]
- Second camera matrix: $[A \mid b]$
- where, $b$ is the epipole (i.e. $F^{T} b=0$ ) and $A=\left[b_{\times}\right] F$

Result 9.13. Let F be a fundamental matrix and S any skew-symmetric matrix. Define the pair of camera matrices

$$
\mathrm{P}=[\mathrm{I} \mid \mathbf{0}] \quad \text { and } \quad \mathrm{P}^{\prime}=\left[\mathrm{SF} \mid \mathrm{e}^{\prime}\right],
$$

where $\mathrm{e}^{\prime}$ is the epipole such that $\mathrm{e}^{\prime \top} \mathrm{F}=0$, and assume that $\mathrm{P}^{\prime}$ so defined is a valid camera matrix (has rank 3). Then F is the fundamental matrix corresponding to the pair $\left(\mathrm{P}, \mathrm{P}^{\prime}\right)$.

Result 9.14. The camera matrices corresponding to a fundamental matrix F may be chosen as $\mathrm{P}=[\mathrm{I} \mid \mathbf{0}]$ and $\mathrm{P}^{\prime}=\left[\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{F} \mid \mathbf{e}^{\prime}\right]$.

## Incremental structure from motion

-Initialize motion from two images using fundamental matrix
-Initialize structure by triangulation
-For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration


Slide from L. Lazebnik.

## Incremental structure from motion

-Initialize motion from two images using fundamental matrix
-Initialize structure by triangulation
-For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute new 3D points,
 re-optimize existing points that are also seen by this camera triangulation


## Incremental structure from motion

-Initialize motion from two images using fundamental matrix
-Initialize structure by triangulation
-For each additional view:

- Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
- Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera triangulation
-Refine structure and motion:
bundle adjustment


## Bundle adjustment

- Non-linear method for refining structure and motion
- Minimize reprojection error


Slide from L. Lazebnik.

## Incremental SFM

- Pick a pair of images with lots of inliers
(and preferably, good EXIF data)
- Initialize intrinsic parameters (focal length, principal point) from EXIF
- Estimate extrinsic parameters ( $\mathbf{R}$ and $\mathbf{t}$ ) using five-point algorithm
- Use triangulation to initialize model points
- While remaining images exist
- Find an image with many feature matches with images in the model
- Run RANSAC on feature matches to register new image to model
- Triangulate new points
- Perform bundle adjustment to re-optimize everything


## Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington Microsoft Research

## SIGGRAPH 2006

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006. http://phototour.cs.washington.edu/ See also: http://grail.cs.washington.edu/projects/rome/

## Outline

- Representative SfM pipeline
- Incremental SfM
- Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
- Factorization
- SfM in practice


## Which way is the cube rotating?

- A. Left to right
- B. Right to left


Necker cube


Necker cube

## Is SFM always uniquely solvable?

- Necker reversal


Source: N. Snavely

## Structure from motion ambiguity

- If we scale the entire scene by some factor $k$ and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

## Structure from motion ambiguity

- If we scale the entire scene by some factor $k$ and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same:

$$
\mathbf{x}=\mathbf{P X}=\left(\frac{1}{k} \mathbf{P}\right)(k \mathbf{X})
$$

It is impossible to recover the absolute scale of the scene!

## Structure from motion ambiguity

- If we scale the entire scene by some factor $k$ and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same
- More generally, if we transform the scene using a transformation $\mathbf{Q}$ and apply the inverse transformation to the camera matrices, then the images do not change:


## Structure from motion ambiguity

- If we scale the entire scene by some factor $k$ and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same
- More generally, if we transform the scene using a transformation $\mathbf{Q}$ and apply the inverse transformation to the camera matrices, then the images do not change:

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P Q}^{-1}\right)(\mathbf{Q X})
$$

## Types of ambiguity

Projective 15dof

Affine 12dof


Preserves intersection and tangency

Preserves parallellism, volume ratios

Preserves angles, ratios of length

Preserves angles, lengths
Euclidean 6dof


- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean


## Projective ambiguity

- With no constraints on the camera calibration matrix or on the scene, we can reconstruct up to a projective ambiguity


Slide from L. Lazebnik.

## Projective ambiguity



Slide from L. Lazebnik.

## Affine ambiguity

- If we impose parallelism constraints, we can get a reconstruction up to an affine ambiguity


Slide from L. Lazebnik.

## Affine ambiguity



Slide from L. Lazebnik.

## Similarity ambiguity

- A reconstruction that obeys orthogonality constraints on camera parameters and/or scene

$\mathbf{Q}_{\mathrm{s}}=\left[\begin{array}{cc}s \mathrm{R} & \mathrm{t} \\ 0^{\top} & 1\end{array}\right]$

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P Q}_{\mathbf{S}}^{-1}\right)\left(\mathbf{Q}_{\mathbf{S}} \mathbf{X}\right)
$$

## Similarity ambiguity



Slide from L. Lazebnik.

## Outline

- Representative SfM pipeline
- Incremental SfM
- Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
- Factorization
- SfM in practice


## Special Case: Affine structure from motion

- Let's start with affine or weak perspective cameras (the math is easier)



## Recall: Orthographic Projection



$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Slide from L. Lazebnik.

## Affine cameras



Slide from L. Lazebnik.

## Affine cameras

- A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

$$
\mathbf{P}=[3 \times 3 \text { affine }]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right][4 \times 4 \text { affine }]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & 1
\end{array}\right]
$$

- Affine projection is a linear mapping + translation in non-homogeneous coordinates


Slide from L. Lazebnik.
$\mathbf{x}=\binom{x}{y}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right)+\binom{b_{1}}{b_{2}}=\mathbf{A X}+\mathbf{b}$
Projection of world origin

## Affine structure from motion

- Given: $m$ images of $n$ fixed 3D points:

$$
\mathbf{x}_{i j}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}, \quad i=1, \ldots, m, j=1, \ldots, n
$$

- Problem: use the $m n$ correspondences $\mathbf{x}_{i j}$ to estimate $m$ projection matrices $\mathbf{A}_{i}$ and translation vectors $\mathbf{b}_{i}$, and $n$ points $\mathbf{X}_{j}$
- The reconstruction is defined up to an arbitrary affine transformation $\mathbf{Q}$ (12 degrees of freedom):

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & 1
\end{array}\right] \mathbf{Q}^{-1}, \quad\binom{\mathbf{X}}{1} \rightarrow \mathbf{Q}\binom{\mathbf{X}}{1}
$$

- We have $2 m n$ knowns and $8 m+3 n$ unknowns (minus 12 dof for affine ambiguity)
- Thus, we must have $2 m n>=8 m+3 n-12$
- For two views, we need four point correspondences


## Affine structure from motion

- Centering: subtract the centroid of the image points in each view

$$
\begin{aligned}
\hat{\mathbf{x}}_{i j} & =\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}-\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{A}_{i} \mathbf{X}_{k}+\mathbf{b}_{i}\right) \\
& =\mathbf{A}_{i}\left(\mathbf{X}_{j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k}\right)=\mathbf{A}_{i} \hat{\mathbf{X}}_{j}
\end{aligned}
$$

- For simplicity, set the origin of the world coordinate system to the centroid of the 3D points
- After centering, each normalized 2D point is related to the 3 D point $\mathbf{X}_{j}$ by

$$
\hat{\mathbf{x}}_{i j}=\mathbf{A}_{i} \mathbf{X}_{j}
$$

## Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.


## Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:

$$
\begin{aligned}
&\left.\mathbf{D}=\left[\begin{array}{llll}
\hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1 n} \\
\hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2 n} \\
& & \ddots & \\
\hat{\mathbf{x}}_{m 1} & \hat{\mathbf{x}}_{m 2} & \cdots & \hat{\mathbf{x}}_{m n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{A}_{1} \\
\mathbf{A}_{2} \\
\vdots \\
\mathbf{A}_{m}
\end{array}\right] \begin{array}{llll}
{\left[\begin{array}{lll}
\mathbf{X}_{1} & \mathbf{X}_{2} & \cdots \\
\text { points }(3 \times n)
\end{array}\right.} & \mathbf{X}_{n}
\end{array}\right] \\
& \\
& \\
& \\
& \\
& \text { cameras }
\end{aligned}
$$

The measurement matrix $\mathbf{D}=\mathbf{M S}$ must have rank 3!
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

## Factorizing the measurement matrix



## Factorizing the measurement matrix

- Singular value decomposition of D:


Source: M. Hebert

## Factorizing the measurement matrix

- Singular value decomposition of D:


To reduce to rank 3, we just need to set all the singular values to 0 except


## Factorizing the measurement matrix

- Obtaining a factorization from SVD:



## Factorizing the measurement matrix

- Obtaining a factorization from SVD:


This decomposition minimizes
$|\mathrm{D}-\mathrm{MS}|^{2}$

## Affine ambiguity



- The decomposition is not unique. We get the same $\mathbf{D}$ by using any $3 \times 3$ matrix $\mathbf{C}$ and applying the transformations $\mathbf{M} \rightarrow \mathbf{M C}, \mathbf{S} \rightarrow \mathbf{C}^{-1} \mathbf{S}$
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example)


## Eliminating the affine ambiguity

- Transform each projection matrix A to another matrix AC to get orthographic projection
- Image axes are perpendicular and scale is 1

- This translates into 3m equations:

$$
\left(\mathbf{A}_{i} \mathbf{C}\right)\left(\mathbf{A}_{i} \mathbf{C}\right)^{\top}=\mathbf{A}_{i}\left(\mathbf{C} \mathbf{C}^{\top}\right) \mathbf{A}_{i}=\mathbf{I d}, \quad i=1, \ldots, m
$$

- Solve for $L=C^{\top}$
- Recover C from L by Cholesky decomposition: L=CCT
- Update $\mathbf{M}$ and $\mathbf{S}: \mathbf{M}=\mathbf{M C}, \mathbf{S}=\mathbf{C}^{-1} \mathbf{S}$


## Reconstruction results



1


120


60


150

C. Tomasi and T. Kanade, Shape and motion from image streams under orthography: A factorization method, IJCV 1992

## Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

cameras
- Possible solution: decompose matrix into dense subblocks, factorize each sub-block, and fuse the results
- Finding dense maximal sub-blocks of the matrix is NPcomplete (equivalent to finding maximal cliques in a graph)


## Dealing with missing data

## - Incremental bilinear refinement


(1) Perform
factorization on a dense sub-block
(2) Solve for a new 3D point visible by at least two known cameras (triangulation)
(3) Solve for a new camera that sees at least three known 3D points (calibration)

## Outline

- Representative SfM pipeline
- Incremental SfM
- Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
- Factorization
- SfM in practice


## The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Eliminating outliers
- Dealing with repetitions and symmetries


## Repetitive structures


https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf

## The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Eliminating outliers
- Dealing with repetitions and symmetries
- Handling multiple connected components
- Closing loops
- Making the whole thing efficient!
- See, e.g., Towards Linear-Time Incremental Structure from Motion


## SFM software

- Bundler
- OpenSfM
- OpenMVG
- VisualSFM
- See also Wikipedia's list of toolboxes

Slide from L. Lazebnik.

## Outline

- Representative SfM pipeline
- Incremental SfM
- Bundle adjustment
- Ambiguities in SfM
- Special Case: Affine structure from motion
- Factorization
- SfM in practice

