Introduction to Recognition

Saurabh Gupta

Many slides from Justin Johnson



Computer Vision

To extract "meaning” from pixels

person, motorcycle, car, chair

Meaning can take different
forms:

Geometric Inferences
Semantic Inferences
Inferences about actions
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Computer vision is easy for humans
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images for a variety of

tasks
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Effortlessly analyze



Yet has proven very hard for computers

Computer vision research

easily goes back 60 years ...

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligemnce Group July 7, 1966
Vision Memo. No. 100.

THE SUMMER VISION PROJECT

‘‘‘‘‘‘‘‘ Papert
Th umm vision p pt u=e
t ly 1 he cons i f a signifi p f i tem
The p icul sk wa !l.?' becaus gonented i
problems which wil individ t depend ly and
partici i he cons i a tem compl htob 1
land i develo tt recogniti

WHEN A USER TAKES A PHOTO
THE. APP SHOULD CHECK WHETHER
THEY'RE IN A NATIONAL PARK ...

SURE, EASY GIS LOOKUR
GIMME A FEW HOU%.

.. AND CHECK WHETHER
THE PHOTO 15 OF A BIRD.

I NEED A RESEHRCH

% TEAM AND FIVE YEARS.

Entirely true as of 2014 (or so)
when this xkcd was published



https://xkcd.com/1425/

Why is computer vision hard?

* Images are a lossy projection of the world

3D world 2D image

[

Point of observation

Geometry information is lost



Why is computer vision hard?

* Images are a lossy projection of the world

What color is the dress?
A) Black and blue
B) White and gold?

Appearance
iInformation is
also lost

Slide by L. Lazebnik https://www.wired.com/2015/02/science-one-agrees-color-dress/



https://www.wired.com/2015/02/science-one-agrees-color-dress/

Why is computer vision hard?

* Images are a lossy projection of the world

Might cause
objects to blend




Why is computer vision hard?

* Images are a lossy projection of the world (geometry, appearance, ...
are lost)

 Visual world is diverse

Viewpoint variation

Shape variation



Why is computer vision hard?

Images are a lossy projection of the world (geometry, appearance, ...
are lost)

Visual world is diverse

Occlusion



Why is computer vision hard?

* Images are a lossy projection of
the world (geometry,
appearance, ... are lost)

 need some priors to interpret
what you are seeing

|
J

[
 Visual world is diverse

e can't write down these priors ,
by hand John's Diner with John's Chevelle, 2007

Enter machine learning



Why machine learning?

* (Good old-fashioned Al (GOFAI) answer:
Program expertise into the agent

current description

of analysis result
object phase scene phase

analysis analysis
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Figure 2. Semantic network for knowledge representation.

>lock as a set of Figure 3. Structure of description
5 it must satisfy built by the system.
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5-c. Plan iméée.

S-d. Result of semantic
color scene. segmentation. segmentation.

Y. Ohta, T. Kanade and T. Sakai. An Analysis System for Scenes Containing objects with Substructures. Proc. of the Fourth International Joint

Figure 5-a. Digitized 5-b. Result of | reliminary

Conference on Pattern Recognition, pp. 752-754, 1978


http://www.cs.cmu.edu/~efros/courses/LBMV09/newpapers/OhtaKanadeSakai1978.pdf

Why machine learning?

* (Good old-fashioned Al (GOFAI) answer:
Program expertise into the agent

"building" region (ACT "indicates following is production“
(IF (*WINDOW-LIKE *RGH)
(THEN (GET-SET *PLSET (PLAN *MRGH) PATCHES)
’ < "assign to *PLSET all patches which belong to the pilan of *MRGH™
sriuation j (AND (ALL-FETCH *WLIKE *PLSET
part (AND {1S {LABEL *WLIKE) NIL)}{*WINDOW-LIKE *KLIKE)}))

parallel . (ALL-FETCH *WIND *WLIKE .
action (THERE~IS *WK *KLIKE (*W-RELATION *WIND *WK)})
papt \ "search all patches that have at least one partner patch
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ar— with which *W-RELATION holds”
) .- {THERE-IS *WK *WLIKE (IS *RGN *WK}})))
s 5 {THEN (CONCLUDE P-LABEL B-WINDOW) “#*RGN is ‘window'"
(FOR-EACH *WIND (MUST-BE *WIND P-LABEL B-WIKDOW) )
"all patches in *WIND wust be 'window' if *RGN is 'window'"
{DOKE-FOR *WIND) "no need to examine the *WIND patches any more

o ! : | undar this context ~-- for controler”
! appropriate distance (PRIORITY {ADD 2100 {HUMBER *WIND))) ))
3 compared to window size "preaium is the number of patches in *WIND®
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Figure 4-b. The production for analyzing "windows'.
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Figure 4-a. "Building" region and "windows".



Why machine learning?

* (Good old-fashioned Al (GOFAI) answer:

Program expertise into the agent

Appendix-B Complete Listing of the Model
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INOT (TOUCHING #HRGN LOW-SIDE) )
L-FETCH AT SPLAN-FEGIONS
(IF tp (v BE FOAD oG}
NE SHGN LEIDN)
xmr (sSAME-COLOR 2HAGN RGN )
(FACING HORIZONTALLY wHRGN shRGHH

(MULT (SUB {FACING HORIZONTALLY s+ICN siEN) 2.5)

(SUB NN (ASK-VALLE ROAD wFICN) 2.6}
IASK-VALUE ROAD wHRGN) 1101}
VALLE sHACH $HRGK) 1))
(THEN (ED (SCEME) ROAD-ZONE
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(EYECUTE PLAN-EVALLATION) 1) 1 )

1 2561

P-SELECT (10-00 {
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(THEN (CONCLUDE P-LABEL TREE)
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(SCORE-15 1.8) )} (4PCH)]
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(PROBABLY TREE wPCH)
(THEN (CONGLUDE P-LABEL TREE]
{SEORE-1S {ASK-VALUE TREE #PLHII1) (4PCHIT )

L UF-0ONE §

NOT (15 {OF PLAN 4FCH) NILHY
(THEN (ENECUTE PLAN-EVALUATION) )} 6sPCH)T )} )
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(PRIPERTY-RULES (
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(AMD 1S (LABEL #BL} BUILOING)
(NOT (IS {0F SHAPE VIEM (DBJEGT s8L1) 113
(15 {0F ADJACENT (DBUECT 4BLI) HILI
(DIFFERNT-ZONE #FCH BLI1})
(THEN (CONCLLDE P-LABEL BUILDINGI
(CONCLUDE O-MEFIGE (ML TH ADJACENT EL11
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(THEN {SCORE-1S 3210 (4PCH #REN)
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[IACT T+ (THEN (COMCLUDE P-LABEL TREE)
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LIGEN CRHOLELINE #3CNH (.9 + ©.5)) (sFON)] )

RELATION-RULES ¢
CGEN (AND (s INEAR-SOLNDARY 40N 4PGN2)
UIF SLINEAR-BOLMDARY (NDT (POSITION UF 4RGN 49GN2))) )
8.4) FOR SKYI LAGN 4ENZ) )
[ISTR (IF (NOT (1S (OF BUILDING-Z0NE (SCENE)) WIL))
CAD (0-RATIO sAGN {OF BUILDING-ZDNE (SCENED))
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PSELECT (

000
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(SCORE-IS (DD 2.8 (ASC-VALLE BUILDING <FDHI11))
PCH 1RGN
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LOCT Tn (DESCAIBE-BUILDING (REGION sPTH))) GCHI 1)

O-CRERTE (1F-DONE
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AERICRI-VALLE-1S 8.2)

SROAD  Knoul adga-b ock=0f=r03d
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Why machine learning?

* (Good old-fashioned Al (GOFAI) answer:
Program expertise into the agent
* Never worked (in general)



Why machine learning?

* (Good old-fashioned Al (GOFAI) answer:
Program expertise into the agent

Modern answer: Program into the agent the ability to improve
performance based on experience

« Experience should come from fraining data or demonstrations

« We want to optimize the performance of the agent on the training
data, with the hope that it will generalize to unseen inputs

* This is the statistical learning viewpoint



The basic ML framework (for supervised learning)

" Labeled training data A
“apple” K F‘ -~ . e m |

Training »
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[ Learned ]
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sample l Label prediction

Test time ﬂ[ Inference ]ﬂ “apple”




The basic ML framework (for supervised learning)

f(x)

T T

output prediction input
function

* Training (or learning): given a training set of labeled
examples {(x{,y,), ..., (x5, Vn)}, Instantiate a predictor f

« Testing (or inference): apply f to a new test example x
and output the predicted value y = f(x)

« Rather than hand-defining how 2D projections of apples are different
from pears, f will learn this from the data.



Deep Learning

* A general way to model function f as composition (layers) of simple
functions, very loosely inspired by the brain.



Lecture overview

e Different recognition problems in computer vision

e Supervised classification
 Taxonomy of learning problems



Different Recognition Problems

Object Detection: Put a Instance Segmentation: Mark
bounding box around each pixels for each instance of a class
instance of a class

Semantic
Segmentation: Label
each pixels with its
category

Classification: Assign
image to one of a
fixed set of categories



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Different Recognition Problems

Q TA\R

RIRWAYS

Imé{\gé‘é;ptibhmg'Mn
rldlng a horse on a beach

Pose Prediction: Rotation
that aligns object to a

Keypoint prediction canonical pose

Depth Predlctlon how far is
each pixel in the image



The basic ML framework (for supervised learning)
4
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The basic ML framework (for supervised learning)

y = f(x)

T RN

output prediction input
o ] . ~ function
* Training (or learning): given a training set of labeled
examples {(x4, V1), ..., (xy, Yn)}, instantiate a predictor f 2| v ey 19, 37| ey et

* Testing (or inference): apply / to a new test example x

and output the predicted value y = f(x)

* Rather than hand-defining how 2D projections of apples are different from
pears, f will learn this from the data.




s an image classifier all you need?

* Image Classification

* Object Detection

* Instance Segmentation
* Semantic Segmentation
* Image Captioning

* Depth Prediction
* Keypoint Prediction

* Pose Prediction




Taxonomy of learning problems

* Type of output
 (lassification

* Regression

« y = f(x).yisan arbitrary
scalar and not a class label.

e Structured prediction

« vy = f(x).yisastructured
object.

r\‘-lf_x:"i"u“{; P
The screen was - PTONNVED NP
a sea of red

The screen was NP I;I’
DT NN IN NP
| | |
sea of NN
|
red

Sentence Parse tree

each pixel in the image

Several computer vision problems have
structure in the output space, but often
solving a classification problem with
some simple post-processing (or even
without) ends up being sufficient.



