
k-Nearest Neighbors and
Linear Classifiers

Saurabh Gupta

Slides from Lana Lazebnik, Justin Johnson

Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification with a Softmax Function

Recall: The basic supervised learning framework

𝑦	 = 	𝑓(𝑥)

• Training (or learning): given a training set of labeled examples
{(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦!)}, instantiate a predictor 𝑓

• Testing (or inference): apply 𝑓 to a new test example 𝑥 and output the
predicted value 𝑦	 = 	𝑓(𝑥)

output prediction
function

input

k-Nearest Neighbors

Slide from Justin Johnson

First classifier: Nearest Neighbor

Memorize all data
and labels

Predict the label of
the most similar
training image

Slide from Justin Johnson

Distance Metric to compare images

L1 distance:

add

𝑑" 𝐼", 𝐼# =.
$

|𝐼"
$ − 𝐼#

$|

Slide from Justin Johnson

Nearest Neighbor Classifier

Slide from Justin Johnson

Nearest Neighbor Classifier

Memorize training data

Slide from Justin Johnson

Nearest Neighbor Classifier

For each test image:
 Find nearest training image
 Return label of nearest image

Slide from Justin Johnson

Nearest Neighbor Classifier

Q: With N examples,
how fast is training?

Slide from Justin Johnson

Nearest Neighbor Classifier

Q: With N examples,
how fast is training?
A: O(1)

Slide from Justin Johnson

Nearest Neighbor Classifier

Q: With N examples,
how fast is training?
A: O(1)

Q: With N examples,
how fast is testing?

Slide from Justin Johnson

Nearest Neighbor Classifier

Q: With N examples,
how fast is training?
A: O(1)

Q: With N examples,
how fast is testing?
A: O(N)

Slide from Justin Johnson

Nearest Neighbor Classifier

Q: With N examples,
how fast is training?
A: O(1)

Q: With N examples,
how fast is testing?
A: O(N)

This is bad: We can
afford slow training, but
we need fast testing!

Slide from Justin Johnson

Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions

Slide from Justin Johnson

Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels

Slide from Justin Johnson

Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

x

Slide from Justin Johnson

Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

x

Decision boundary
is the boundary
between two
classification regions

Slide from Justin Johnson

Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

x

Decision boundary
is the boundary
between two
classification regions

Decision boundaries
can be noisy;
affected by outliers

Slide from Justin Johnson

Nearest Neighbor Decision Boundaries

x0

x1
Nearest neighbors
in two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

x

Decision boundary
is the boundary
between two
classification regions

Decision boundaries
can be noisy;
affected by outliers

How to smooth out
decision boundaries?
Use more neighbors!

Slide from Justin Johnson

K-Nearest Neighbors

K = 1 K = 3

Instead of copying label from nearest neighbor,
take majority vote from K closest pointsSlide from Justin Johnson

K-Nearest Neighbors

K = 1 K = 3

Using more neighbors helps smooth
out rough decision boundariesSlide from Justin Johnson

K-Nearest Neighbors

K = 1 K = 3

Using more neighbors helps
reduce the effect of outliersSlide from Justin Johnson

K-Nearest Neighbors

K = 1 K = 3

When K > 1 there can be ties between
classes. Need to break somehow!Slide from Justin Johnson

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

𝑑! 𝐼!, 𝐼" =%
#
𝐼!
− 𝐼"

𝑑! 𝐼!, 𝐼" = %
#
𝐼!
− 𝐼"

"
!
"

Slide from Justin Johnson

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

K = 1

𝑑! 𝐼!, 𝐼" =%
#
𝐼!
− 𝐼"

𝑑! 𝐼!, 𝐼" = %
#
𝐼!
− 𝐼"

"
!
"

Slide from Justin Johnson

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices
about our learning algorithm that we don’t learn from the
training data; instead we set them at the start of the
learning process

Slide from Justin Johnson

Hyperparameters

What is the best value of K to use?
What is the best distance metric to use?

These are examples of hyperparameters: choices
about our learning algorithm that we don’t learn from the
training data; instead we set them at the start of the
learning process
Very problem-dependent. In general need to try them all and
see what works best for our data / task.

Slide from Justin Johnson

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

BAD: K = 1 always works perfectly on training data (in
general, memorization is sufficient for acing the train set)

train test

Slide from Justin Johnson

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

BAD: K = 1 always works perfectly on training data (in
general, memorization is sufficient for acing the train set)

Idea #2: Choose hyperparameters
that work best on test data

BAD: No idea how algorithm will perform on new
data.

train test

train test

Slide from Justin Johnson

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

BAD: K = 1 always works perfectly on training data (in
general, memorization is sufficient for acing the train set)

Idea #2: Choose hyperparameters
that work best on test data

BAD: No idea how algorithm will perform on new
data.

train test

Idea #3: Split dataset into train and val; choose
hyperparameters on val and evaluate on test.

Better!

train testvalidation

train test

Slide from Justin Johnson

Setting Hyperparameters

Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, try each
fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

Slide from Justin Johnson

Setting Hyperparameters

Example of 5-fold cross-validation for
the value of k.

Each point: single outcome.

The line goes through the mean, bars
indicated standard deviation

(Seems that k ~ 7 works best
for this data)

Slide from Justin Johnson

K-Nearest Neighbor on raw pixels is seldom used

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is
CC0 public domain

Slide from Justin Johnson

https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/

Nearest Neighbor with ConvNet features works well!

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Slide from Justin Johnson

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Image Captioning with Nearest Neighbor

Can transfer more than just label!

Slide from Justin Johnson

https://arxiv.org/pdf/1505.04467.pdf

Can transfer more than just label!

Malisiewicz et al, “Ensemble of Exemplar-SVMs for Object Detection and Beyond”, ICCV 2011
Slide from Justin Johnson

http://www.cs.cmu.edu/~tmalisie/projects/iccv11/

Can transfer more than just label!

Malisiewicz et al, “Ensemble of Exemplar-SVMs for Object Detection and Beyond”, ICCV 2011

Slide from Justin Johnson

http://www.cs.cmu.edu/~tmalisie/projects/iccv11/

Linear classifier

• Find a linear function to separate the classes:

𝑓 𝑥 = sgn 𝑤(!)𝑥(!) +𝑤(")𝑥(") +⋯+𝑤(&)𝑥(&) + 𝑏 = sgn 𝑤	×	𝑥	+ 	𝑏

Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework

Empirical loss minimization
• Let’s formalize the setting for learning of a parametric model

in a supervised scenario

Image source

https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓
• Goal: make good predictions -𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓
• Goal: make good predictions -𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

What kinds of functions?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions -𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

Hypothesis class

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions -𝑦 = 𝑓(𝑥) on test data

Source: Y. Liang

Connection between
training and test data?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions -𝑦 = 𝑓(𝑥) on test data

i.i.d. from distribution 𝐷

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• Goal: make good predictions -𝑦 = 𝑓(𝑥) on test data

i.i.d. from distribution 𝐷

Source: Y. Liang

What kind of performance
measure?

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼((,*)∽&[𝑙 𝑓, 𝑥, 𝑦]

Source: Y. Liang

Various loss functions

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼((,*)∽& 𝑙 𝑓, 𝑥, 𝑦
• Example losses:

0 − 1 loss: 𝑙 𝑓, 𝑥, 𝑦 = 𝕀[𝑓(𝑥) ≠ 𝑦] and 𝐿 𝑓 = Pr[𝑓(𝑥) ≠ 𝑦]

𝑙# loss: 𝑙 𝑓, 𝑥, 𝑦 = [𝑓 𝑥 − 𝑦]# and 𝐿 𝑓 = 𝔼 	[𝑓 𝑥 − 𝑦]#

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ
• S.t. the expected loss is small:

𝐿 𝑓 = 𝔼((,*)∽& 𝑙 𝑓, 𝑥, 𝑦

Source: Y. Liang

Can’t optimize this directly

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Empirical loss minimization
• Given: training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 i.i.d. from distribution 𝐷
• Find: predictor 𝑓 ∈ ℋ that minimizes

8𝐿 𝑓 =
1
𝑛
9
',!

-

𝑙(𝑓, 𝑥' , 𝑦')

Source: Y. Liang

Empirical loss

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Supervised learning in a nutshell
1. Collect training data and labels
2. Specify model: select hypothesis class and loss function
3. Train model: find the function in the hypothesis class that

minimizes the empirical loss on the training data

Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

Training linear classifiers
• Given: i.i.d. training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 ,

𝑦' ∈ {−1,1}
• Hypothesis class: 𝑓.(𝑥) = sgn(𝑤/𝑥)

• Classification with bias, i.e. 𝑓. 𝑥 = sgn(𝑤/𝑥 + 𝑏),
can be reduced to the case w/o bias by letting
A𝑤 = 𝑤; 𝑏 and C𝑥 = [𝑥; 1]

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Training linear classifiers
• Given: i.i.d. training data 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 ,

𝑦' ∈ {−1,1}
• Hypothesis class: 𝑓.(𝑥) = sgn(𝑤/𝑥)
• Loss: how about minimizing the number of mistakes on the

training data?

8𝐿 𝑓. =
1
𝑛
9
',!

-

𝕀[sgn 𝑤/𝑥' ≠ 𝑦']

• Difficult to optimize directly (NP-hard), so people resort to
surrogate loss functions

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression (“straw man” model)
• Find 𝑓.(𝑥) = 𝑤/𝑥 that minimizes 𝑙" loss or mean squared

error

8𝐿 𝑓. =
1
𝑛
9
',!

-

(𝑤/𝑥' − 𝑦')"

• Ignores the fact that 𝑦 ∈ {−1,1} but is easy to optimize

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥'/, 𝑌 be the vector
(𝑦!, … , 𝑦-)/

8𝐿 𝑓. =
1
𝑛
9
',!

-

(𝑤/𝑥' − 𝑦')" =
1
𝑛
𝑋𝑤 − 𝑌 "

"

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥'/, 𝑌 be the vector
(𝑦!, … , 𝑦-)/

8𝐿 𝑓. =
1
𝑛
9
',!

-

(𝑤/𝑥' − 𝑦')" =
1
𝑛
𝑋𝑤 − 𝑌 "

"

• This is a convex function of the weights

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥'/, 𝑌 be the vector
(𝑦!, … , 𝑦-)/

8𝐿 𝑓. =
1
𝑛
9
',!

-

(𝑤/𝑥' − 𝑦')" =
1
𝑛
𝑋𝑤 − 𝑌 "

"

• Find the gradient w.r.t. 𝑤:
 ∇. 𝑋𝑤 − 𝑌 "

"

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Let 𝑋 be a matrix whose ith row is 𝑥'/, 𝑌 be the vector
(𝑦!, … , 𝑦-)/

8𝐿 𝑓. =
1
𝑛
9
',!

-

(𝑤/𝑥' − 𝑦')" =
1
𝑛
𝑋𝑤 − 𝑌 "

"

• Find the gradient w.r.t. 𝑤:
 ∇. 𝑋𝑤 − 𝑌 "

" = ∇. 𝑋𝑤 − 𝑌 / 𝑋𝑤 − 𝑌
 = ∇. 𝑤/𝑋/𝑋𝑤 − 2𝑤/𝑋/𝑌 + 𝑌/𝑌
 = 2𝑋/𝑋𝑤 − 2𝑋/𝑌
• Set gradient to zero to get the minimizer:

𝑋/𝑋𝑤 = 𝑋/𝑌
𝑤 = (𝑋/𝑋)0!𝑋/𝑌

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Linear regression: Optimization
• Linear algebra view

• If 𝑋 is invertible, simply solve 𝑋𝑤 = 𝑌 and get 𝑤 = 𝑋%"𝑌
• But typically 𝑋 is a “tall” matrix so you need to find the least

squares solution to an over-constrained system

Source: Y. Liang

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture1_linear_regression.pdf

Problem with linear regression
• In practice, very sensitive to outliers

Figure from Pattern Recognition and Machine Learning, Bishop

Problem with linear regression
• In practice, very sensitive to outliers

+1

-1

• Instead of a linear function, how about we fit a function
representing the confidence of the classifier?

Next idea

1

0

𝑃(𝑦 = 1|𝑥)

0.5

Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression

Logistic regression
• Let’s learn a probabilistic classifier estimating the probability

of the input 𝑥 having a positive label, given by putting a
sigmoid function around the linear response 𝑤/𝑥:

 	 𝑃. 𝑦 = 1 𝑥 = 𝜎 𝑤/𝑥 = !
!1234(0.!()

Sigmoid: Properties

𝑃. 𝑦 = 1 𝑥 = 𝜎 𝑤/𝑥 =
1

1 + exp(−𝑤/𝑥)
• What is the range?
• What is 𝜎 0 ?
• What is 𝑃. 𝑦 = −1 𝑥 ?

Sigmoid: Properties

𝑃. 𝑦 = 1 𝑥 = 𝜎 𝑤/𝑥 =
1

1 + exp(−𝑤/𝑥)
• What is the range?
• What is 𝜎 0 ?
• What is 𝑃. 𝑦 = −1 𝑥 ?

𝑃. 𝑦 = −1 𝑥 = 1 − 𝑃. 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤/𝑥

= !1234 0.!(0!
!1234 0.!(

= 234(0.!()
!1234(0.!()

= !
234 .!(1!

= 𝜎 −𝑤/𝑥

Sigmoid: Properties

𝑃. 𝑦 = 1 𝑥 = 𝜎 𝑤/𝑥 =
1

1 + exp(−𝑤/𝑥)

• Sigmoid is symmetric in the following sense: 1 − 𝜎 𝑡 = 𝜎 −𝑡

Sigmoid: Properties

𝑃. 𝑦 = 1 𝑥 = 𝜎 𝑤/𝑥 =
1

1 + exp(−𝑤/𝑥)

• What happens if we scale 𝑤 by a constant?

Sigmoid: Properties

𝑃. 𝑦 = 1 𝑥 = 𝜎 𝑤/𝑥 =
1

1 + exp(−𝑤/𝑥)

• What happens if we scale 𝑤 by a constant?

Image source

https://i.stack.imgur.com/KcX81.png

Logistic loss
• Given: 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 , 𝑦' ∈ {−1,1}
• Maximum (conditional) likelihood estimate: find 𝑤	that minimizes

8𝐿 𝑤 = −
1
𝑛
9
',!

-

log 𝑃. 𝑦' 𝑥'

𝑙 𝑤, 𝑥' , 𝑦' = − log𝑃. 𝑦' 𝑥'
• If 𝑦' = 1:

𝑃. 𝑦' 𝑥' =𝜎 𝑤/𝑥'
• If 𝑦' = −1:

𝑃. 𝑦' 𝑥' =1 − 𝜎 𝑤/𝑥' = 𝜎 −𝑤/𝑥'
• Thus,

𝑙 𝑤, 𝑥' , 𝑦' = − log 𝜎 𝑦'𝑤/𝑥'

Logistic loss
𝑙 𝑤, 𝑥' , 𝑦' = − log 𝜎 𝑦'𝑤/𝑥'

Figure source𝑦!𝑤"𝑥!

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf

Logistic loss: Optimization
• Given: 𝑥' , 𝑦' , 𝑖 = 1,… , 𝑛 , 𝑦' ∈ {−1,1}
• Find 𝑤	that minimizes

8𝐿 𝑤 = −
1
𝑛
9
',!

-

log 𝑃. 𝑦' 𝑥'

• There is no closed-form expression for the minimum and we
need to use gradient descent to find it

Gradient descent
• Goal: find 𝑤 to minimize loss 8𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇A𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂	∇A𝐿(𝑤)

The gradient vector

𝑤"

𝑤#

𝑤

∇A𝐿(𝑤)

Fastest rate
of increase

A𝐿(𝑤)

A𝐿

The gradient vector

𝑤"

𝑤#

𝑤−∇A𝐿(𝑤)

A𝐿

Fastest rate of
decrease

A𝐿(𝑤)

Gradient descent

𝑤"

𝑤#

𝑤 − 𝜂∇A𝐿(𝑤)

A𝐿(𝑤 − 𝜂∇A𝐿(𝑤))

A𝐿

Gradient descent
• Goal: find 𝑤 to minimize loss 8𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇A𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂	∇A𝐿(𝑤)

𝑤#
𝑤$

A𝐿

Gradient descent
• Goal: find 𝑤 to minimize loss 8𝐿(𝑤)
• Start with some initial estimate of 𝑤
• Repeat until convergence:

• Find ∇A𝐿(𝑤), the gradient of the loss w.r.t. 𝑤
• Take a small step in the opposite direction: 𝑤 ← 𝑤 − 𝜂	∇A𝐿(𝑤)
• 𝜂	is the step size or learning rate

Figure source

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818

Full batch gradient descent
• Since 8𝐿 𝑤 = !

-
∑',!- 𝑙 𝑤, 𝑥' , 𝑦' , we have

∇8𝐿 𝑤 =
1
𝑛
9
',!

-

∇𝑙 𝑤, 𝑥' , 𝑦'

• For a single parameter update, need to cycle through the
entire training set!

Stochastic gradient descent (SGD)
• At each iteration, take a single data point 𝑥' , 𝑦' and perform

a parameter update using ∇𝑙 𝑤, 𝑥' , 𝑦' , the gradient of the
loss for that point:

𝑤 ← 𝑤 − 𝜂	∇𝑙 𝑤, 𝑥' , 𝑦'
• This is called an online or stochastic update
• In practice, mini-batch SGD is typically used:

• Group data into mini-batches of size 𝑏
• Compute gradient of the loss for the mini-batch 𝑥!, 𝑦! , … , (𝑥", 𝑦"):

∇A𝐿 =
1
𝑏
.
)*"

+

∇𝑙(𝑤, 𝑥), 𝑦))

• Update parameters: 𝑤 ← 𝑤 − 𝜂∇A𝐿

SGD for logistic regression
𝑙 𝑤, 𝑥' , 𝑦' = − log 𝜎 𝑦'𝑤/𝑥'

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥' , 𝑦' = −∇. log 𝜎 𝑦'𝑤/𝑥'

= −
∇.𝜎 𝑦'𝑤/𝑥'
𝜎 𝑦'𝑤/𝑥'

• Derivative of log:

log 𝑔 𝑎 8 =
𝑔′(𝑎)
𝑔(𝑎)

SGD for logistic regression
𝑙 𝑤, 𝑥' , 𝑦' = − log 𝜎 𝑦'𝑤/𝑥'

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥' , 𝑦' = −∇. log 𝜎 𝑦'𝑤/𝑥'

= −
∇.𝜎 𝑦'𝑤/𝑥'
𝜎 𝑦'𝑤/𝑥'

= −
𝜎 𝑦'𝑤/𝑥' 𝜎 −𝑦'𝑤/𝑥' 𝑦'𝑥'

𝜎 𝑦'𝑤/𝑥'
Derivative of sigmoid:

𝜎8 𝑎 = 𝜎 𝑎 1 − 𝜎(𝑎) = 𝜎 𝑎 𝜎 −𝑎

SGD for logistic regression
𝑙 𝑤, 𝑥' , 𝑦' = − log 𝜎 𝑦'𝑤/𝑥'

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥' , 𝑦' = −∇. log 𝜎 𝑦'𝑤/𝑥'

= −
∇.𝜎 𝑦'𝑤/𝑥'
𝜎 𝑦'𝑤/𝑥'

= −
𝜎 𝑦'𝑤/𝑥' 𝜎 −𝑦'𝑤/𝑥' 𝑦'𝑥'

𝜎 𝑦'𝑤/𝑥'
• We also used the chain rule: 𝑔" 𝑔! 𝑎

8
= 𝑔"8 𝑔! 𝑎 𝑔!8(𝑎)

SGD for logistic regression
𝑙 𝑤, 𝑥' , 𝑦' = − log 𝜎 𝑦'𝑤/𝑥'

• Let’s find the gradient:
∇𝑙 𝑤, 𝑥' , 𝑦' = −∇. log 𝜎 𝑦'𝑤/𝑥'

= −
∇.𝜎 𝑦'𝑤/𝑥'
𝜎 𝑦'𝑤/𝑥'

= −
𝜎 𝑦'𝑤/𝑥' 𝜎 −𝑦'𝑤/𝑥' 𝑦'𝑥'

𝜎 𝑦'𝑤/𝑥'
= −𝜎 −𝑦'𝑤/𝑥' 𝑦'𝑥'

• SGD update:
𝑤 ← 𝑤 + 𝜂	𝜎 −𝑦'𝑤/𝑥' 𝑦'𝑥'

SGD for logistic regression
• Let’s take a closer look at the SGD update:

𝑤 ← 𝑤 + 𝜂	𝜎 −𝑦'𝑤/𝑥' 𝑦'𝑥'
• What happens if 𝑥' is incorrectly, but confidently, classified?

• The update rule approaches 𝑤 ← 𝑤 + 𝜂	𝑦)𝑥)
• What happens if 𝑥' is correctly, and confidently, classified?

• The update approaches zero (but never actually reaches zero)

SGD for logistic regression
• Logistic regression does not converge for linearly separable

data!
• Scaling 𝑤 by ever larger constants makes the classifier more

confident and keeps increasing the likelihood of the data

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression
3. Perceptron loss

Recall: The shape of logistic loss
𝑙 𝑤, 𝑥' , 𝑦' = − log 𝜎 𝑦'𝑤/𝑥'

Figure source𝑦!𝑤"𝑥!

Approaches 0

Approaches
− 𝑦!𝑤"𝑥!

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec4.pdf

Perceptron
• Let’s define the perceptron hinge loss:

𝑙 𝑤, 𝑥' , 𝑦' = max 0,−𝑦'𝑤/𝑥'

𝑦!𝑤"𝑥!

Incorrectly
classified

Correctly
classified

Perceptron hinge loss

Perceptron
• Let’s define the perceptron hinge loss:

𝑙 𝑤, 𝑥' , 𝑦' = max 0,−𝑦'𝑤/𝑥'

• Training: find 𝑤 that minimizes

8𝐿 𝑤 =
1
𝑛
9
',!

-

𝑙 𝑤, 𝑥' , 𝑦' =
1
𝑛
9
',!

-

max 0,−𝑦'𝑤/𝑥'

• Once again, there is no closed-form solution, so let’s go
straight to SGD

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥' , 𝑦' = max 0,−𝑦'𝑤/𝑥'
(Strictly speaking, this loss is not differentiable, so we need to
find a sub-gradient: A vector 𝑔 ∈ 𝑅- is a sub-gradient of 𝑓: 𝑅- →
𝑅 at 𝑥	if for all 𝑧, 𝑓 𝑧 ≥ 𝑓 𝑥 + 𝑔/(𝑧 − 𝑥).)

𝑦!𝑤"𝑥!

Incorrectly
classified

Correctly
classified

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥' , 𝑦' = max 0,−𝑦'𝑤/𝑥'
∇𝑙 𝑤, 𝑥' , 𝑦' = −𝕀[𝑦'𝑤/𝑥' < 0]𝑦'𝑥'

9
9:
max 0, 𝑎 = 𝕀[𝑎 > 0]

𝑦!𝑤"𝑥!

Incorrectly
classified

Correctly
classified

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥' , 𝑦' = max 0,−𝑦'𝑤/𝑥'
∇𝑙 𝑤, 𝑥' , 𝑦' = −𝕀[𝑦'𝑤/𝑥' < 0]𝑦'𝑥'

• We also used the chain rule: 𝑔" 𝑔! 𝑎
8 = 𝑔"8 𝑔! 𝑎 𝑔!8(𝑎)

Deriving the perceptron update
• Let’s differentiate the perceptron hinge loss:

𝑙 𝑤, 𝑥' , 𝑦' = max 0,−𝑦'𝑤/𝑥'
∇𝑙 𝑤, 𝑥' , 𝑦' = −𝕀[𝑦'𝑤/𝑥' < 0]𝑦'𝑥'

• Corresponding SGD update (𝑤 ← 𝑤 − 𝜂	∇𝑙 𝑤, 𝑥' , 𝑦'):
𝑤 ← 𝑤 + 𝜂	𝕀[𝑦'𝑤/𝑥' < 0]𝑦'𝑥'

• If 𝑥)	is correctly classified: do nothing
• If 𝑥) is incorrectly classified: 𝑤 ← 𝑤 + 𝜂	𝑦)𝑥)

Perceptron training algorithm
• Initialize weights randomly
• Cycle through training examples in multiple passes (epochs)
• For each training example (𝑥' , 𝑦'):
• If current prediction sgn(𝑤/𝑥') does not match 𝑦' 	then update

weights:

𝑤 ← 𝑤 + 𝜂	𝑦'𝑥'

where 𝜂 is a learning rate that should decay slowly* over time

Understanding the perceptron update rule
• Perceptron update rule: If 𝑦' ≠ sgn(𝑤/𝑥') then update weights:

𝑤 ← 𝑤 + 𝜂	𝑦'𝑥'

• The raw response of the classifier changes to

𝑤/𝑥' + 𝜂	𝑦' 𝑥' "

• How does the response change if 𝑦' = 1?
• The response 𝑤-𝑥)	is initially negative and will be increased

• How does the response change if 𝑦' = −1?
• The response 𝑤-𝑥)	is initially positive and will be decreased

Linear classifiers: Outline
• Example classification models: nearest neighbor, linear
• Empirical loss minimization
• Linear classification models

1. Linear regression (least squares)
2. Logistic regression
3. Perceptron loss
4. Support vector machine (SVM) loss

• When the data is linearly separable, which of the many
possible solutions should we prefer?

• Perceptron training algorithm:
no special criterion, solution depends
on initialization

Support vector machines

• When the data is linearly separable, which of the many
possible solutions should we prefer?

• Perceptron training algorithm:
no special criterion, solution depends
on initialization

• SVM criterion: maximize the margin,
or distance between the hyperplane
and the closest training example

Support vector machines

Margin

Support
vectors

Separating
hyperplane

• We want to maximize the margin, or distance between the
hyperplane 𝑤/𝑥 = 0 and the closest training example 𝑥;	

• This distance is given by |.
!("|
.

(for derivation see, e.g., here)

• Assuming the data is linearly
separable, we can fix the scale of 𝑤	
so that 𝑦'𝑤/𝑥' = 1 for support vectors
and 𝑦'𝑤/𝑥' ≥ 1 for all other points

• Then the margin is given by !
.

Finding the maximum margin hyperplane

https://math.stackexchange.com/questions/1210545/distance-from-a-point-to-a-hyperplane

Finding the maximum margin hyperplane
• We want to maximize margin !

.
 while correctly classifying all

training data: 𝑦'𝑤/𝑥' ≥ 1	
• Equivalent problem:

min.
1
2
𝑤 "	 s. t. 	 𝑦'𝑤/𝑥' ≥ 1	 ∀𝑖

• This is a quadratic objective with linear constraints: convex
optimization problem, global optimum can be found using
well-studied methods

“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a larger margin

with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min.
𝜆
2
𝑤 " 	 + 	 9

',!

-

max[0,1 −𝑦'𝑤/𝑥']

+1

-1
0

𝑦!𝑤"𝑥!

Incorrectly
classified

Correctly
classified

(1,0)

(0,1)

Hinge loss

“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min.
𝜆
2
𝑤 " 	 + 	 9

',!

-

max[0,1 −𝑦'𝑤/𝑥']

+1

-1
0

𝑦!𝑤"𝑥!

Incorrectly
classified

Correctly
classified

(1,0)

(0,1)

Hinge loss

Recall hinge loss used by the
perceptron update algorithm!

“Soft margin” formulation
• Penalize margin violations using SVM hinge loss:

min.
𝜆
2
𝑤 " 	 + 	 9

',!

-

max[0,1 −𝑦'𝑤/𝑥']

Maximize margin –
a.k.a. regularization

Minimize misclassification loss

SGD update for SVM

𝑙 𝑤, 𝑥' , 𝑦' = =
"-

𝑤 " +max[0, 1 − 𝑦'𝑤/𝑥']

∇𝑙 𝑤, 𝑥' , 𝑦' = =
-
𝑤 − 𝕀[𝑦'𝑤/𝑥' < 1]𝑦'𝑥'

Recall: 9
9:
max 0, 𝑎 = 𝕀[𝑎 > 0]

SGD update for SVM

𝑙 𝑤, 𝑥' , 𝑦' = =
"-

𝑤 " +max[0, 1 − 𝑦'𝑤/𝑥']

∇𝑙 𝑤, 𝑥' , 𝑦' = =
-
𝑤 − 𝕀[𝑦'𝑤/𝑥' < 1]𝑦'𝑥'

• SGD update:
• If 𝑦)𝑤-𝑥) ≥ 1: 𝑤 ← 𝑤 −𝜂 ./𝑤

• If 𝑦)𝑤-𝑥) < 1: 𝑤 ← 𝑤 + 𝜂 𝑦)𝑥) −
.
/
𝑤

S. Shalev-Schwartz et al., Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM, Mathematical Programming, 2011

http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf

SVM vs. perceptron

• SVM loss: 𝑙 𝑤, 𝑥' , 𝑦' = =
"-

𝑤 " +max[0, 1 − 𝑦'𝑤/𝑥']

• SVM update:
• If 𝑦)𝑤-𝑥) ≥ 1: 𝑤 ← 1 − 𝜂 .

/
𝑤

• If 𝑦)𝑤-𝑥) < 1: 𝑤 ← 1 − 𝜂 ./ 𝑤 + 𝜂	𝑦)𝑥)

• Perceptron loss: 𝑙 𝑤, 𝑥' , 𝑦' = max[0, −𝑦'𝑤/𝑥']
• Perceptron update:

• If 𝑦)𝑤-𝑥) < 0: 𝑤 ← 𝑤 + 𝜂	𝑦)𝑥)
• Otherwise: do nothing

• What are the differences?

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization

General recipe
• Find parameters 𝑤	that minimize the sum of a regularization

loss and a data loss:

8𝐿 𝑤 	 = 	 𝜆𝑅 𝑤 	 +	
1
𝑛
9
',!

-

𝑙(𝑤, 𝑥' , 𝑦')
empirical loss data lossregularization

L2 regularization:

𝑅(𝑤) =
1
2
𝑤 #

#

Closer look at L2 regularization

• Regularized objective: 8𝐿(𝑤) = =
"
𝑤 "

" + ∑',!- 𝑙(𝑤, 𝑥' , 𝑦')

• Gradient of objective:

∇8𝐿(𝑤) = 𝜆𝑤 +9
',!

-

∇𝑙(𝑤, 𝑥' , 𝑦')

• SGD update:

𝑤 ← 𝑤 − 𝜂
𝜆
𝑛
𝑤 + ∇𝑙 𝑤, 𝑥' , 𝑦'

𝑤 ← 1 −
𝜂𝜆
𝑛

𝑤 − 𝜂∇𝑙 𝑤, 𝑥' , 𝑦'

• Interpretation: weight decay

General recipe
• Find parameters 𝑤	that minimize the sum of a regularization

loss and a data loss:

8𝐿 𝑤 	 = 	 𝜆𝑅 𝑤 	 +	
1
𝑛
9
',!

-

𝑙(𝑤, 𝑥' , 𝑦')
empirical loss data lossregularization

L2 regularization:

𝑅(𝑤) =
1
2
𝑤 #

#

L1 regularization:
𝑅(𝑤) = 𝑤 "

Closer look at L1 regularization
• Regularized objective:

8𝐿 𝑤 = 𝜆 𝑤 ! +9
',!

-

𝑙 𝑤, 𝑥' , 𝑦'

= 𝜆9
9

𝑤(9) +9
',!

-

𝑙 𝑤, 𝑥' , 𝑦'

• Gradient: ∇8𝐿 𝑤 = 𝜆	sgn(𝑤) + ∑',!- ∇𝑙(𝑤, 𝑥' , 𝑦')
 (here sgn is an elementwise function)
• SGD update:

𝑤 ← 𝑤 −
𝜂𝜆
𝑛
sgn 𝑤 − 𝜂∇𝑙 𝑤, 𝑥' , 𝑦'

• Interpretation: encouraging sparsity

General recipe
• Find parameters 𝑤	that minimize the sum of a regularization

loss and a data loss:

8𝐿 𝑤 	 = 	 𝜆𝑅 𝑤 	 +	
1
𝑛
9
',!

-

𝑙(𝑤, 𝑥' , 𝑦')

• Optimize by stochastic gradient descent (SGD): At each
iteration, sample a single data point 𝑥' , 𝑦' and take a step in
the direction opposite the gradient of the loss for that point:

𝑤 ← 𝑤 − 𝜂	∇.
𝜆
𝑛
𝑅 𝑤 + 𝑙 𝑤, 𝑥' , 𝑦'

empirical loss data lossregularization

Summary of SGD updates
• Linear regression:

𝑤 ← 𝑤 + 𝜂	(𝑦' −𝑤/𝑥')	𝑥'

• Logistic regression:
𝑤 ← 𝑤 + 𝜂	𝜎 −𝑦'𝑤/𝑥' 	𝑦'𝑥'

• Perceptron:
𝑤 ← 𝑤 + 𝜂	𝕀[𝑦'𝑤/𝑥' < 0]	𝑦'𝑥'

• SVM:

𝑤 ← 1 −
𝜂𝜆
𝑛

𝑤 + 𝜂	𝕀[𝑦'𝑤/𝑥' < 1]	𝑦'𝑥'

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification with a Softmax Function

One-vs-all Classification with a Softmax
• Let 𝑦 ∈ {1,… , 𝐶}
• Learn 𝐶 scoring functions 𝑓!, 𝑓", … , 𝑓>

• We can squash the vector of responses 𝑓!, … , 𝑓? into a
vector of “probabilities”:

softmax 𝑓!, … , 𝑓? =
exp(𝑓!)
∑@ exp(𝑓@)

, … ,
exp(𝑓>)
∑@ exp(𝑓@)

• The outputs are between 0 and 1 and sum to 1
• If one of the inputs (logits) is much larger than the others,

then the corresponding softmax value will be close to 1 and
others will be close to 0

Softmax and sigmoid
• For two classes:

softmax 0, 𝑓 =
exp(0)

exp(0) + exp(𝑓)
,

exp(𝑓)
exp 0 + exp(𝑓)

 = !
!1234(A)

, 234(A)
!1	234 A

 = 1 − 𝜎 𝑓 , 𝜎(𝑓)

• Thus, softmax is the generalization of sigmoid for more than
two classes

Cross-entropy loss
• It is natural to use negative log likelihood loss with softmax:

𝑙 𝑊, 𝑥' , 𝑦' = − log𝑃C 𝑦' 𝑥' = −log
exp 𝑤*#

/ 𝑥'
∑@ exp 𝑤@/𝑥'

• This is also the cross-entropy between the “empirical” distribution
8𝑃 𝑐 𝑥' = 𝕀[𝑐 = 𝑦'] and “estimated” distribution 𝑃C(𝑐|𝑥'):

−9
?
8𝑃 𝑐 𝑥' log 𝑃C(𝑐|𝑥')

Empirical distribution 0𝑃 𝑐 𝑥! Estimated distribution 𝑃%(𝑐|𝑥!)

𝑃(correct class | 𝑥!) = 	1

𝑃(incorrect class | 𝑥!) = 	0

SGD with cross-entropy loss

𝑙 𝑊, 𝑥' , 𝑦' = − log𝑃C 𝑦' 𝑥' = −log
exp 𝑤*#

/ 𝑥'
∑@ exp 𝑤@/𝑥'

= −𝑤*#
/ 𝑥' + log 9

@
exp 𝑤@/𝑥'

• Gradient w.r.t. 𝑤*#:

−𝑥' +
exp 𝑤*#

/ 𝑥' 𝑥'
∑@ exp 𝑤@/𝑥'

= (𝑃C 𝑦' 𝑥' − 1)𝑥'

• Gradient w.r.t. 𝑤?, 𝑐 ≠ 𝑦':
exp 𝑤?/𝑥' 𝑥'
∑@ exp 𝑤@/𝑥'

= 𝑃C 𝑐 𝑥' 𝑥'

SGD with cross-entropy loss
• Gradient w.r.t. 𝑤*#: 	(𝑃C 𝑦' 𝑥' − 1)𝑥'

• Gradient w.r.t. 𝑤?, 𝑐 ≠ 𝑦': 	 𝑃C 𝑐 𝑥' 𝑥'

• Update rule:
• For 𝑦':	

𝑤*# ← 𝑤*# + 𝜂 1 − 𝑃C 𝑦' 𝑥' 𝑥'
• For 𝑐 ≠ 𝑦':	

𝑤? ← 𝑤? − 𝜂𝑃C 𝑐 𝑥' 𝑥'

Softmax trick: Avoiding overflow
• Exponentiated values exp 𝑓? 	can become very large and

cause overflow
• Note that adding the same constant to all softmax inputs

(logits) does not change the output of the softmax:

exp 𝑓? + 𝐾
∑@ exp 𝑓@ + 𝐾

=
exp 𝐾 exp 𝑓?

∑@ exp(𝐾)	exp 𝑓@
=

exp 𝑓?
∑@ exp 𝑓@

• Then we can let K = −max@ 	𝑓@ (i.e., make largest input to
softmax be 0)

Linear classifiers: Outline
• Examples of classification models: nearest neighbor, linear
• Empirical loss minimization framework
• Linear classification models

1. Linear regression
2. Logistic regression
3. Perceptron training algorithm
4. Support vector machines

• General recipe: data loss, regularization
• Multi-class classification with a Softmax Function

