
Feature engineering, Nonlinear
classifiers,

bias-variance tradeoff

Saurabh Gupta

Many slides from Lana Lazebnik

Overview
• Feature Design
• Nonlinear classifiers

• “Shallow” approach: Kernel support vector machines (SVMs)
• “Deep” approach: Multi-layer neural networks

• Controlling classifier complexity
• Hyperparameters
• Bias-variance tradeoff
• Overfitting and underfitting
• Hyperparameter search in practice

Hand-designing Feature Spaces using Domain Knowledge

• Edges / gradients more useful than raw pixel values
• Invariance to local deformations

• Spatial pooling
• Quantization into coarse bins

Hand-designing Feature Spaces using Domain Knowledge

• E.g. Spatial pooling of raw pixels

Hand-designing Feature Spaces using Domain Knowledge
M

ap
 to

 o
rie

nt
at

io
n

bi
ns

• E.g. Histogram of Oriented Gradients

Hand-designing Feature Spaces using Domain Knowledge

Histogram of Oriented Gradients Histogram of Oriented Gradients

Hand-designing Feature Spaces using Domain Knowledge

Hand-designing Feature Spaces using Domain Knowledge

Hand-designing Feature Spaces using Domain Knowledge

Actual HOG descriptor use many more tricks:

• Normalization

• Histograms in overlapping regions

• Histograms over varying spatial scales (pyramid-hog)

• Image smoothing before computing gradients

• Signed gradients

• …

Hand-designing Feature Spaces using Domain Knowledge

Dalal and Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005.

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Beyond Linear Decision Boundaries
• Feature design approach: design features that work well with linear

classifiers
• Non-linear classifier approach:

• “Shallow” approach: nonlinear feature transformation followed by linear classifier

• “Deep” approach: stack multiple layers of linear predictors (interspersed with
nonlinearities)

Feature
transformation

Linear
classifierInput Output

Layer 1 Layer 2 Layer L OutputInput …

Shallow approach

Feature
transformation

Linear
classifierInput Output

Image credit: Andrew Moore

Φ: 𝑥	 → 𝜑(𝑥)

Nonlinear SVMs
• General idea: map the original feature space to a higher-

dimensional one where the training data is (hopefully) separable
• Because of the special properties of SVM optimization, this can be done

without explicitly performing the lifting transformation

Image credit: Andrew Moore

Dual SVM formulation
• Directly solving the SVM objective for 𝑤 is called the primal approach:

arg	min)
𝜆
2
𝑤 * +,

+,-

.

max[0,1 −𝑦+𝑤/𝑥+]

• An equivalent formulation is: solve a dual optimization problem over
Lagrange multipliers 𝛼+ associated with individual training points:
• arg	m𝑎𝑥! ∑" 𝛼" − #

$
∑",& 𝛼"𝛼&𝑦"𝑦&𝒙𝒊𝑻𝒙𝒋 ∶ ∑" 𝛼"𝑦" = 0, 0 ≤ 𝛼" ≤

#
*

• At the optimum, 𝛼! are nonzero only for support vectors
• In the dual optimization algorithm, training points appear only inside dot

products 𝑥!"𝑥# and this enables nonlinear SVMs via the kernel trick

• This gives a classifier of the form:
𝑓 𝑥 = ∑+,-. 𝛼+𝑦+𝑥+/𝑥	or w = ∑+,-. 𝛼+𝑦+𝑥+ 	

Dual SVM formulation
• arg	m𝑎𝑥? ∑+ 𝛼+ − -

*
∑+,@ 𝛼+𝛼@𝑦+𝑦@𝒙𝒊𝑻𝒙𝒋 ∶ ∑+ 𝛼+𝑦+ = 0, 0 ≤ 𝛼+ ≤

-
D

• 𝐾 𝒙𝒊, 𝒙𝒋 = 𝒙𝒊𝑻𝒙𝒋.

• arg	m𝑎𝑥? ∑+ 𝛼+ − -
*
∑+,@ 𝛼+𝛼@𝑦+𝑦@𝑲(𝒙𝒊, 𝒙𝒋) ∶ ∑+ 𝛼+𝑦+ = 0, 0 ≤ 𝛼+ ≤

-
D

• This gives a classifier of the form:

𝑓 𝑥 =,
+,-

.

𝛼+𝑦+𝑲(𝒙𝒊, 𝒙)

• How about we compute similarity in a different space 𝜑?
𝐾 𝑥+ , 𝑥@ = 𝜑 𝒙𝒊 /𝜑 𝒙𝒋 .

Kernel SVMs
• The kernel trick: instead of explicitly computing the lifting

transformation 𝜑(𝑥), define a kernel function

𝐾 𝑥, 𝑥E = 𝜑 𝑥 /𝜑(𝑥′)

• To be valid, the kernel function must satisfy Mercer’s condition (kernel
matrices must be positive-definite and symmetric)

• The learned classifier takes the form

𝑓 𝑥 =,
+,-

.

𝛼+𝑦+𝜑 𝑥+ /𝜑(𝑥) =,
+,-

.

𝛼+𝑦+𝐾(𝑥+ , 𝑥)

• This gives a nonlinear decision boundary in the original feature space

• Non-separable data in 1D:

• Apply mapping 𝜑 𝑥 = 𝑥, 𝑥* :

𝜑 𝑥 /𝜑 𝑥E = 𝐾(𝑥, 𝑥E) = 𝑥𝑥E + 𝑥*𝑥′*

0 x

0 x

x2

Toy example

Kernel example 1: Polynomial
• Polynomial kernel with degree 𝑑 and constant 𝑐:

𝐾 𝑥, 𝑥E = (𝑥/𝑥E + 𝑐)F

• What this looks like for 𝑑 = 2:
𝑥 = 𝑢, 𝑣 , 𝑥E = 𝑢E, 𝑣E
𝐾 𝑥, 𝑥E = (𝑢𝑢E + 𝑣𝑣E + 𝑐)*

= 𝑢*𝑢′* + 𝑣*𝑣′* + 2𝑢𝑢E𝑣𝑣E + 𝑐𝑢𝑢E + 𝑐𝑣𝑣E + 𝑐*

𝜑 𝑥 = (𝑢*, 𝑣*, 2𝑢𝑣, 𝑐𝑢, 𝑐𝑣, 𝑐)

• Thus, the explicit feature transformation consists of all
polynomial combinations of individual dimensions of degree
up to 𝑑

Kernel example 1: Polynomial

Kernel example 2: Gaussian
• Gaussian kernel with bandwidth 𝜎:

𝐾 𝑥, 𝑥E = exp −
1
𝜎*

𝑥 − 𝑥′ *

• Fun fact: the corresponding mapping 𝜑 𝑥 is infinite-dimensional!

||𝑥	– 	𝑥’||

𝐾(𝑥, 𝑥’)

SV’s

Kernel example 2: Gaussian
• Gaussian kernel with bandwidth 𝜎:

𝐾 𝑥, 𝑥E = exp −
1
𝜎*

𝑥 − 𝑥′ *

• It’s also called the Radial Basis Function (RBF) kernel
• The predictor 𝑓 𝑥 = ∑+,-. 𝛼+𝑦+𝐾 𝑥+ , 𝑥 is a sum of “bumps”

centered on support vectors

SVM: Pros and cons
• Pros

• Margin maximization and kernel trick are elegant, amenable to
convex optimization and theoretical analysis

• Kernel SVMs are flexible, can be used with problem-specific kernels
• SVM loss gives very good accuracy in practice
• Perfect “off-the-shelf” classifier, many packages are available
• Linear SVMs can scale to large datasets

• Con
• Kernel SVM training does not scale to large datasets: memory cost is

quadratic and computation cost even worse

Overview
• Feature Design
• Nonlinear classifiers

• “Shallow” approach: Kernel support vector machines (SVMs)

• “Deep” approach: Multi-layer neural networks

Feature
transformation

Linear
classifierInput Output

Layer 1 Layer 2 Layer 3 OutputInput

From linear classifiers to multi-layer networks

𝑦 = 𝒘!𝒙𝒙

From linear classifiers to multi-layer networks
Linear layer

𝒙

𝑦(#) = 𝒘(#) 1 𝒙

𝑦(%) = 𝒘(%) 1 𝒙

⋮

From linear classifiers to multi-layer networks

𝒚 = 𝑾𝒙

𝑾: matrix whose rows are weights of output
units 𝒘(&)

Linear layer

𝒙

From linear classifiers to multi-layer networks

𝒚 = 𝑾𝒙

Linear layer Nonlinearity

𝒛 = 𝒈(𝒚)𝒙
𝒚

Common nonlinearities (or activation functions)

Source: Stanford 231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

From linear classifiers to multi-layer networks

𝒚 = 𝑾𝒙

Linear layer Nonlinearity

𝒛 = 𝒈(𝒚)𝒙
𝒚

𝒛 = max(0, 𝒚)

…

Why do we need the nonlinearity?

The power of nonlinearities
Points not linearly
separable in original space

Source: J. Johnson

𝑥(;)

𝑥(<)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Source: J. Johnson

Points not linearly
separable in original space

Consider a linear transform: ℎ	 = 	𝑊𝑥 + 𝑏
Where 𝑥, ℎ, 𝑏 are 2-dimensional

Feature transform:
ℎ	 = 	𝑊𝑥 + 𝑏

𝑥(;)

𝑥(<)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Still not linearly
separable!

The power of nonlinearities

Source: J. Johnson

Points not linearly
separable in original space

Consider a linear transform: ℎ	 = 	𝑊𝑥 + 𝑏
Where 𝑥, ℎ, 𝑏 are 2-dimensional

Feature transform:
ℎ	 = 	𝑊𝑥 + 𝑏

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities
Let’s add a nonlinearity:

ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏)

Source: J. Johnson

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

A
A

Source: J. Johnson

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

B is
“collapsed”
onto +ℎ($)	axis

The power of nonlinearities

A
AB B

Source: J. Johnson

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

A
AB B

D

D

D “collapsed”
onto +ℎ(#)	axis

Source: J. Johnson

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) B is

“collapsed”
onto +ℎ($)	axis

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

A
AB B

D

D

C C
C
“collapsed”
onto origin

Source: J. Johnson

𝑥(;)

𝑥(<)

D “collapsed”
onto +ℎ(#)	axis

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) B is

“collapsed”
onto +ℎ($)	axis

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Source: J. Johnson

Points not linearly
separable in original space

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Source: J. Johnson

Points not linearly
separable in original space

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Source: J. Johnson

Points not linearly
separable in original space

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏)

Points are linearly
separable in
feature space!

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

The power of nonlinearities

Points are linearly
separable in
feature space!

Linear classifier in feature
space gives nonlinear
classifier in original space

Source: J. Johnson

Points not linearly
separable in original space

𝑥(;)

𝑥(<)

ℎ(;)

ℎ(<)

Let’s add a nonlinearity:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏) 	= 	max(0,𝑊𝑥 + 𝑏)

Feature transform:
ℎ	 = 	ReLU(𝑊𝑥 + 𝑏)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Two-layer neural network

Final output: 𝒈 𝑾%𝒈(𝑾#𝒙)

In
di

vi
du

al
 d

im
en

si
on

s
of

 𝒙

Output of hidden layer: 𝒈(𝑾#𝒙)

Image source

https://ljvmiranda921.github.io/notebook/2017/02/17/artificial-neural-networks/

Two-layer networks as combinations of templates

Linear classifier: One template per class

Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Two-layer networks as combinations of templates

Can use different
templates to cover
multiple modes of a
class

Source: J. Johnson

First layer: bank of templates
Second layer: recombines templates

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Two-layer networks as combinations of templates

It’s a “distributed”
representation:
Most templates are
not interpretable

Source: J. Johnson

First layer: bank of templates
Second layer: recombines templates

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture05.pdf

Expressiveness of two-layer networks
• How complex can we make the decision boundary in a two-

layer network?
• The bigger the hidden layer, the more complex the model
• A two-layer network is a universal function approximator

• But the hidden layer may need to be huge

Figure source

http://neuralnetworksanddeeplearning.com/chap4.html
http://cs231n.github.io/neural-networks-1/

Neural networks beyond two layers

Output:

𝑔- 𝑊-…	𝑔$ 𝑊$	𝑔# 𝑊#𝑥 …

Image source

In
di

vi
du

al
 d

im
en

si
on

s
of

 𝑥

https://learnai1.home.blog/2019/11/20/multi-layer-neural-networks-back-propagation/

“Deep” pipeline

• Learn a feature hierarchy

• Each layer extracts features from the output
of previous layer

• All layers are trained jointly

Layer 1 Layer 2 Layer L OutputInput …

Multi-Layer network demo

http://playground.tensorflow.org/

http://playground.tensorflow.org/

Overview
• Feature Design
• Nonlinear classifiers

• “Shallow” approach: Kernel support vector machines (SVMs)
• “Deep” approach: Multi-layer neural networks

• Controlling classifier complexity
• Hyperparameters
• Bias-variance tradeoff
• Overfitting and underfitting
• Hyperparameter search in practice

Supervised learning outline revisited
1. Collect data and labels
2. Specify model: select model class and loss function
3. Train model: find the parameters of the model that minimize

the empirical loss on the training data

This involves
hyperparameters that

affect the generalization
ability of the trained model

Hyperparameters
• 𝐾 in 𝐾-nearest-neighbor

• What if 𝐾 is too large?
• What if 𝐾 is too small?

Hyperparameters
• Regularization constant 𝜆	

• Recall: SVM optimization

min)
𝜆
2
𝑤 * +,

+,-

.

max[0,1 −𝑦+𝑤/𝑥+]

• What if 𝜆 is too large?
• What if 𝜆 is too small?

Hyperparameters
• Regularization constant 𝜆

• Tradeoff between margin and classification errors

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

Hyperparameters
• Regularization constant 𝜆

• Tradeoff between margin and classification errors

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

Hyperparameters
• Regularization constant 𝜆

• Related: preventing the classifier from getting over-confident

Source: J. Johnson
Sigmoid classifier, logistic loss

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

Hyperparameters
• What about nonlinear SVMs?

• Choice of kernel (and any associated constants)

Polynomial kernel: 𝐾 𝑥, 𝑥! = (𝑥"𝑥! + 𝑐)#

Gaussian kernel
• Gaussian kernel with bandwidth 𝜎:

𝐾 𝑥, 𝑥E = exp −
1
𝜎*

𝑥 − 𝑥′ *

• Recall: the predictor 𝑓 𝑥 = ∑+,-. 𝛼+𝑦+𝐾 𝑥+ , 𝑥 is a sum of
“bumps” centered on support vectors

SV’s

Gaussian kernel
• Gaussian kernel with bandwidth 𝜎:

𝐾 𝑥, 𝑥E = exp −
1
𝜎*

𝑥 − 𝑥′ *

• Recall: the predictor 𝑓 𝑥 = ∑+,-. 𝛼+𝑦+𝐾 𝑥+ , 𝑥 is a sum of
“bumps” centered on support vectors

• How does the value of 𝜎 affect the behavior of the predictor?
• What if 𝜎 is close to zero?
• What if 𝜎 is very large?

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer

Source: Stanford 231n

http://cs231n.github.io/neural-networks-1/

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer

Source: Stanford 231n

Number of hidden units in a two-layer network

http://cs231n.github.io/neural-networks-1/

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer
• Type of nonlinearity
• Type of loss function
• Regularization constant

Source: Stanford 231n

http://cs231n.github.io/neural-networks-1/

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer
• Type of nonlinearity
• Type of loss function
• Regularization constant
• SGD settings: learning rate schedule, number of epochs,

minibatch size, etc.

Summary: Hyperparameters
• Examples of hyperparameters

• K in K-NN
• In SVMs: regularization constant, kernel type and constants
• In neural networks: number of layers, number of units per layer, type

of nonlinearity, type of loss function, regularization constant
• SGD settings: learning rate schedule, number of epochs, minibatch

size, etc.

• We can think of our hyperparameter choices as determining
the “complexity” of the model and controlling its
generalization ability

Overview
• Nonlinear classifiers

• Kernel support vector machines (SVMs)
• Multi-layer neural networks

• Controlling classifier complexity
• Hyperparameters
• Bias-variance tradeoff
• Overfitting and underfitting
• Hyperparameter search in practice

Model complexity and generalization
• Generalization (test) error of learning algorithms can be

broken down into three components (see notes):
• Noise: unavoidable error
• Bias: error due to simplifying model assumptions
• Variance: error due to randomness of training set

High bias, low variance Low bias, high variance

Figure source

“Simple” model “Complex” model“Intermediate” model

https://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf
http://www.holehouse.org/mlclass/07_Regularization.html

Bias-variance tradeoff
• What if your model bias is too high?

• Your model is underfitting – it is incapable of capturing the important
characteristics of the training data

• What if your model variance is too high?
• Your model is overfitting – it is fitting noise and unimportant

characteristics of the data
• How to recognize underfitting or overfitting?

Underfitting Overfitting

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

Bias-variance tradeoff
• What if your model bias is too high?

• Your model is underfitting – it is incapable of capturing the important
characteristics of the training data

• What if your model variance is too high?
• Your model is overfitting – it is fitting noise and unimportant

characteristics of the data
• How to recognize underfitting or overfitting?

• Need to look at both training and test error
• Underfitting: training and test error are both high
• Overfitting: training error is low, test error is high

Behavior of training and test error

Training error

Test error

Complexity Low Bias
High Variance

High Bias
Low Variance

Er
ro

r

Source: D. Hoiem

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Dependence on training set size

Many training examples

Few training examples

Complexity Low Bias
High Variance

High Bias
Low Variance

Te
st

 E
rro

r

Source: D. Hoiem

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Dependence on training set size

Testing

Training
Number of training examples

Er
ro

r

Generalization gap

(fixed model)
Source: D. Hoiem

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Dependence on training set size
• Digit classification case study

Dependence on training set size
• Digit classification case study

Maji and Malik. 2009 Fast and Accurate Digit Classification

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-159.pdf

Looking at training and test error

Training error

Test error

Complexity Low Bias
High Variance

High Bias
Low Variance

Er
ro

r

Source: D. Hoiem

• In most practical situations, you are faced with a fixed dataset
and have to find the hyperparameter settings that give you the
best generalization performance

https://courses.engr.illinois.edu/cs543/sp2017/lectures/Lecture%2021%20-%20Image%20Categorization%20-%20%20Vision_Spring2017.pptx

Hyperparameter search in practice
• For a range of hyperparameter choices,

iterate:
• Learn parameters on the training data
• Measure accuracy on the held-out or

validation data
• Finally, measure accuracy on the test data
• Crucial: do not peek at test set during

hyperparameter search!
• The test set needs to be used sparingly since it

is supposed to represent never before seen data

Hyperparameter search in practice
• Variant: K-fold cross-validation

• Partition the entire training set into K groups
• In each run (or fold), select one of the groups as the validation set

and train on the other K-1 groups. At the end, average the
accuracies across the K folds

• Typically not used for deep learning due to computational expense

Training
Validation

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture02.pdf

What’s the big deal?
• If you don’t maintain proper training-validation-test hygiene,

you will be fooling yourself or others (professors, reviewers,
employers, customers)

• It may even cause a public scandal!

What’s the big deal?

http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015

http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015

