Feature engineering, Nonlinear classifiers, bias-variance tradeoff

Saurabh Gupta

Overview

- Feature Design
- Nonlinear classifiers
- "Shallow" approach: Kernel support vector machines (SVMs)
- "Deep" approach: Multi-layer neural networks
- Controlling classifier complexity
- Hyperparameters
- Bias-variance tradeoff
- Overfitting and underfitting
- Hyperparameter search in practice

Hand-designing Feature Spaces using Domain Knowledge

- Edges / gradients more useful than raw pixel values
- Invariance to local deformations
- Spatial pooling
- Quantization into coarse bins

Hand-designing Feature Spaces using Domain Knowledge

- E.g. Spatial pooling of raw pixels

Hand-designing Feature Spaces using Domain Knowledge

- E.g. Histogram of Oriented Gradients

Histogram of Oriented Gradients

Histogram of Oriented Gradients

Hand-designing Feature Spaces using Domain Knowledge

$$
4444
$$

Hand-designing Feature Spaces using Domain Knowledge

Actual HOG descriptor use many more tricks:

- Normalization
- Histograms in overlapping regions
- Histograms over varying spatial scales (pyramid-hog)
- Image smoothing before computing gradients
- Signed gradients

Hand-designing Feature Spaces using Domain Knowledge

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each "pixel" shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image. (e) It's computed R-HOG descriptor. (f, g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

Dalal and Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005.

Beyond Linear Decision Boundaries

- Feature design approach: design features that work well with linear classifiers
- Non-linear classifier approach:
- "Shallow" approach: nonlinear feature transformation followed by linear classifier

- "Deep" approach: stack multiple layers of linear predictors (interspersed with nonlinearities)

Shallow approach

Nonlinear SVMs

- General idea: map the original feature space to a higherdimensional one where the training data is (hopefully) separable
- Because of the special properties of SVM optimization, this can be done without explicitly performing the lifting transformation

Dual SVM formulation

- Directly solving the SVM objective for w is called the primal approach:

$$
\arg \min _{w} \frac{\lambda}{2}\|w\|^{2}+\sum_{i=1}^{n} \max \left[0,1-y_{i} w^{T} x_{i}\right]
$$

- An equivalent formulation is: solve a dual optimization problem over Lagrange multipliers α_{i} associated with individual training points:
- $\arg \max x_{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}: \sum_{i} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq \frac{1}{\lambda}$
- At the optimum, α_{i} are nonzero only for support vectors
- In the dual optimization algorithm, training points appear only inside dot products $x_{i}^{T} x_{j}$ and this enables nonlinear SVMs via the kernel trick
- This gives a classifier of the form:

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} x \text { or } \mathrm{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

Dual SVM formulation

- $\arg \max _{\alpha} \sum_{i} \alpha_{i} \quad-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}: \sum_{i} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq \frac{1}{\lambda}$
- $K\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\boldsymbol{x}_{\boldsymbol{i}}^{\boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{j}}$.
- $\arg \max _{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right): \sum_{i} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq \frac{1}{\lambda}$
- This gives a classifier of the form:

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}\right)
$$

- How about we compute similarity in a different space φ ?

$$
K\left(x_{i}, x_{j}\right)=\varphi\left(x_{i}\right)^{T} \varphi\left(x_{j}\right)
$$

Kernel SVMs

- The kernel trick: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function

$$
K\left(x, x^{\prime}\right)=\varphi(x)^{T} \varphi\left(x^{\prime}\right)
$$

- To be valid, the kernel function must satisfy Mercer's condition (kernel matrices must be positive-definite and symmetric)
- The learned classifier takes the form

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} \varphi\left(x_{i}\right)^{T} \varphi(x)
$$

- This gives a nonlinear decision boundary in the original feature space

Toy example

- Non-separable data in 1D:

- Apply mapping $\varphi(x)=\left(x, x^{2}\right)$:

$$
\varphi(x)^{T} \varphi\left(x^{\prime}\right)=K\left(x, x^{\prime}\right)=x x^{\prime}+x^{2} x^{\prime 2}
$$

Kernel example 1: Polynomial

- Polynomial kernel with degree d and constant c :

$$
K\left(x, x^{\prime}\right)=\left(x^{T} x^{\prime}+c\right)^{d}
$$

- What this looks like for $d=2$:

$$
\begin{gathered}
x=(u, v), \quad x^{\prime}=\left(u^{\prime}, v^{\prime}\right) \\
K\left(x, x^{\prime}\right)=\left(u u^{\prime}+v v^{\prime}+c\right)^{2} \\
=u^{2} u^{\prime 2}+v^{2} v^{\prime 2}+2 u u^{\prime} v v^{\prime}+c u u^{\prime}+c v v^{\prime}+c^{2} \\
\varphi(x)=\left(u^{2}, v^{2}, \sqrt{2} u v, \sqrt{c} u, \sqrt{c} v, c\right)
\end{gathered}
$$

- Thus, the explicit feature transformation consists of all polynomial combinations of individual dimensions of degree up to d

Kernel example 1: Polynomial

Kernel example 2: Gaussian

- Gaussian kernel with bandwidth σ :

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{\sigma^{2}}\left\|x-x^{\prime}\right\|^{2}\right)
$$

- Fun fact: the corresponding mapping $\varphi(x)$ is infinite-dimensional!

$\left\|x-x^{\prime}\right\|$

Kernel example 2: Gaussian

- Gaussian kernel with bandwidth σ :

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{\sigma^{2}}\left\|x-x^{\prime}\right\|^{2}\right)
$$

- It's also called the Radial Basis Function (RBF) kernel
- The predictor $f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(x_{i}, x\right)$ is a sum of "bumps" centered on support vectors

SVM: Pros and cons

- Pros
- Margin maximization and kernel trick are elegant, amenable to convex optimization and theoretical analysis
- Kernel SVMs are flexible, can be used with problem-specific kernels
- SVM loss gives very good accuracy in practice
- Perfect "off-the-shelf" classifier, many packages are available
- Linear SVMs can scale to large datasets
- Con
- Kernel SVM training does not scale to large datasets: memory cost is quadratic and computation cost even worse

Overview

- Feature Design
- Nonlinear classifiers
- "Shallow" approach: Kernel support vector machines (SVMs)

- "Deep" approach: Multi-layer neural networks

From linear classifiers to multi-layer networks

From linear classifiers to multi-layer networks

Linear layer

From linear classifiers to multi-layer networks

Linear layer

From linear classifiers to multi-layer networks

Common nonlinearities (or activation functions)

Sigmoid
 $\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU
 $\max (0, x)$

From linear classifiers to multi-layer networks

The power of nonlinearities
Points not linearly
separable in original space
$x^{(2)}$

The power of nonlinearities

Points not linearly
separable in original space $x^{(2)}$

Consider a linear transform: $h=W x+b$ Where x, h, b are 2-dimensional

The power of nonlinearities

The power of nonlinearities

Let's add a nonlinearity:

$$
h=\operatorname{ReLU}(W x+b)=\max (0, W x+b)
$$

Feature transform:
$h=\operatorname{ReLU}(W x+b)$

The power of nonlinearities

Let's add a nonlinearity:

$$
h=\operatorname{ReLU}(W x+b)=\max (0, W x+b)
$$

Feature transform:
$h=\operatorname{ReLU}(W x+b)$ $h^{(2)}$

The power of nonlinearities

The power of nonlinearities

Two-layer neural network

Two-layer networks as combinations of templates

Linear classifier: One template per class

Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

Two-layer networks as combinations of templates

First layer: bank of templates Second layer: recombines templates

Can use different templates to cover multiple modes of a class

Two-layer networks as combinations of templates

First layer: bank of templates Second layer: recombines templates

It's a "distributed" representation: Most templates are not interpretable

Expressiveness of two-layer networks

- How complex can we make the decision boundary in a twolayer network?
- The bigger the hidden layer, the more complex the model
- A two-layer network is a universal function approximator
- But the hidden layer may need to be huge

3 hidden neurons

6 hidden neurons

20 hidden neurons

Neural networks beyond two layers

"Deep" pipeline

- Learn a feature hierarchy
- Each layer extracts features from the output of previous layer
- All layers are trained jointly

Multi-Layer network demo

http://playground.tensorflow.org/

Overview

- Feature Design
- Nonlinear classifiers
- "Shallow" approach: Kernel support vector machines (SVMs)
- "Deep" approach: Multi-layer neural networks
- Controlling classifier complexity
- Hyperparameters
- Bias-variance tradeoff
- Overfitting and underfitting
- Hyperparameter search in practice

Supervised learning outline revisited

1. Collect data and labels
2. Specify model: selec model class and loss function
3. Train model: find the parameters oyme model that minimize the empirical loss on the training

This involves
hyperparameters that affect the generalization ability of the trained model

Hyperparameters

- K in K-nearest-neighbor
- What if K is too large?
- What if K is too small?

Hyperparameters

- Regularization constant λ
- Recall: SVM optimization

$$
\min _{w} \frac{\lambda}{2}\|w\|^{2}+\sum_{i=1}^{n} \max \left[0,1-y_{i} w^{T} x_{i}\right]
$$

- What if λ is too large?
- What if λ is too small?

Hyperparameters

- Regularization constant λ
- Tradeoff between margin and classification errors

Hyperparameters

- Regularization constant λ
- Tradeoff between margin and classification errors

Hyperparameters

- Regularization constant λ
- Related: preventing the classifier from getting over-confident

Sigmoid classifier, logistic loss

Hyperparameters

- What about nonlinear SVMs?
- Choice of kernel (and any associated constants)

Polynomial kernel: $K\left(x, x^{\prime}\right)=\left(x^{T} x^{\prime}+c\right)^{d}$

Gaussian kernel

- Gaussian kernel with bandwidth σ :

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{\sigma^{2}}\left\|x-x^{\prime}\right\|^{2}\right)
$$

- Recall: the predictor $f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(x_{i}, x\right)$ is a sum of "bumps" centered on support vectors

Gaussian kernel

- Gaussian kernel with bandwidth σ :

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{\sigma^{2}}\left\|x-x^{\prime}\right\|^{2}\right)
$$

- Recall: the predictor $f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(x_{i}, x\right)$ is a sum of "bumps" centered on support vectors
- How does the value of σ affect the behavior of the predictor?
- What if σ is close to zero?
- What if σ is very large?

Hyperparameters in multi-layer networks

- Number of layers, number of units per layer

Hyperparameters in multi-layer networks

- Number of layers, number of units per layer

Number of hidden units in a two-layer network

Hyperparameters in multi-layer networks

- Number of layers, number of units per layer
- Type of nonlinearity
- Type of loss function
- Regularization constant

Hyperparameters in multi-layer networks

- Number of layers, number of units per layer
- Type of nonlinearity
- Type of loss function
- Regularization constant
- SGD settings: learning rate schedule, number of epochs, minibatch size, etc.

Summary: Hyperparameters

- Examples of hyperparameters
- K in K-NN
- In SVMs: regularization constant, kernel type and constants
- In neural networks: number of layers, number of units per layer, type of nonlinearity, type of loss function, regularization constant
- SGD settings: learning rate schedule, number of epochs, minibatch size, etc.
- We can think of our hyperparameter choices as determining the "complexity" of the model and controlling its generalization ability

Overview

- Nonlinear classifiers
- Kernel support vector machines (SVMs)
- Multi-layer neural networks
- Controlling classifier complexity
- Hyperparameters
- Bias-variance tradeoff
- Overfitting and underfitting
- Hyperparameter search in practice

Model complexity and generalization

- Generalization (test) error of learning algorithms can be broken down into three components (see notes):
- Noise: unavoidable error
- Bias: error due to simplifying model assumptions
- Variance: error due to randomness of training set
"Simple" model
High bias, low variance

Bias-variance tradeoff

- What if your model bias is too high?
- Your model is underfitting - it is incapable of capturing the important characteristics of the training data
- What if your model variance is too high?
- Your model is overfitting - it is fitting noise and unimportant characteristics of the data
- How to recognize underfitting or overfitting?

Bias-variance tradeoff

- What if your model bias is too high?
- Your model is underfitting - it is incapable of capturing the important characteristics of the training data
- What if your model variance is too high?
- Your model is overfitting - it is fitting noise and unimportant characteristics of the data
- How to recognize underfitting or overfitting?
- Need to look at both training and test error
- Underfitting: training and test error are both high
- Overfitting: training error is low, test error is high

Behavior of training and test error

Dependence on training set size

Dependence on training set size

Dependence on training set size

- Digit classification case study

Dependence on training set size

- Digit classification case study

Looking at training and test error

- In most practical situations, you are faced with a fixed dataset and have to find the hyperparameter settings that give you the best generalization performance

Hyperparameter search in practice

- For a range of hyperparameter choices, iterate:
- Learn parameters on the training data
- Measure accuracy on the held-out or validation data
- Finally, measure accuracy on the test data
- Crucial: do not peek at test set during hyperparameter search!
- The test set needs to be used sparingly since it is supposed to represent never before seen data

Training
Data

Held-Out Data

Test
Data

Hyperparameter search in practice

- Variant: K-fold cross-validation
- Partition the entire training set into K groups
- In each run (or fold), select one of the groups as the validation set and train on the other K-1 groups. At the end, average the accuracies across the K folds
- Typically not used for deep learning due to computational expense

What's the big deal?

- If you don't maintain proper training-validation-test hygiene, you will be fooling yourself or others (professors, reviewers, employers, customers)
- It may even cause a public scandal!

What's the big deal?

Baidu admits cheating in international supercomputer competition

Baidu recently apologised for violating the rules of an international supercomputer test in May, when the Chinese search engine giant claimed to beat both Google and Microsoft on the ImageNet image-recognition test.
\int By Cyrus Lee | June 10, 2015 -- 00:15 GMT (17:15 PDT) | Topic: China
technology
The New Hork Times
Computer Scientists Are Astir After Baidu Team Is Barred From A.I. Competition

By JOHN MARKOFF JUNE 3, 2015
engadgef

Baidu caught gaming recent supercomputer performance test

IM』GENET Large Scale Visual Recognition Challenge (ILSVRC)

Date: June 2, 2015
Dear ILSVRC community,
This is a follow up to the announcement on May 19, 2015 with some more details and the status of the test server.
During the period of November 28th, 2014 to May 13th, 2015, there were at least 30 accounts used by a team from Baidu to submit to the test server at least 200 times, far exceeding the specified limit of two submissions per week. This includes short periods of very high usage, for example with more than 40 submissions over 5 days from March 15th, 2015 to March 19th, 2015. Figure A below shows submissions from ImageNet accounts known to be associated with the team in question. Figure B shows a comparison to the activity from all other accounts.

The results obtained during this period are reported in a recent arXiv paper. Because of the violation of the regulations of the test server, these results may not be directly comparable to results obtained and reported by other teams. To make this clear, by exploiting the ability to test many slightly different solutions on the test server it is possible to 1) select the best out of a set of very similar solutions based on test performance and achieve a small but potentially significant advantage and 2) choose methods for further research and development based directly on the test data instead of using only the training and validation data for such choices.
http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015

