Feature engineering, Nonlinear classifiers, bias-variance tradeoff

Saurabh Gupta

Many slides from Lana Lazebnik
Overview

• Feature Design
• Nonlinear classifiers
 • “Shallow” approach: Kernel support vector machines (SVMs)
 • “Deep” approach: Multi-layer neural networks
• Controlling classifier complexity
 • Hyperparameters
 • Bias-variance tradeoff
 • Overfitting and underfitting
 • Hyperparameter search in practice
Hand-designing Feature Spaces using Domain Knowledge

- Edges / gradients more useful than raw pixel values
- Invariance to local deformations
 - Spatial pooling
 - Quantization into coarse bins
Hand-designing Feature Spaces using Domain Knowledge

- E.g. Spatial pooling of raw pixels
Hand-designing Feature Spaces using Domain Knowledge

- E.g. Histogram of Oriented Gradients
Hand-designing Feature Spaces using Domain Knowledge

Histogram of Oriented Gradients

Histogram of Oriented Gradients
Hand-designing Feature Spaces using Domain Knowledge
Hand-designing Feature Spaces using Domain Knowledge

Actual HOG descriptor use many more tricks:

- Normalization
- Histograms in overlapping regions
- Histograms over varying spatial scales (pyramid-hog)
- Image smoothing before computing gradients
- Signed gradients
- …
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel” shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image. (e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

Beyond Linear Decision Boundaries

- Feature design approach: design features that work well with linear classifiers
- Non-linear classifier approach:
 - “Shallow” approach: nonlinear feature transformation followed by linear classifier
 - “Deep” approach: stack multiple layers of linear predictors (interspersed with nonlinearities)
Shallow approach

Input \[\rightarrow\] Feature transformation \[\rightarrow\] Linear classifier \[\rightarrow\] Output

Image credit: Andrew Moore
Nonlinear SVMs

- General idea: map the original feature space to a higher-dimensional one where the training data is (hopefully) separable
 - Because of the special properties of SVM optimization, this can be done without explicitly performing the lifting transformation

\[\Phi : x \rightarrow \varphi(x) \]
Dual SVM formulation

- Directly solving the SVM objective for w is called the *primal* approach:
 \[
 \arg\min_w \frac{\lambda}{2} \|w\|^2 + \sum_{i=1}^n \max[0, 1 - y_i w^T x_i]
 \]

- An equivalent formulation is: solve a *dual* optimization problem over *Lagrange multipliers* α_i associated with individual training points:
 \[
 \arg\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j : \sum_i \alpha_i y_i = 0, 0 \leq \alpha_i \leq \frac{1}{\lambda}
 \]
 - At the optimum, α_i are nonzero only for *support vectors*
 - In the dual optimization algorithm, training points appear only inside dot products $x_i^T x_j$ and this enables nonlinear SVMs via the *kernel trick*

- This gives a classifier of the form:
 \[
 f(x) = \sum_{i=1}^n \alpha_i y_i x_i^T x \text{ or } w = \sum_{i=1}^n \alpha_i y_i x_i
 \]
Dual SVM formulation

- \(\text{arg max}_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j : \sum_i \alpha_i y_i = 0, 0 \leq \alpha_i \leq \frac{1}{\lambda} \)

- \(K(x_i, x_j) = x_i^T x_j \).

- \(\text{arg max}_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j) : \sum_i \alpha_i y_i = 0, 0 \leq \alpha_i \leq \frac{1}{\lambda} \)

- This gives a classifier of the form:
 \[f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x) \]

- How about we compute similarity in a different space \(\phi \)?
 \[K(x_i, x_j) = \phi(x_i)^T \phi(x_j). \]
Kernel SVMs

- The kernel trick: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function

\[K(x, x') = \varphi(x)^T \varphi(x') \]

- To be valid, the kernel function must satisfy Mercer’s condition (kernel matrices must be positive-definite and symmetric)

- The learned classifier takes the form

\[f(x) = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)^T \varphi(x) \]

- This gives a nonlinear decision boundary in the original feature space
Toy example

- Non-separable data in 1D:

- Apply mapping $\varphi(x) = (x, x^2)$:

$$
\varphi(x)^T \varphi(x') = K(x, x') = xx' + x^2 x'^2
$$
Kernel example 1: Polynomial

- Polynomial kernel with degree d and constant c:
 \[K(x, x') = (x^T x' + c)^d \]

- What this looks like for $d = 2$:
 \[x = (u, v), \quad x' = (u', v') \]
 \[K(x, x') = (uu' + vv' + c)^2 \]
 \[= u^2 u'^2 + v^2 v'^2 + 2uu'vv' + cuu' + cvv' + c^2 \]
 \[\varphi(x) = (u^2, v^2, \sqrt{2}uv, \sqrt{cu}, \sqrt{cv}, c) \]

- Thus, the explicit feature transformation consists of all polynomial combinations of individual dimensions of degree up to d
Kernel example 1: Polynomial

- Linear
- 2\text{nd} order polynomial
- 4\text{th} order polynomial
- 8\text{th} order polynomial
Kernel example 2: Gaussian

- Gaussian kernel with bandwidth σ:

\[
K(x, x') = \exp\left(-\frac{1}{\sigma^2} \|x - x'\|^2\right)
\]

- Fun fact: the corresponding mapping $\varphi(x)$ is infinite-dimensional!
Kernel example 2: Gaussian

- Gaussian kernel with bandwidth \(\sigma \):
 \[
 K(x, x') = \exp\left(-\frac{1}{\sigma^2} \|x - x'\|^2\right)
 \]
- It’s also called the Radial Basis Function (RBF) kernel
- The predictor \(f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x) \) is a sum of “bumps” centered on support vectors
SVM: Pros and cons

• Pros
 • Margin maximization and kernel trick are elegant, amenable to convex optimization and theoretical analysis
 • Kernel SVMs are flexible, can be used with problem-specific kernels
 • SVM loss gives very good accuracy in practice
 • Perfect “off-the-shelf” classifier, many packages are available
 • Linear SVMs can scale to large datasets

• Con
 • Kernel SVM training does not scale to large datasets: memory cost is quadratic and computation cost even worse
Overview

• Feature Design
• Nonlinear classifiers
 • “Shallow” approach: Kernel support vector machines (SVMs)
 • “Deep” approach: Multi-layer neural networks
From linear classifiers to multi-layer networks

\[y = w^T x \]
From linear classifiers to multi-layer networks

\[y^{(1)} = w^{(1)} \cdot x \]
\[y^{(2)} = w^{(2)} \cdot x \]
\[\vdots \]
From linear classifiers to multi-layer networks

\[y = Wx \]

\(W \): matrix whose rows are weights of output units \(w^{(k)} \)
From linear classifiers to multi-layer networks

\[y = Wx \]

\[z = g(y) \]
Common nonlinearities (or *activation functions*)

Sigmoid
\[
\sigma(x) = \frac{1}{1+e^{-x}}
\]

tanh
\[
\tanh(x)
\]

ReLU
\[
\max(0, x)
\]

Source: Stanford 231n
From linear classifiers to multi-layer networks

\[y = Wx \]

Why do we need the nonlinearity?
The power of nonlinearities

Points not linearly separable in original space

Source: J. Johnson
The power of nonlinearities

Points not linearly separable in original space

Consider a linear transform: \(h = Wx + b \)

Where \(x, h, b \) are 2-dimensional

Feature transform:

\(h = Wx + b \)

Source: J. Johnson
The power of nonlinearities

Points not linearly separable in original space

Consider a linear transform: \(h = Wx + b \)
Where \(x, h, b \) are 2-dimensional

Feature transform:
\(h = Wx + b \)

Still not linearly separable!

Source: J. Johnson
The power of nonlinearities

Let’s add a nonlinearity:

\[h = \text{ReLU}(Wx + b) = \max(0, Wx + b) \]

Feature transform:

\[h = \text{ReLU}(Wx + b) \]

Source: J. Johnson
The power of nonlinearities

Let’s add a nonlinearity:
\[h = \text{ReLU}(Wx + b) = \max(0, Wx + b) \]

Feature transform:
\[h = \text{ReLU}(Wx + b) \]

Source: J. Johnson
The power of nonlinearities

Let's add a nonlinearity:
\[h = \text{ReLU}(Wx + b) = \max(0, Wx + b) \]

Feature transform:
\[h = \text{ReLU}(Wx + b) \]

B is “collapsed” onto \(+h^{(2)}\) axis

Source: J. Johnson
The power of nonlinearities

Let's add a nonlinearity:

$$h = \text{ReLU}(Wx + b) = \max(0, Wx + b)$$

Feature transform:

$$h = \text{ReLU}(Wx + b)$$

B is “collapsed” onto $+h^{(2)}$ axis

D “collapsed” onto $+h^{(1)}$ axis

Source: J. Johnson
The power of nonlinearities

Let's add a nonlinearity:

$$h = \text{ReLU}(Wx + b) = \max(0, Wx + b)$$

Feature transform:

$$h = \text{ReLU}(Wx + b)$$

B is "collapsed" onto $+h^{(2)}$ axis

C "collapsed" onto origin

D "collapsed" onto $+h^{(1)}$ axis

Source: J. Johnson
The power of nonlinearities

Points not linearly separable in original space

Let’s add a nonlinearity:
\[h = \text{ReLU}(Wx + b) = \max(0, Wx + b) \]

Feature transform:
\[h = \text{ReLU}(Wx + b) \]

Source: J. Johnson
The power of nonlinearities

Points not linearly separable in original space

Let's add a nonlinearity:

\[h = \text{ReLU}(Wx + b) = \max(0, Wx + b) \]

Feature transform:

\[h = \text{ReLU}(Wx + b) \]
The power of nonlinearities

Points not linearly separable in original space

Let's add a nonlinearity:
\[h = \text{ReLU}(Wx + b) = \max(0, Wx + b) \]

Feature transform:
\[h = \text{ReLU}(Wx + b) \]

Points are linearly separable in feature space!

Source: J. Johnson
The power of nonlinearities

Points not linearly separable in original space

Let's add a nonlinearity:
\[h = \text{ReLU}(Wx + b) = \max(0, Wx + b) \]

Feature transform:
\[h = \text{ReLU}(Wx + b) \]

Linear classifier in feature space gives nonlinear classifier in original space

Points are linearly separable in feature space!

Source: J. Johnson
Two-layer neural network

Input Layer Hidden Layer Output Layer

Individual dimensions of x

Output of hidden layer: $g(W_1x)$ Final output: $g(W_2g(W_1x))$
Two-layer networks as combinations of templates

Linear classifier: One template per class
Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

Source: J. Johnson
Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

Can use different templates to cover multiple modes of a class

Source: J. Johnson
Two-layer networks as combinations of templates

First layer: bank of templates
Second layer: recombines templates

It's a “distributed” representation: Most templates are not interpretable

Source: J. Johnson
Expressiveness of two-layer networks

- How complex can we make the decision boundary in a two-layer network?
- The bigger the hidden layer, the more complex the model
- A two-layer network is a *universal function approximator*
 - But the hidden layer may need to be huge

Figure source
Neural networks beyond two layers

Output:

\[g_L(W_L \ldots g_2(W_2 g_1(W_1x)) \ldots) \]
“Deep” pipeline

- Learn a feature hierarchy
- Each layer extracts features from the output of previous layer
- All layers are trained jointly
Multi-Layer network demo

http://playground.tensorflow.org/
Overview

• Feature Design
• Nonlinear classifiers
 • “Shallow” approach: Kernel support vector machines (SVMs)
 • “Deep” approach: Multi-layer neural networks
• Controlling classifier complexity
 • Hyperparameters
 • Bias-variance tradeoff
 • Overfitting and underfitting
 • Hyperparameter search in practice
Supervised learning outline revisited

1. Collect data and labels
2. Specify model: select model class and loss function
3. Train model: find the parameters of the model that minimize the empirical loss on the training data

This involves *hyperparameters* that affect the generalization ability of the trained model.
Hyperparameters

- K in K-nearest-neighbor
 - What if K is too large?
 - What if K is too small?
Hyperparameters

• Regularization constant λ
 • Recall: SVM optimization

$$\min_w \frac{\lambda}{2} \|w\|^2 + \sum_{i=1}^{n} \max[0,1 - y_i w^T x_i]$$

• What if λ is too large?
• What if λ is too small?
Hyperparameters

- Regularization constant λ
 - Tradeoff between margin and classification errors
Hyperparameters

- Regularization constant λ
 - Tradeoff between margin and classification errors
Hyperparameters

- Regularization constant λ
 - Related: preventing the classifier from getting over-confident

Source: J. Johnson

Sigmoid classifier, logistic loss
Hyperparameters

• What about nonlinear SVMs?
 • Choice of kernel (and any associated constants)
Polynomial kernel: $K(x, x') = (x^T x' + c)^d$
Gaussian kernel

- Gaussian kernel with bandwidth σ:
 \[K(x, x') = \exp \left(-\frac{1}{\sigma^2} \|x - x'\|^2 \right) \]

- Recall: the predictor $f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x)$ is a sum of “bumps” centered on support vectors.
Gaussian kernel

- Gaussian kernel with bandwidth σ:
 \[K(x, x') = \exp\left(-\frac{1}{\sigma^2} \|x - x'\|^2\right) \]

- Recall: the predictor $f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x)$ is a sum of “bumps” centered on support vectors.

- How does the value of σ affect the behavior of the predictor?
 - What if σ is close to zero?
 - What if σ is very large?
Hyperparameters in multi-layer networks

- Number of layers, number of units per layer

Source: Stanford 231n
Hyperparameters in multi-layer networks

- Number of layers, number of units per layer

Number of hidden units in a two-layer network

Source: Stanford 231n
Hyperparameters in multi-layer networks

- Number of layers, number of units per layer
- Type of nonlinearity
- Type of loss function
- Regularization constant

Source: Stanford 231n
Hyperparameters in multi-layer networks

• Number of layers, number of units per layer
• Type of nonlinearity
• Type of loss function
• Regularization constant
• SGD settings: learning rate schedule, number of epochs, minibatch size, etc.
Summary: Hyperparameters

- Examples of hyperparameters
 - K in K-NN
 - In SVMs: regularization constant, kernel type and constants
 - In neural networks: number of layers, number of units per layer, type of nonlinearity, type of loss function, regularization constant
 - SGD settings: learning rate schedule, number of epochs, minibatch size, etc.

- We can think of our hyperparameter choices as determining the “complexity” of the model and controlling its generalization ability
Overview

- Nonlinear classifiers
 - Kernel support vector machines (SVMs)
 - Multi-layer neural networks
- Controlling classifier complexity
 - Hyperparameters
 - Bias-variance tradeoff
 - Overfitting and underfitting
 - Hyperparameter search in practice
Model complexity and generalization

- Generalization (test) error of learning algorithms can be broken down into three components (see notes):
 - **Noise**: unavoidable error
 - **Bias**: error due to simplifying model assumptions
 - **Variance**: error due to randomness of training set

- High bias, low variance
- Low bias, high variance

Figure source
Bias-variance tradeoff

- What if your model **bias** is too high?
 - Your model is **underfitting** – it is incapable of capturing the important characteristics of the training data

- What if your model **variance** is too high?
 - Your model is **overfitting** – it is fitting noise and unimportant characteristics of the data

- How to recognize underfitting or overfitting?
Bias-variance tradeoff

- What if your model **bias** is too high?
 - Your model is **underfitting** – it is incapable of capturing the important characteristics of the training data

- What if your model **variance** is too high?
 - Your model is **overfitting** – it is fitting noise and unimportant characteristics of the data

- How to recognize underfitting or overfitting?
 - Need to look at both training and test error
 - **Underfitting**: training and test error are both *high*
 - **Overfitting**: training error is *low*, test error is *high*
Behavior of training and test error

Source: D. Hoiem
Dependence on training set size

Complexity

High Bias
Low Variance

Low Bias
High Variance

Test Error

Source: D. Hoiem
Dependence on training set size

Source: D. Hoiem
Dependence on training set size

- Digit classification case study
Dependence on training set size

• Digit classification case study

Maji and Malik. 2009 Fast and Accurate Digit Classification
• In most practical situations, you are faced with a fixed dataset and have to find the hyperparameter settings that give you the best generalization performance.
Hyperparameter search in practice

• For a range of hyperparameter choices, iterate:
 • Learn parameters on the *training data*
 • Measure accuracy on the *held-out* or *validation data*
• Finally, measure accuracy on the *test data*
• **Crucial:** do not peek at test set during hyperparameter search!
 • The test set needs to be used sparingly since it is supposed to represent *never before seen data*
Hyperparameter search in practice

- Variant: **K-fold cross-validation**
 - Partition the entire training set into K groups
 - In each run (or fold), select one of the groups as the validation set and train on the other K-1 groups. At the end, average the accuracies across the K folds
 - Typically not used for deep learning due to computational expense

Source: J. Johnson
What’s the big deal?

• If you don’t maintain proper training-validation-test hygiene, you will be fooling yourself or others (professors, reviewers, employers, customers)

• It may even cause a public scandal!
What's the big deal?

Baidu admits cheating in international supercomputer competition

Baidu recently apologised for violating the rules of an international supercomputer test in May, when the Chinese search engine giant claimed to beat both Google and Microsoft on the ImageNet image-recognition test.

By Cyrus Lee | June 10, 2015 -- 00:15 GMT (17:15 PDT) | Topic: China

Computer Scientists Are Astir After Baidu Team Is Barred From A.I. Competition

Baidu caught gaming recent supercomputer performance test

By JOHN MARKOFF | JUNE 3, 2015
Date: June 2, 2015

Dear ILSVRC community,

This is a follow up to the announcement on May 19, 2015 with some more details and the status of the test server.

During the period of November 28th, 2014 to May 13th, 2015, there were at least 50 accounts used by a team from Baidu to submit to the test server at least 200 times, far exceeding the specified limit of two submissions per week. This includes short periods of very high usage, for example with more than 40 submissions over 6 days from March 15th, 2015 to March 19th, 2015. Figure A below shows submissions from ImageNet accounts known to be associated with the team in question. Figure B shows a comparison to the activity from all other accounts.

The results obtained during this period are reported in a recent arXiv paper. Because of the violation of the regulations of the test server, these results may not be directly comparable to results obtained and reported by other teams. To make this clear, by exploiting the ability to test many slightly different solutions on the test server it is possible to 1) select the best out of a set of very similar solutions based on test performance and achieve a small but potentially significant advantage and 2) choose methods for further research and development based directly on the test data instead of using only the training and validation data for such choices.