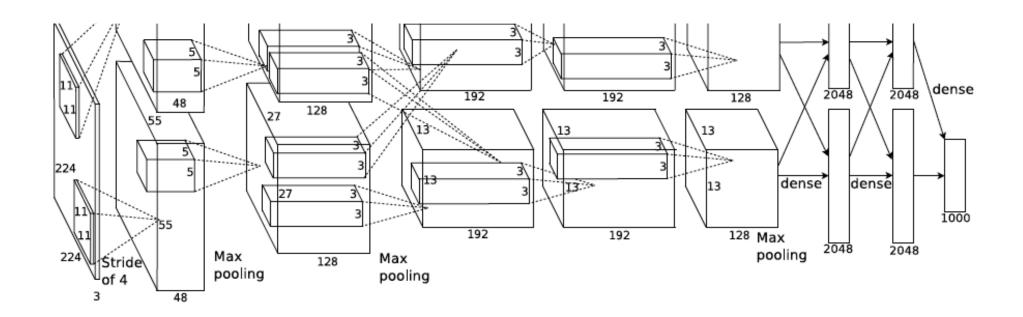
AlexNet

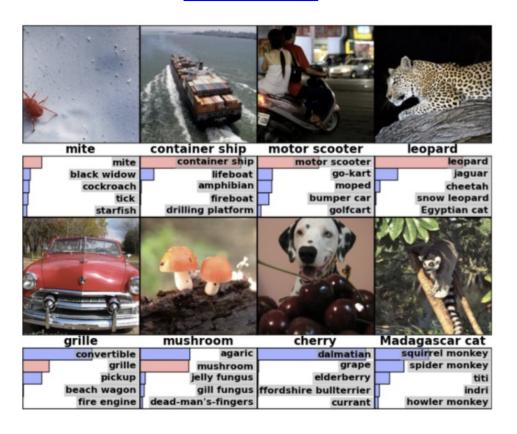


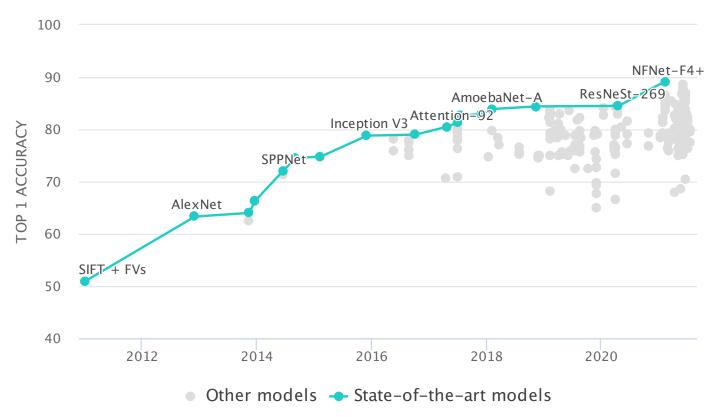
Outline

- AlexNet (2012-2013)
- ImageNet Results
- Pre-trained CNNs as excellent feature extractors

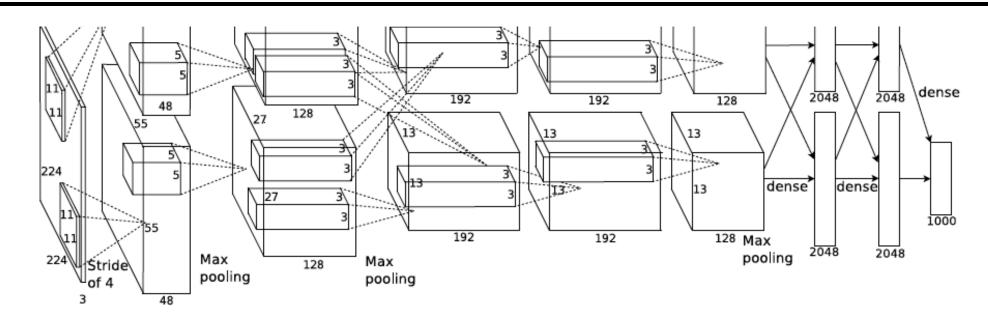
ImageNet Challenge

ILSVRC

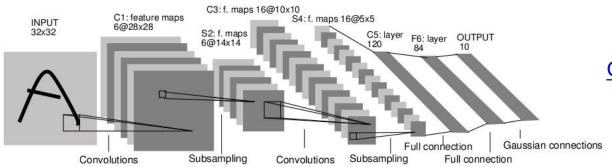




AlexNet: ILSVRC 2012 winner



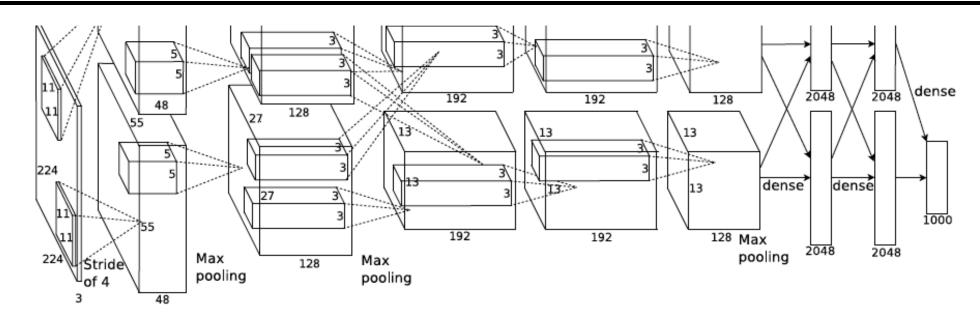
Successor of LeNet-5, but with a few crucial changes



Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proc. IEEE 86(11): 2278–2324, 1998

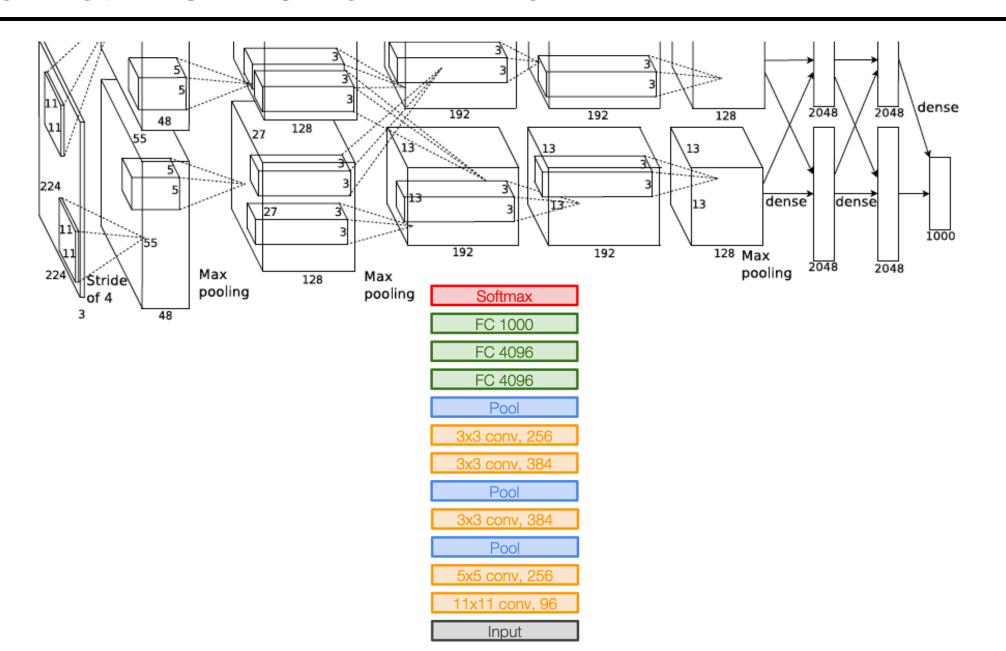
A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012

AlexNet: ILSVRC 2012 winner



- Successor of LeNet-5, but with a few crucial changes
 - Max pooling, ReLU nonlinearity
 - Dropout regularization
 - More data and bigger model (7 hidden layers, 650K units, 60M params)
 - GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week

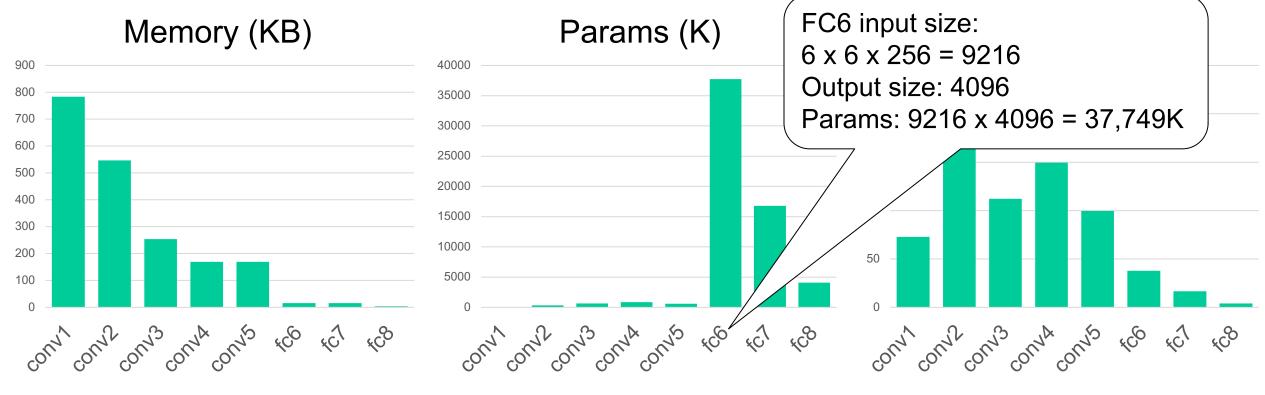
AlexNet: ILSVRC 2012 winner



AlexNet (modified): Stats

	Inpu	t size	Layer			Output size		Receptive Field	Effective Stride	Effective Padding	
Layer	С	H/W	filters	kernel	stride	pad	С	H/W			
conv1	3	227	64	11	4	2	64	56	11	4	2
pool1	64	56		3	2	0	64	27	19	8	2
conv2	64	27	192	5	1	2	192	27	51	8	18
pool2	192	27		3	2	0	192	13	67	16	34
conv3	192	13	384	3	1	1	384	13	99	16	50
conv4	384	13	256	3	1	1	256	13	131	16	66
conv5	256	13	256	3	1	1	256	13	163	16	66
pool5	256	13		3	2	0	256	6	195	32	66
flatten	256	6					9216		259	32	66
fc6	9216		4096				4096		259	32	66
fc7	4096		4096				4096		259	32	66
fc8	4096		1000				1000		259	32	66

AlexNet (modified): Analysis



Most of the memory usage is in the early convolution layers

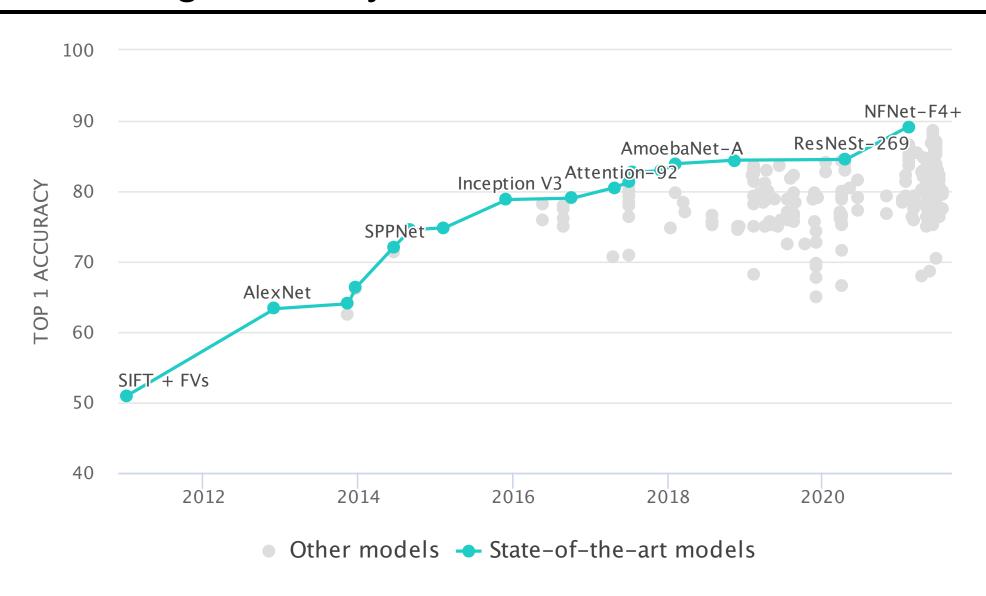
Nearly all parameters are in the fully-connected layers

Most floating-point ops occur in the convolution layers

ImageNet Challenge 2012-2014

Team	Year	Place	Error (top-5)	External data
XRCE	2011		25.8%	no
SuperVision – Toronto (7 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k

Breakthrough + Many different NNs since



Source: https://paperswithcode.com/

Layer 1: Top-9 Patches

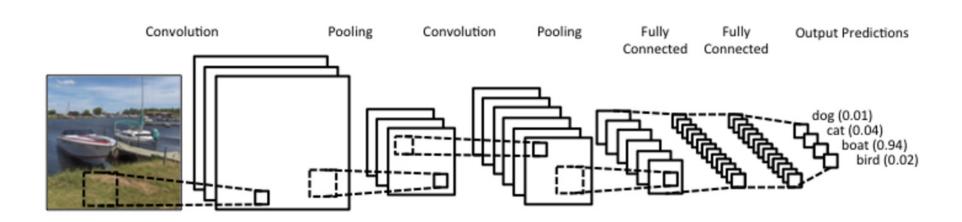
Layer 2: Top-9 Patches

Layer 3: Top-9 Patches

Layer 4: Top-9 Patches

Layer 5: Top-9 Patches

Learned Representations are Useful in General



- Features extracted from CNNs trained on ImageNet were effective for many CV tasks.
- 2. Furthermore, learned network weights serve as an excellent starting point for other tasks.

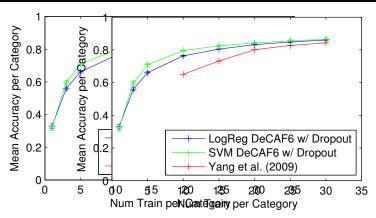
How to use a trained network for a new task?

	DeCAF ₅	DeCAF ₆	DeCAF ₇
LogReg	63.29 ± 6.6	84.30 ± 1.6	84.87 ± 0.6
LogReg with Dropout	-	86.08 ± 0.8	85.68 ± 0.6
SVM	77.12 ± 1.1	84.77 ± 1.2	83.24 ± 1.2
SVM with Dropout	-	86.91 ± 0.7	85.51 ± 0.9
Yang et al. (2009)		84.3	
Jarrett et al. (2009)		65.5	

Caltech 101

	$\texttt{Amazon} \to \texttt{Webcam}$				
	SURF	DeCAF ₆	DeCAF ₇		
Logistic Reg. (S)	9.63 ± 1.4	48.58 ± 1.3	53.56 ± 1.5		
SVM (S)	11.05 ± 2.3	52.22 ± 1.7	53.90 ± 2.2		
Logistic Reg. (T)	24.33 ± 2.1	72.56 ± 2.1	74.19 ± 2.8		
SVM (T)	51.05 ± 2.0	78.26 ± 2.6	78.72 ± 2.3		
Logistic Reg. (ST)	19.89 ± 1.7	75.30 ± 2.0	76.32 ± 2.0		
SVM (ST)	23.19 ± 3.5	80.66 ± 2.3	79.12 ± 2.1		
Daume III (2007)	40.26 ± 1.1	82.14 ± 1.9	81.65 ± 2.4		
Hoffman et al. (2013)	37.66 ± 2.2	80.06 ± 2.7	80.37 ± 2.0		
Gong et al. (2012)	39.80 ± 2.3	75.21 ± 1.2	77.55 ± 1.9		
Chopra et al. (2013)	58.85				

Domain Adaptation



Caltech 101

Method	Accuracy
DeCAF ₆ DPD + DeCAF ₆	58.75 64.96
Ü	50.98
DPD (Zhang et al., 2013) POOF (Berg & Belhumeur, 2013)	56.78
POOF (beig & Beinumeur, 2013)	30.78

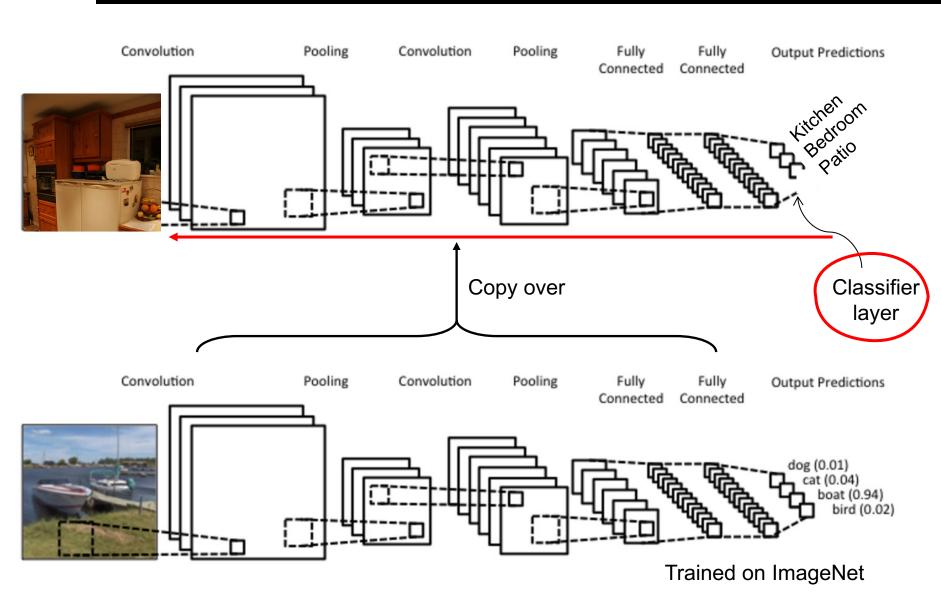
Fine-grained Classification

	DeCAF ₆	DeCAF ₇	
LogReg SVM	40.94 ± 0.3 39.36 ± 0.3	$40.84 \pm 0.3 40.66 \pm 0.3$	
Xiao et al. (2010)	38.0		

Scene Classification

J. Donahue, Y. Jia et al. Decapto-Lorentz-Loren

How to use a trained network for a new task?



Two Options:

- Take the vector of activations from one of the fully connected (FC) layers and treat it as an off-the-shelf feature
 - Train a new classifier layer on top of the FC layer
- Fine-tune the whole network