Neural network training: The basics and beyond

Outline

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Diagnosing learning curves
 - Adaptive optimization methods: SGD with momentum, RMSProp, Adam
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization
- Regularization
- Test time: averaging predictions, ensembles

Mini-batch SGD

- Iterate over epochs
 - Group data into mini-batches of size b
 - Compute gradient of the loss for the mini-batch $(x_1, y_1), ..., (x_b, y_b)$:

$$\nabla \hat{L} = \frac{1}{b} \sum_{i=1}^{b} \nabla l(w, x_i, y_i)$$

Update parameters:

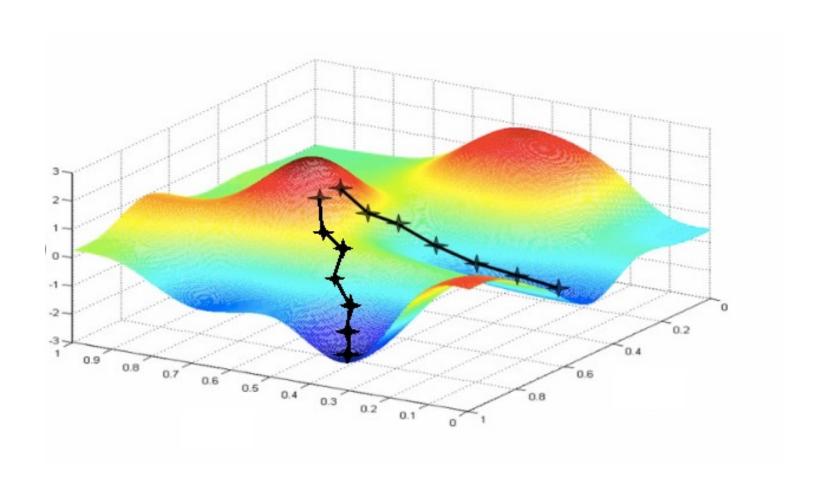
$$w \leftarrow w - \eta \nabla \hat{L}$$

- Check for convergence, decide whether to decay learning rate
- What are the hyperparameters?
 - Mini-batch size, learning rate decay schedule, deciding when to stop

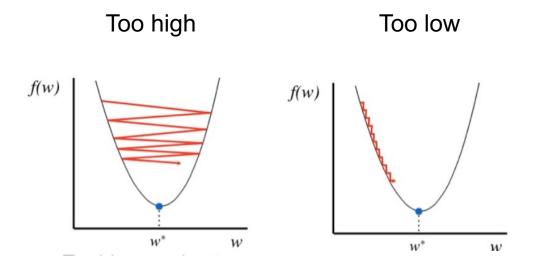
Setting the mini-batch size

- Smaller mini-batches: less memory overhead, less parallelizable, more gradient noise (which could work as regularization – see, e.g., <u>Keskar et al.</u>, 2017)
- Larger mini-batches: more expensive and less frequent updates, lower gradient variance, more parallelizable.
 Can be made to work well with good choices of learning rate and other aspects of optimization (<u>Goyal et al.</u>, 2018)

Setting the learning rate



Setting the learning rate



Want: good decay schedule

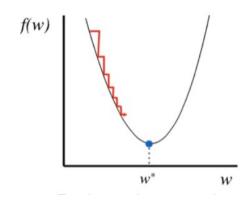
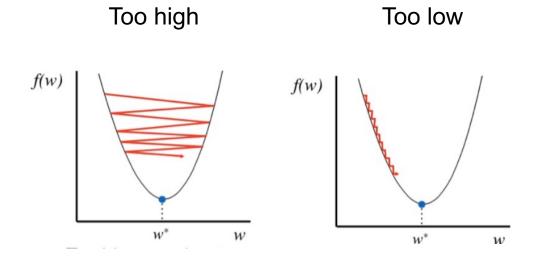
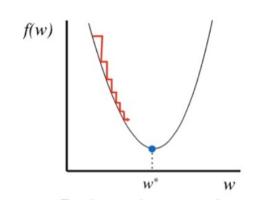


Figure source

Setting the learning rate



Want: good decay schedule



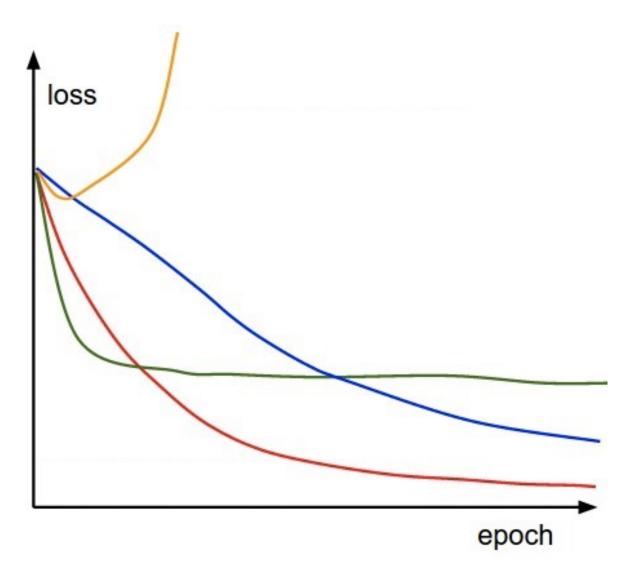


Figure source

Source: Stanford CS231n

Learning rate decay

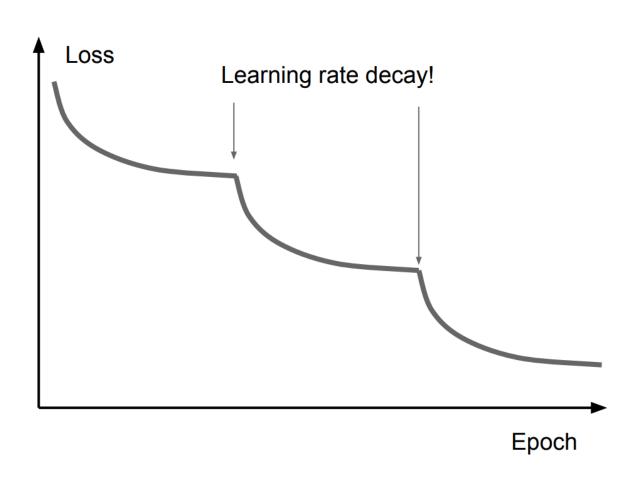
Decay formulas

- Exponential: $\eta_t = \eta_0 e^{-kt}$, where η_0 and k are hyperparameters, t is the iteration or epoch number
- Inverse: $\eta_t = \eta_0/(1+kt)$
- Inverse sqrt: $\eta_t = \eta_0/\sqrt{t}$
- Linear: $\eta_t = \eta_0(1 t/T)$, where T is the total number of epochs
- Cosine: $\eta_t = \frac{1}{2}\eta_0(1 + \cos(t\pi/T))$

Learning rate decay

- Decay formulas
- Most common in practice:
 - **Step decay:** reduce rate by a constant factor every few epochs, e.g., by 0.5 every 5 epochs, 0.1 every 20 epochs
 - Manual: watch validation error and reduce learning rate whenever it stops improving
 - "Patience" hyperparameter: number of epochs without improvement before reducing learning rate

A typical phenomenon



Possible explanation

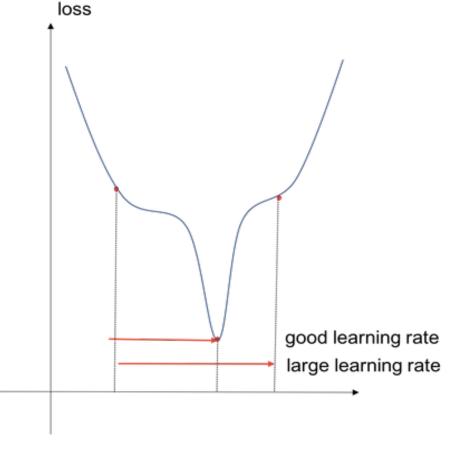


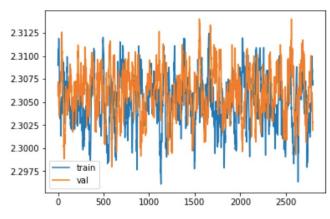
Image source: Stanford CS231n

Image source

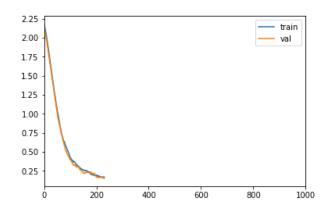
Learning rate decay

- Decay formulas
- Most common in practice:
 - **Step decay:** reduce rate by a constant factor every few epochs, e.g., by 0.5 every 5 epochs, 0.1 every 20 epochs
 - Manual: watch validation error and reduce learning rate whenever it stops improving
 - "Patience" hyperparameter: number of epochs without improvement before reducing learning rate
- Warmup: train with a low learning rate for a first few epochs, or linearly increase learning rate before transitioning to normal decay schedule (<u>Goyal et al.</u>, 2018)

Diagnosing learning curves: Obvious problems

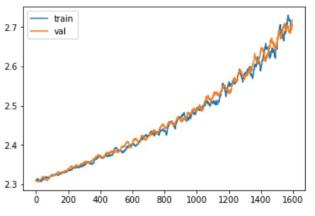


Not training
Bug in update calculation?

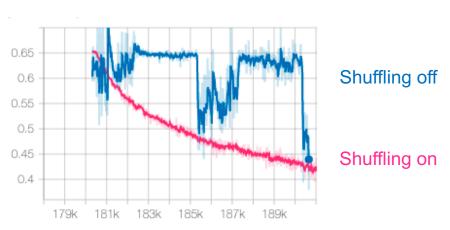


Get NaNs in the loss after a number of iterations:

Numerical instability



Error increasing Bug in update calculation?

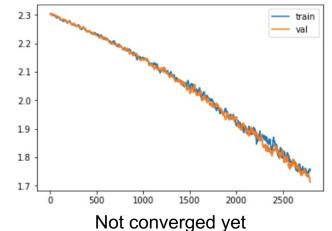


Weird cyclical patterns in loss:

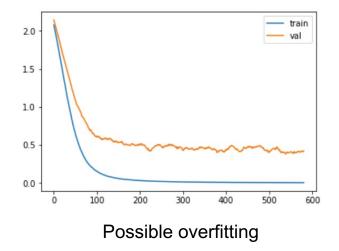
Data not shuffled

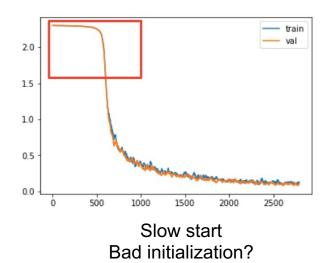
Source: Stanford CS231n

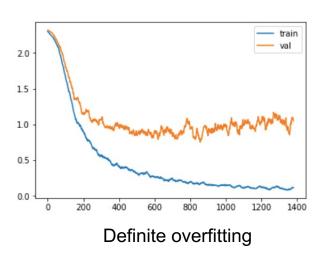
Diagnosing learning curves: Subtler behaviors



Keep training, possibly increase learning rate







Source: Stanford CS231n

When to stop training?

- Monitor validation error to decide when to stop
 - "Patience" hyperparameter: number of epochs without improvement before stopping
 - Early stopping can be viewed as a kind of regularization

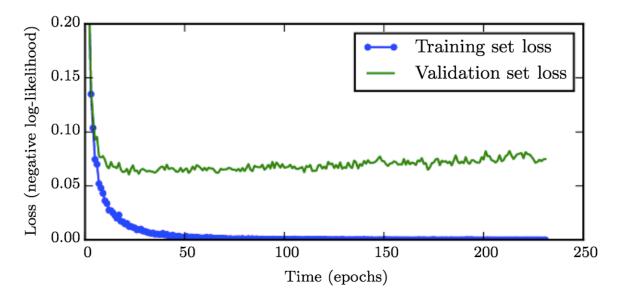
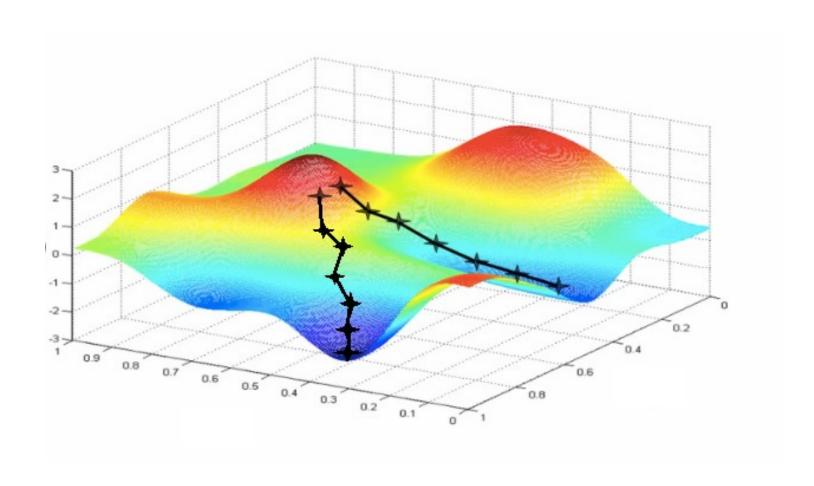


Figure from **Deep Learning Book**

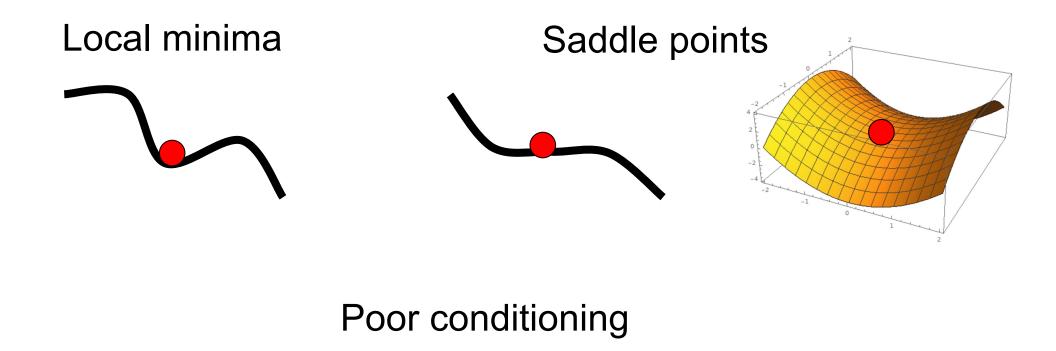
Neural network training: The basics and beyond

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Diagnosing learning curves
 - Adaptive optimization methods: SGD with momentum, RMSProp, Adam
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization
- Regularization
- Test time: averaging predictions, ensembles

Where does SGD run into trouble?



Where does SGD run into trouble?



SGD with momentum

 Goal: move faster in directions with consistent gradient, avoid oscillating in directions with large but inconsistent gradients

Standard SGD

SGD with momentum

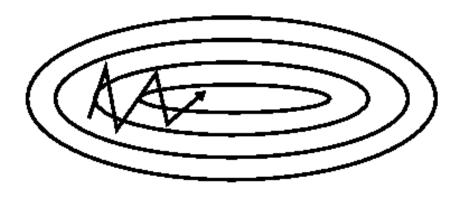


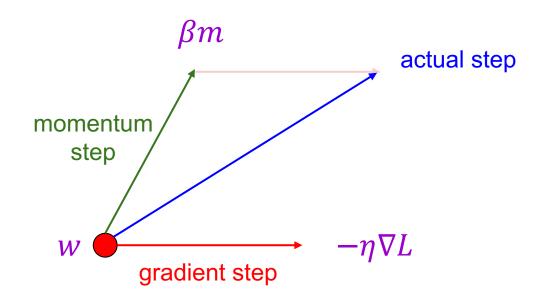
Image source

SGD with momentum

 Introduce a "momentum" variable m and associated "friction" coefficient β:

$$m \leftarrow \beta m - \eta \nabla L$$
$$w \leftarrow w + m$$

• Typically start with $\beta = 0.5$, gradually increase over time



Adagrad: Adaptive per-parameter learning rates

- Keep track of history of gradient magnitudes, scale the learning rate for each parameter based on this history
- For each dimension *k* of the weight vector:

$$v^{(k)} \leftarrow v^{(k)} + \left(\frac{\partial L}{\partial w^{(k)}}\right)^2$$
 Update running sum of squared magnitudes of gradient w.r.t. k th weight $w^{(k)} \leftarrow w^{(k)} - \frac{\eta}{\sqrt{v^{(k)} + \epsilon}} \frac{\partial L}{\partial w^{(k)}}$ Scale learning rate for k th weight by inverse of the magnitude, update k th weight

Update running sum of squared

- Parameters with small gradients get large updates and vice versa
- Problem: long-ago gradient magnitudes are not "forgotten" so learning rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

RMSProp

• Introduce decay factor β (typically ≥ 0.9) to downweight past history exponentially:

$$v^{(k)} \leftarrow \beta v^{(k)} + (1 - \beta) \left(\frac{\partial L}{\partial w^{(k)}}\right)^2$$

$$w^{(k)} \leftarrow w^{(k)} - \frac{\eta}{\sqrt{v^{(k)}} + \epsilon} \frac{\partial L}{\partial w^{(k)}}$$

Adam: Combine RMSProp with momentum

Update momentum:

$$m \leftarrow \beta_1 m + (1 - \beta_1) \nabla L$$

For each dimension k of the weight vector:

$$v^{(k)} \leftarrow \beta_2 v^{(k)} + (1 - \beta_2) \left(\frac{\partial L}{\partial w^{(k)}}\right)^2$$

$$w^{(k)} \leftarrow w^{(k)} - \frac{\eta}{\sqrt{v^{(k)} + \epsilon}} m^{(k)}$$

- Full algorithm includes bias correction to account for m and v starting at 0: $\widehat{m} = \frac{m}{1-\beta_1^t}$, $\widehat{v} = \frac{v}{1-\beta_2^t}$ (t is the timestep)
- Default parameters from paper are reputed to work well for many models: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\eta = 1e 3$, $\epsilon = 1e 8$

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015

Which optimizer to use in practice?

- Adaptive methods tend to reduce initial training error faster than SGD and are "safer"
 - Andrej Karpathy: "In the early stages of setting baselines I like to use Adam with a learning rate of 3e-4. In my experience Adam is much more forgiving to hyperparameters, including a bad learning rate. For ConvNets a well-tuned SGD will almost always slightly outperform Adam, but the optimal learning rate region is much more narrow and problem-specific."
 - Use Adam early in training, switch to SGD for later epochs?

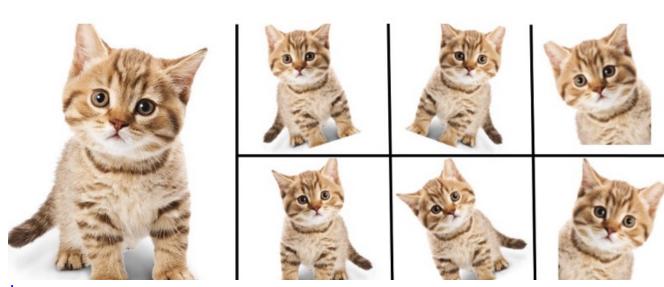
Which optimizer to use in practice?

- Adaptive methods tend to reduce initial training error faster than SGD and are "safer"
- Some literature has reported problems with adaptive methods, such as failing to converge or generalizing poorly (Wilson et al. 2017, Reddi et al. 2018)
- More recent comparative study (Schmidt et al., 2021):
 "We observe that evaluating multiple optimizers with default parameters works approximately as well as tuning the hyperparameters of a single, fixed optimizer."

Outline

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Diagnosing learning curves
 - Adaptive methods: SGD with momentum, RMSProp, Adam
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops



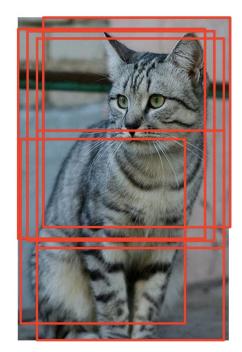


Image source

Image source

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
 - Photometric: color transformations

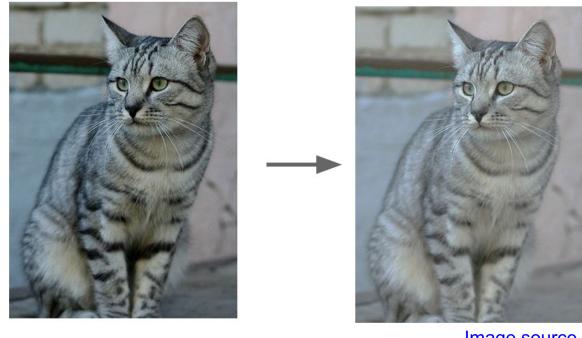
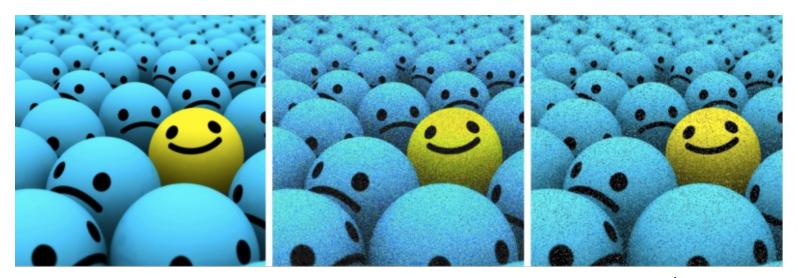


Image source

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
 - Photometric: color transformations
 - Other: add noise, compression artifacts, lens distortions, etc.



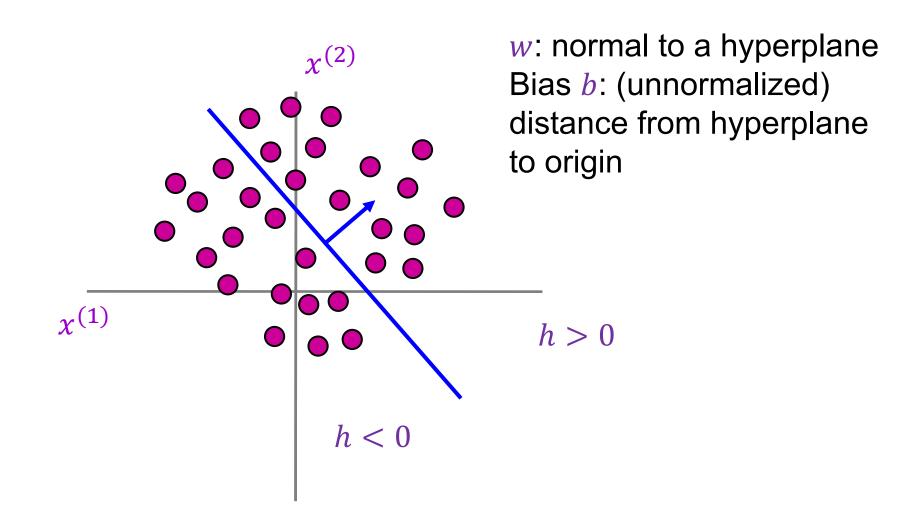
- Introduce transformations not adequately sampled in the training data
- Limited only by your imagination and time/memory constraints!
- Avoid introducing artifacts
- Automatic augmentation strategies: <u>AutoAugment</u>, <u>RandAugment</u>

Data preprocessing

- Zero centering
 - Subtract mean image all input images need to have the same resolution
 - Subtract per-channel means images don't need to have the same resolution
- Optional: rescaling divide each value by (per-pixel or perchannel) standard deviation

- Be sure to apply the same transformation at training and test time!
 - Save training set statistics and apply to test data

• Consider the behavior of a linear+ReLU unit: $h = \text{ReLU}(w^T x + b)$



Review: Backward pass for ReLU

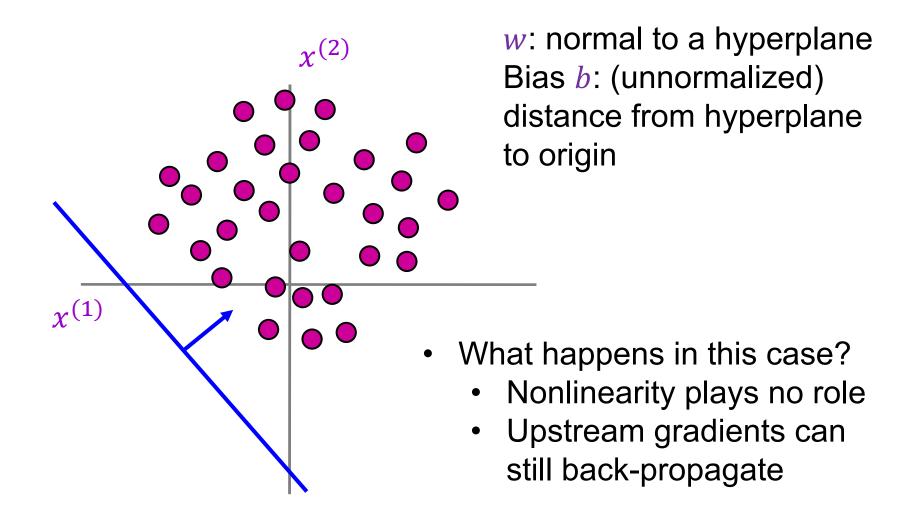
$$\frac{\partial h}{\partial x} = \mathbb{I}[x > 0]$$

$$x \longrightarrow f(x) = \max(0, x) \longrightarrow h$$

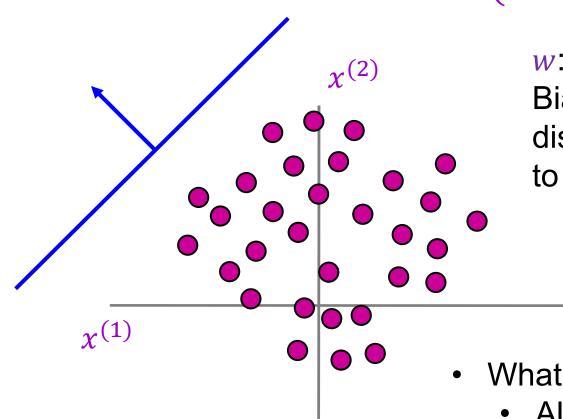
$$\frac{\partial e}{\partial x} = \frac{\partial e}{\partial h} \frac{\partial h}{\partial x} \longrightarrow \frac{\partial e}{\partial h}$$

$$\frac{\partial e}{\partial x} = \frac{\partial e}{\partial h} \mathbb{I}[x > 0]$$

Linear+ReLU unit: $h = \text{ReLU}(w^T x + b)$



Linear+ReLU unit: $h = ReLU(w^Tx + b)$



w: normal to a hyperplaneBias b: (unnormalized)distance from hyperplaneto origin

- What happens in this case?
 - All inputs to ReLU are negative
 - No gradients propagate back – dead ReLU!

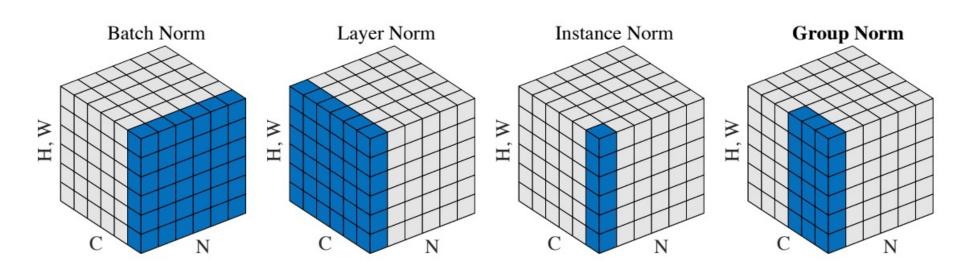
 What's wrong with initializing all weights to the same number (e.g., zero)?

Weight initialization

- Typically: initialize to random values sampled from zeromean Gaussian: $w \sim \mathcal{N}(0, \sigma^2)$
 - Standard deviation matters!
 - Key idea: avoid reducing or amplifying the variance of layer responses, which would lead to vanishing or exploding gradients
- Common heuristics:
 - Xavier initialization: $\sigma^2 = 1/n_{\rm in}$ or $\sigma^2 = 2/(n_{\rm in} + n_{\rm out})$, where $n_{\rm in}$ and $n_{\rm out}$ are the numbers of inputs and outputs to a layer (Glorot and Bengio, 2010)
 - Kaiming initialization (goes with ReLU): $\sigma^2 = 2/n_{\rm in}$ (He et al., 2015)
- Initializing biases: just set them to 0

Normalization

- I omitted a crucial detail so far:
 - It is often useful to standardize statistics of hidden layers
 - through use of normalization layers
 - to mitigate vanishing / exploding gradients
 - when training deeper networks
- Many forms of normalization:



- Key idea: shifting and rescaling are differentiable operations, so the network can *learn* how to best normalize the data
- Statistics of activations (outputs) from a given layer across the dataset can be approximated by statistics from a minibatch

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                         // mini-batch mean
    \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{P}}^2 + \epsilon}}
                                                                                      // normalize
      y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                             // scale and shift
```

S. Ioffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep Network</u>

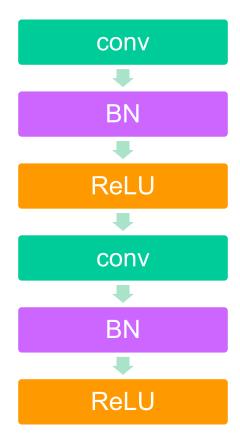
<u>Training by Reducing Internal Covariate Shift, ICML 2015</u>

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
            Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                                               At test time (usually):
                                                            // mini batch mean
                                                               training set
                                                      // mini batch variance
                                                         training set
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                      // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                               // scale and shift
```

S. Ioffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep Network</u>

<u>Training by Reducing Internal Covariate Shift, ICML 2015</u>

 Common configuration: insert BN layers right after conv or FC layers, before ReLU nonlinearity (but this is purely empirical)



S. Ioffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep Network</u>

<u>Training by Reducing Internal Covariate Shift, ICML 2015</u>

Benefits

- Prevents exploding and vanishing gradients
- Keeps most activations away from saturation regions of non-linearities
- Accelerates convergence of training
- Makes training more robust w.r.t. hyperparameter choice, initialization

Pitfalls

- Behavior depends on composition of mini-batches, can lead to hard-tocatch bugs if there is a mismatch between training and test regime (example)
- Doesn't work well for small mini-batch sizes
- Cannot be used for certain types of models (recurrent models, transformers)

Batch Normalization (Results)

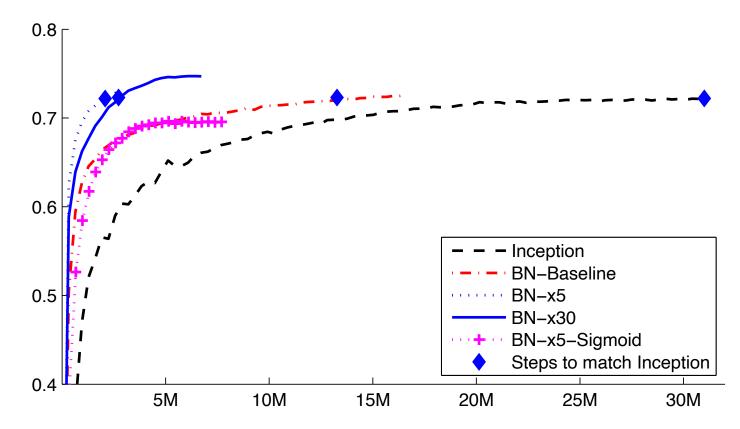
Inception: the network described at the beginning of Section 4.2, trained with the initial learning rate of 0.0015.

BN-Baseline: Same as Inception with Batch Normalization before each nonlinearity.

BN-x5: Inception with Batch Normalization and the modifications in Sec. 4.2.1. The initial learning rate was increased by a factor of 5, to 0.0075. The same learning rate increase with original Inception caused the model parameters to reach machine infinity.

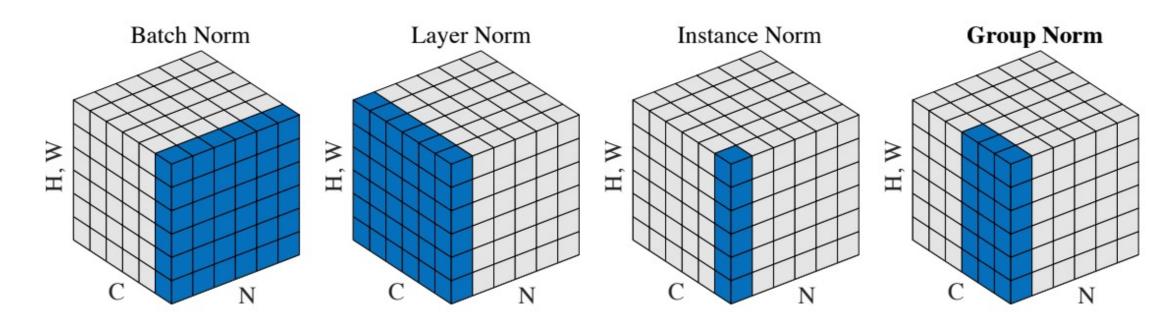
BN-x30: Like BN-x5, but with the initial learning rate 0.045 (30 times that of Inception).

BN-x5-Sigmoid: Like BN-x5, but with sigmoid nonlinearity $g(t) = \frac{1}{1 + \exp(-x)}$ instead of ReLU. We also attempted to train the original Inception with sigmoid, but the model remained at the accuracy equivalent to chance.



Other types of normalization

- Layer normalization (Ba et al., 2016)
- Instance normalization (Ulyanov et al., 2017)
- Group normalization (Wu and He, 2018)
- Weight normalization (Salimans et al., 2016)

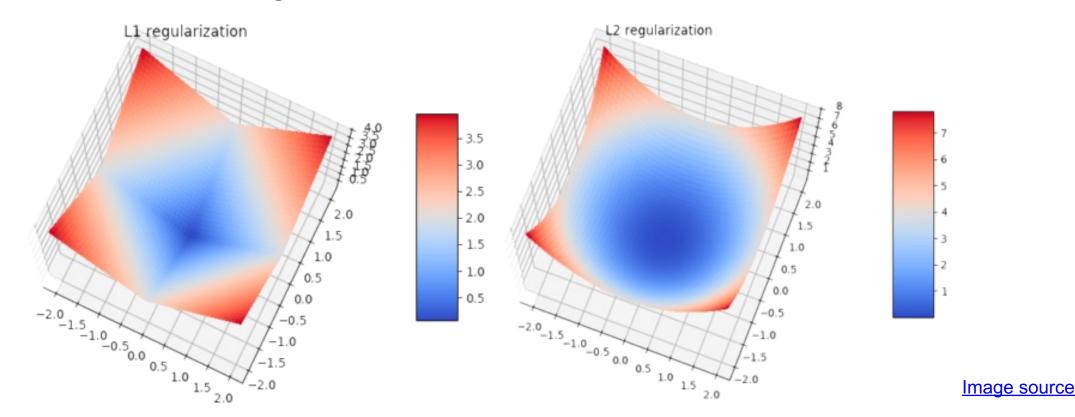


Outline

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Diagnosing learning curves
 - Adaptive methods: SGD with momentum, RMSProp, Adam
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization
- Regularization

Regularization

- Techniques for controlling the capacity of a neural network to prevent overfitting – short of explicit reduction of the number of parameters
- Recall: classic regularization: L1, L2



Weight decay

Generic optimization step:

$$L(w) = L_{\text{data}}(w) + L_{\text{reg}}(w)$$

$$g_t = \nabla L(w_t)$$

$$s_t = \text{optimizer}(g_t)$$

$$w_{t+1} = w_t - \eta s_t$$

SGD with L2 regularization:

$$L(w) = L_{\text{data}}(w) + \frac{\lambda}{2} ||w||^2$$

$$g_t = \nabla L_{\text{data}}(w_t) + \lambda w$$

$$w_{t+1} = w_t - \eta g_t$$

$$= (1 - \eta \lambda) w_t - \eta \nabla L_{\text{data}}(w_t)$$

Optimization with weight decay:

$$L(w) = L_{\text{data}}(w)$$

$$g_t = \nabla L(w_t)$$

$$s_t = \text{optimizer}(g_t)$$

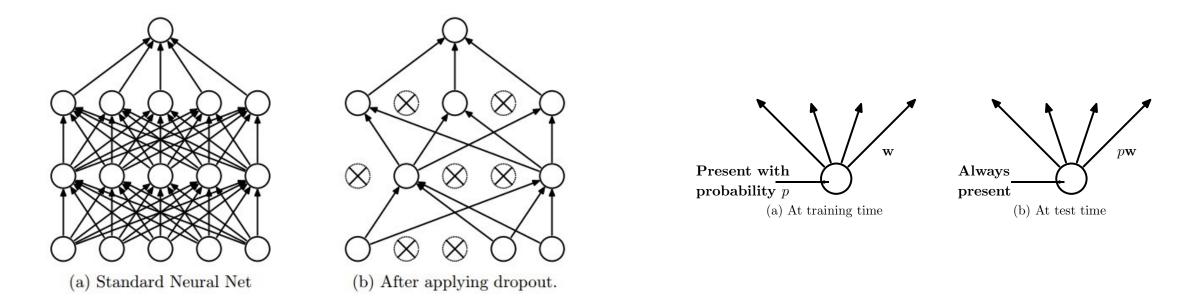
$$w_{t+1} = (1 - \eta \lambda)w_t - \eta s_t$$

Other types of regularization

- Adding noise to the inputs
 - Recall motivation of max margin criterion
 - In simple scenario (linear model, quadratic loss, Gaussian noise),
 this is equivalent to weight decay
 - Data augmentation is a more general form of this
- Adding noise to the weights
- Label smoothing
 - When using softmax loss, replace hard 1 and 0 prediction targets with "soft" targets of 1ϵ and $\frac{\epsilon}{c-1}$

Dropout

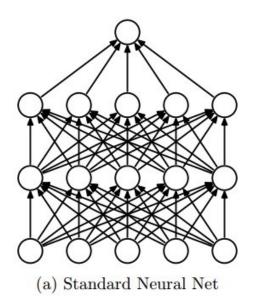
- At training time, in each forward pass, turn off some neurons with probability \boldsymbol{p}
- At test time, to have deterministic behavior, multiply output of neuron by p

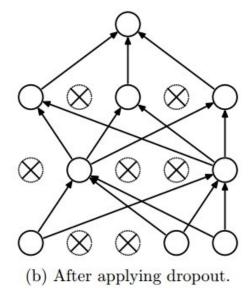


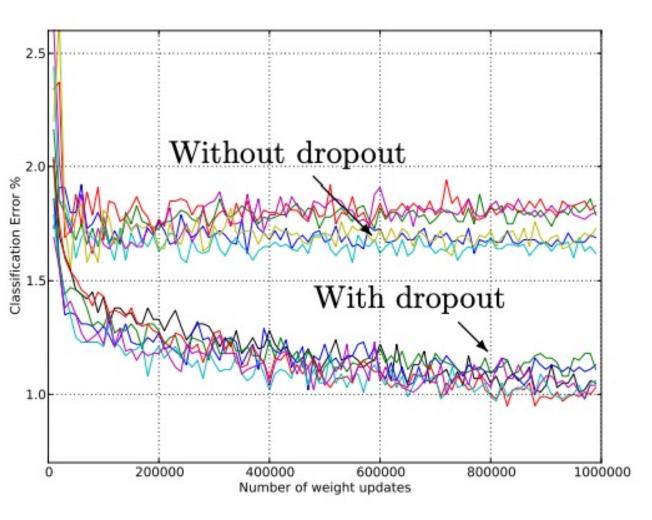
Dropout

Intuitions

- Prevent "co-adaptation" of units, increase robustness to noise
- Train implicit ensemble







N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

Current status of dropout

Against

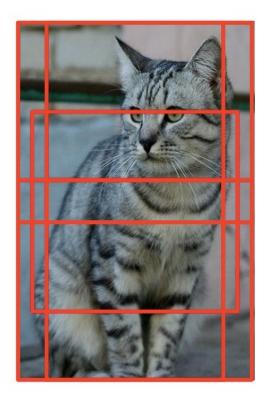
- Slows down convergence
- Made redundant by batch normalization or possibly even <u>clashes</u> with it
- Unnecessary for larger datasets or with sufficient data augmentation
- In favor
 - Can still help for certain models and in certain situations: e.g., used in Wide Residual Networks

Outline

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Diagnosing learning curves
 - Adaptive methods: SGD with momentum, RMSProp, Adam
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization
- Regularization
- Test time: averaging predictions, ensembles

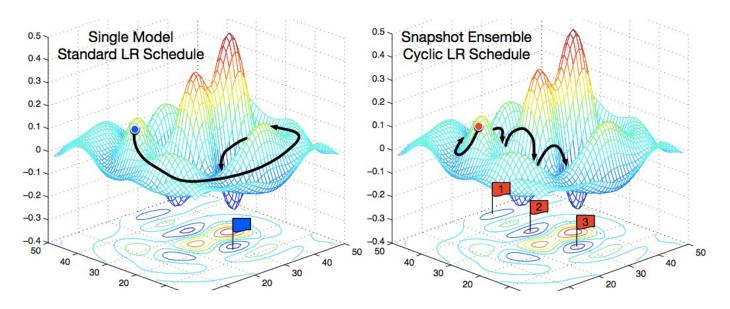
Test time

- Average predictions across multiple crops of test image
 - There is a more elegant way to do this with fully convolutional networks (FCNs)



Test time

- Ensembles: train multiple independent models, then average their predicted label distributions
 - Gives 1-2% improvement in most cases
 - Can take multiple snapshots of models obtained during training, especially if you cycle the learning rate (increase to jump out of local minima)



G. Huang et al., Snapshot ensembles: Train 1, get M for free, ICLR 2017

Important Considerations

- 1. Data
- 2. Supervision
- 3. Loss functions
- 4. Optimization / Initialization
- 5. Inductive Bias

Development Process

- 1. Collect lots of labeled data
- 2. Setup network architecture
- 3. Setup loss function
- 4. Sanity checks
 - 1. Is your data correct?
 - 2. Can you overfit to a small set?

5. Hyperparameters

- Learning hyperparameters: batch size, learning rates, how much to train, regularization, optimizer.
- Architectural hyper-parameters: Non-linearities, #layers, #neurons, loss functions.

6. Hacking

- Reducing iteration time
- 2. Maximizing GPU utilization

Some take-aways

- Training neural networks is still a black art
- Process requires close "babysitting"
- For many techniques, the reasons why, when, and whether they work are in active dispute – read everything but don't trust anything
- It all comes down to (principled) trial and error
- Further reading: A. Karpathy, <u>A recipe for training neural networks</u>