
Neural network training: The basics and beyond

Slides from Lana Lazebnik

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive optimization methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization
• Test time: averaging predictions, ensembles

Mini-batch SGD
• Iterate over epochs

• Group data into mini-batches of size 𝑏
• Compute gradient of the loss for the mini-batch 𝑥!, 𝑦! , … , (𝑥", 𝑦"):

∇#𝐿 =
1
𝑏
'
!"#

$

∇𝑙(𝑤, 𝑥!, 𝑦!)

• Update parameters:
𝑤 ← 𝑤 − 𝜂∇#𝐿

• Check for convergence, decide whether to decay learning rate

• What are the hyperparameters?
• Mini-batch size, learning rate decay schedule, deciding when to stop

Setting the mini-batch size
• Smaller mini-batches: less memory overhead, less

parallelizable, more gradient noise (which could work as
regularization – see, e.g., Keskar et al., 2017)

• Larger mini-batches: more expensive and less frequent
updates, lower gradient variance, more parallelizable.
Can be made to work well with good choices of learning rate
and other aspects of optimization (Goyal et al., 2018)

https://arxiv.org/pdf/1609.04836
https://arxiv.org/pdf/1706.02677.pdf

Setting the learning rate

Setting the learning rate

Figure source

Too high Too low

Want: good decay schedule

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818

Setting the learning rate

Figure source

Too high Too low

Want: good decay schedule

Source: Stanford CS231n

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818
http://cs231n.github.io/neural-networks-3/

Learning rate decay
• Decay formulas

• Exponential: 𝜂% = 𝜂&𝑒'(%, where 𝜂& and 𝑘 are hyperparameters, 𝑡 is
the iteration or epoch number

• Inverse: 𝜂% = 𝜂&/(1 + 𝑘𝑡)
• Inverse sqrt: 𝜂% = 𝜂&/ 𝑡
• Linear: 𝜂% = 𝜂&(1 − 𝑡/𝑇), where T is the total number of epochs

• Cosine: 𝜂% =
#
)𝜂&(1 + cos(𝑡𝜋/𝑇))

Learning rate decay
• Decay formulas
• Most common in practice:

• Step decay: reduce rate by a constant factor every few epochs, e.g.,
by 0.5 every 5 epochs, 0.1 every 20 epochs

• Manual: watch validation error and reduce learning rate whenever it
stops improving
• “Patience” hyperparameter: number of epochs without improvement

before reducing learning rate

A typical phenomenon

Possible explanation

Image sourceImage source: Stanford CS231n

http://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Learning rate decay
• Decay formulas
• Most common in practice:

• Step decay: reduce rate by a constant factor every few epochs, e.g.,
by 0.5 every 5 epochs, 0.1 every 20 epochs

• Manual: watch validation error and reduce learning rate whenever it
stops improving
• “Patience” hyperparameter: number of epochs without improvement

before reducing learning rate

• Warmup: train with a low learning rate for a first few epochs,
or linearly increase learning rate before transitioning to
normal decay schedule (Goyal et al., 2018)

https://arxiv.org/pdf/1706.02677.pdf

Diagnosing learning curves: Obvious problems

Not training
Bug in update calculation?

Error increasing
Bug in update calculation?

Get NaNs in the loss after a number of iterations:
Numerical instability

Weird cyclical patterns in loss:
Data not shuffled

Shuffling off

Shuffling on

Source: Stanford CS231n

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit

Diagnosing learning curves: Subtler behaviors

Source: Stanford CS231n

Not converged yet
Keep training, possibly increase learning rate

Slow start
Bad initialization?

Possible overfitting Definite overfitting

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit

When to stop training?
• Monitor validation error to decide when to stop

• “Patience” hyperparameter: number of epochs without improvement
before stopping

• Early stopping can be viewed as a kind of regularization

Figure from Deep Learning Book

https://www.deeplearningbook.org/contents/regularization.html

Neural network training: The basics and beyond
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive optimization methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization
• Test time: averaging predictions, ensembles

Where does SGD run into trouble?

Where does SGD run into trouble?

Local minima Saddle points

Poor conditioning

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf

• Goal: move faster in directions with consistent gradient, avoid
oscillating in directions with large but inconsistent gradients

SGD with momentum

Standard SGD

SGD with momentum Image source

http://ruder.io/optimizing-gradient-descent/index.html

SGD with momentum
• Introduce a “momentum” variable 𝑚 and associated “friction”

coefficient 𝛽:
𝑚 ← 𝛽𝑚 − 𝜂∇𝐿
𝑤 ← 𝑤 +𝑚

• Typically start with 𝛽 = 0.5, gradually increase over time

𝑤

𝛽𝑚

−𝜂∇𝐿

Image source
gradient step

momentum
step

actual step

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture04.pdf

Adagrad: Adaptive per-parameter learning rates
• Keep track of history of gradient magnitudes, scale the learning

rate for each parameter based on this history
• For each dimension 𝑘 of the weight vector:

𝑣(') ← 𝑣(') +
𝜕𝐿

𝜕𝑤(')

(

𝑤(') ← 𝑤(') −
𝜂

𝑣(') + 𝜖

𝜕𝐿
𝜕𝑤(')

• Parameters with small gradients get large updates and vice versa
• Problem: long-ago gradient magnitudes are not “forgotten” so learning

rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

Update running sum of squared
magnitudes of gradient w.r.t. 𝑘th
weight
Scale learning rate for 𝑘th
weight by inverse of the
magnitude, update 𝑘th weight

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

RMSProp
• Introduce decay factor 𝛽 (typically ≥ 0.9) to downweight past

history exponentially:

𝑣(') ← 𝛽𝑣(') + (1 − 𝛽)
𝜕𝐿

𝜕𝑤(')

(

𝑤(') ← 𝑤(') −
𝜂

𝑣(') + 𝜖

𝜕𝐿
𝜕𝑤(')

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam: Combine RMSProp with momentum
• Update momentum:

𝑚 ← 𝛽)𝑚 + 1 − 𝛽) ∇𝐿
• For each dimension 𝑘 of the weight vector:

𝑣(') ← 𝛽(𝑣(') + (1 − 𝛽()
𝜕𝐿

𝜕𝑤(')

(

𝑤(') ← 𝑤(') −
𝜂

𝑣(') + 𝜖
𝑚(')

• Full algorithm includes bias correction to account for 𝑚 and 𝑣
starting at 0: A𝑚 = +

#',!"
, B𝑣 = -

#',#"
 (𝑡 is the timestep)

• Default parameters from paper are reputed to work well for many
models: 𝛽) = 0.9, 𝛽(= 0.999, 𝜂 = 1𝑒 − 3, 𝜖 = 1𝑒 − 8

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015

https://arxiv.org/abs/1412.6980

Which optimizer to use in practice?
• Adaptive methods tend to reduce initial training error faster

than SGD and are “safer”
• Andrej Karpathy: “In the early stages of setting baselines I like to use

Adam with a learning rate of 3e-4. In my experience Adam is much
more forgiving to hyperparameters, including a bad learning rate. For
ConvNets a well-tuned SGD will almost always slightly outperform
Adam, but the optimal learning rate region is much more narrow and
problem-specific.”

• Use Adam early in training, switch to SGD for later epochs?

http://karpathy.github.io/2019/04/25/recipe/

Which optimizer to use in practice?
• Adaptive methods tend to reduce initial training error faster

than SGD and are “safer”
• Some literature has reported problems with adaptive

methods, such as failing to converge or generalizing poorly
(Wilson et al. 2017, Reddi et al. 2018)

• More recent comparative study (Schmidt et al., 2021):
“We observe that evaluating multiple optimizers with default
parameters works approximately as well as tuning the
hyperparameters of a single, fixed optimizer.”

https://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
https://openreview.net/forum?id=ryQu7f-RZ
https://arxiv.org/pdf/2007.01547.pdf

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

Data augmentation
• Introduce transformations not adequately sampled in the

training data
• Geometric: flipping, rotation, shearing, multiple crops

Image source Image source

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Data augmentation
• Introduce transformations not adequately sampled in the

training data
• Geometric: flipping, rotation, shearing, multiple crops
• Photometric: color transformations

Image source

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Data augmentation
• Introduce transformations not adequately sampled in the

training data
• Geometric: flipping, rotation, shearing, multiple crops
• Photometric: color transformations
• Other: add noise, compression artifacts, lens distortions, etc.

Image source

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

Data augmentation
• Introduce transformations not adequately sampled in the

training data
• Limited only by your imagination and time/memory

constraints!
• Avoid introducing artifacts
• Automatic augmentation strategies: AutoAugment,

RandAugment

https://arxiv.org/pdf/1805.09501.pdf
https://arxiv.org/pdf/1909.13719.pdf

Data preprocessing
• Zero centering

• Subtract mean image – all input images need to have the same
resolution

• Subtract per-channel means – images don’t need to have the same
resolution

• Optional: rescaling – divide each value by (per-pixel or per-
channel) standard deviation

• Be sure to apply the same transformation at training and test
time!
• Save training set statistics and apply to test data

The importance of preprocessing and initialization

𝑥(#)

𝑥())

• Consider the behavior of a linear+ReLU unit: ℎ	 = 	ReLU(𝑤*𝑥 + 𝑏)

𝑤: normal to a hyperplane
Bias 𝑏: (unnormalized)
distance from hyperplane
to origin

ℎ > 0

ℎ < 0

Review: Backward pass for ReLU

𝜕𝑒
𝜕𝑥 	=

𝜕𝑒
𝜕ℎ	

𝜕ℎ
𝜕𝑥

𝑥 ℎ
!"
!#

𝑓(𝑥) = max(0, 𝑥)

𝜕ℎ
𝜕𝑥

= 𝕀[𝑥 > 0]

𝜕𝑒
𝜕𝑥
	=

𝜕𝑒
𝜕ℎ
𝕀 𝑥 > 0

The importance of preprocessing and initialization

𝑥(#)

𝑥())

Linear+ReLU unit: ℎ	 = 	ReLU(𝑤*𝑥 + 𝑏)

• What happens in this case?
• Nonlinearity plays no role
• Upstream gradients can

still back-propagate

𝑤: normal to a hyperplane
Bias 𝑏: (unnormalized)
distance from hyperplane
to origin

The importance of preprocessing and initialization

𝑥(#)

𝑥())

Linear+ReLU unit: ℎ	 = 	ReLU(𝑤*𝑥 + 𝑏)

• What happens in this case?
• All inputs to ReLU are

negative
• No gradients propagate

back – dead ReLU!

𝑤: normal to a hyperplane
Bias 𝑏: (unnormalized)
distance from hyperplane
to origin

The importance of preprocessing and initialization
• What’s wrong with initializing all weights to the same number

(e.g., zero)?

Weight initialization
• Typically: initialize to random values sampled from zero-

mean Gaussian: 𝑤	~	𝒩(0, 𝜎()
• Standard deviation matters!
• Key idea: avoid reducing or amplifying the variance of layer

responses, which would lead to vanishing or exploding gradients
• Common heuristics:

• Xavier initialization: 𝜎) = 1/𝑛01 or 𝜎) 	= 2/(𝑛01 + 𝑛234),
where 𝑛01 and 𝑛234	are the numbers of inputs and outputs to a layer
(Glorot and Bengio, 2010)

• Kaiming initialization (goes with ReLU): 𝜎) 	= 2/𝑛01 (He et al., 2015)
• Initializing biases: just set them to 0

More details: http://cs231n.github.io/neural-networks-2/#init

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://cs231n.github.io/neural-networks-2/

Normalization
• I omitted a crucial detail so far:

• It is often useful to standardize statistics of hidden layers
• through use of normalization layers
• to mitigate vanishing / exploding gradients
• when training deeper networks

• Many forms of normalization:

Batch normalization
• Key idea: shifting and rescaling are differentiable operations,

so the network can learn how to best normalize the data
• Statistics of activations (outputs) from a given layer across

the dataset can be approximated by statistics from a mini-
batch

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

At test time (usually):

training set

training set

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization
• Common configuration: insert BN layers right after conv or FC

layers, before ReLU nonlinearity (but this is purely empirical)

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ICML 2015

conv

BN

ReLU

conv

BN

ReLU

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Batch normalization
• Benefits

• Prevents exploding and vanishing gradients
• Keeps most activations away from saturation regions of non-linearities
• Accelerates convergence of training
• Makes training more robust w.r.t. hyperparameter choice, initialization

• Pitfalls
• Behavior depends on composition of mini-batches, can lead to hard-to-

catch bugs if there is a mismatch between training and test regime
(example)

• Doesn’t work well for small mini-batch sizes
• Cannot be used for certain types of models (recurrent models,

transformers)

https://www.alexirpan.com/2017/04/26/perils-batch-norm.html

Batch Normalization (Results)

S. Iofffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, arXiv 2015

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Other types of normalization
• Layer normalization (Ba et al., 2016)
• Instance normalization (Ulyanov et al., 2017)
• Group normalization (Wu and He, 2018)
• Weight normalization (Salimans et al., 2016)

Y. Wu and K. He, Group Normalization, ECCV 2018

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://arxiv.org/pdf/1602.07868.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization

Regularization
• Techniques for controlling the capacity of a neural network to

prevent overfitting – short of explicit reduction of the number
of parameters

• Recall: classic regularization: L1, L2

Image source

http://laid.delanover.com/difference-between-l1-and-l2-regularization-implementation-and-visualization-in-tensorflow/

Weight decay
• Generic optimization step:
𝐿 𝑤 = 𝐿+,-, 𝑤 + 𝐿./0 𝑤
𝑔1 = ∇𝐿 𝑤1
𝑠1 = optimizer 𝑔1
𝑤12) = 𝑤1 − 𝜂𝑠1

• Optimization with weight decay:
𝐿 𝑤 = 𝐿+,-, 𝑤
𝑔1 = ∇𝐿 𝑤1
𝑠1 = optimizer 𝑔1
𝑤12) = (1 − 𝜂𝜆)𝑤1 − 𝜂𝑠1

𝐿 𝑤 = 𝐿+,-, 𝑤 +
𝜆
2
𝑤 (

𝑔1 = ∇𝐿+,-, 𝑤1 + 𝜆𝑤
𝑤12) 	= 𝑤1 − 𝜂𝑔1
 = 1 − 𝜂𝜆 𝑤1 − 𝜂∇𝐿+,-, 𝑤1

Adapted from J. JohnsonI. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization, ICLR 2019

• SGD with L2 regularization:

https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture04.pdf
https://arxiv.org/pdf/1711.05101.pdf

Other types of regularization
• Adding noise to the inputs

• Recall motivation of max margin criterion
• In simple scenario (linear model, quadratic loss, Gaussian noise),

this is equivalent to weight decay
• Data augmentation is a more general form of this

• Adding noise to the weights
• Label smoothing

• When using softmax loss, replace hard 1 and 0 prediction targets
with “soft” targets of 1 − 𝜖 and 5

6'#

Dropout
• At training time, in each forward pass, turn off some neurons

with probability 𝑝
• At test time, to have deterministic behavior, multiply output of

neuron by 𝑝

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

Dropout

Present with

probability p

w

-

(a) At training time

Always

present

pw

-

(b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

Applying dropout to a neural network amounts to sampling a “thinned” network from
it. The thinned network consists of all the units that survived dropout (Figure 1b). A
neural net with n units, can be seen as a collection of 2n possible thinned neural networks.
These networks all share weights so that the total number of parameters is still O(n2), or
less. For each presentation of each training case, a new thinned network is sampled and
trained. So training a neural network with dropout can be seen as training a collection of 2n

thinned networks with extensive weight sharing, where each thinned network gets trained
very rarely, if at all.

At test time, it is not feasible to explicitly average the predictions from exponentially
many thinned models. However, a very simple approximate averaging method works well in
practice. The idea is to use a single neural net at test time without dropout. The weights
of this network are scaled-down versions of the trained weights. If a unit is retained with
probability p during training, the outgoing weights of that unit are multiplied by p at test
time as shown in Figure 2. This ensures that for any hidden unit the expected output (under
the distribution used to drop units at training time) is the same as the actual output at
test time. By doing this scaling, 2n networks with shared weights can be combined into
a single neural network to be used at test time. We found that training a network with
dropout and using this approximate averaging method at test time leads to significantly
lower generalization error on a wide variety of classification problems compared to training
with other regularization methods.

The idea of dropout is not limited to feed-forward neural nets. It can be more generally
applied to graphical models such as Boltzmann Machines. In this paper, we introduce
the dropout Restricted Boltzmann Machine model and compare it to standard Restricted
Boltzmann Machines (RBM). Our experiments show that dropout RBMs are better than
standard RBMs in certain respects.

This paper is structured as follows. Section 2 describes the motivation for this idea.
Section 3 describes relevant previous work. Section 4 formally describes the dropout model.
Section 5 gives an algorithm for training dropout networks. In Section 6, we present our
experimental results where we apply dropout to problems in di↵erent domains and compare
it with other forms of regularization and model combination. Section 7 analyzes the e↵ect of
dropout on di↵erent properties of a neural network and describes how dropout interacts with
the network’s hyperparameters. Section 8 describes the Dropout RBM model. In Section 9
we explore the idea of marginalizing dropout. In Appendix A we present a practical guide

1931

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout
• Intuitions

• Prevent “co-adaptation” of
units, increase robustness to
noise

• Train implicit ensemble

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Current status of dropout
• Against

• Slows down convergence
• Made redundant by batch normalization or possibly even clashes

with it
• Unnecessary for larger datasets or with sufficient data augmentation

• In favor
• Can still help for certain models and in certain situations: e.g., used

in Wide Residual Networks

https://arxiv.org/abs/1801.05134
https://arxiv.org/abs/1801.05134

Outline
• Optimization

• Mini-batch SGD
• Learning rate decay
• Diagnosing learning curves
• Adaptive methods: SGD with momentum, RMSProp, Adam

• Massaging the numbers
• Data augmentation
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization
• Test time: averaging predictions, ensembles

Test time
• Average predictions across multiple crops of test image

• There is a more elegant way to do this with fully convolutional
networks (FCNs)

Test time
• Ensembles: train multiple independent models, then average

their predicted label distributions
• Gives 1-2% improvement in most cases
• Can take multiple snapshots of models obtained during training,

especially if you cycle the learning rate (increase to jump out of local
minima)

G. Huang et al., Snapshot ensembles: Train 1, get M for free, ICLR 2017

https://openreview.net/pdf?id=BJYwwY9ll

Important Considerations
1. Data
2. Supervision
3. Loss functions
4. Optimization / Initialization
5. Inductive Bias

Development Process
1. Collect lots of labeled data
2. Setup network architecture
3. Setup loss function
4. Sanity checks

1. Is your data correct?
2. Can you overfit to a small set?

5. Hyperparameters
1. Learning hyperparameters: batch size, learning rates, how much to train,

regularization, optimizer.
2. Architectural hyper-parameters: Non-linearities, #layers, #neurons, loss functions.

6. Hacking
1. Reducing iteration time
2. Maximizing GPU utilization

Some take-aways
• Training neural networks is still a black art
• Process requires close “babysitting”
• For many techniques, the reasons why, when, and whether they work are

in active dispute – read everything but don’t trust anything
• It all comes down to (principled) trial and error
• Further reading: A. Karpathy, A recipe for training neural networks

http://karpathy.github.io/2019/04/25/recipe/

