
Pixel Prediction Tasks

Semantic segmentation

Many Slides from L. Lazebnik. Colorization Depth / Surface Normal Estimation



Outline
• Semantic segmentation

• Architectures
• “Convolutionalization”
• Dilated convolutions
• Hyper-columns / skip-connections
• Learned up-sampling architectures

• Other dense prediction problems



From Image Classifiers to Semantic Segmentation

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

Have: an pre-trained image classification network

Want: pixel-wise predictions on arbitrary sized images

http://arxiv.org/pdf/1411.4038.pdf


Sparse, Low-resolution Output

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

http://arxiv.org/pdf/1411.4038.pdf


Sparse, Low-resolution Output

J. Long, et al., Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

7

FCN-32s FCN-16s FCN-8s Ground truth

Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Figure 3).

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Figure 4 shows
the progressively finer structure of the output.

TABLE 3
Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval.

Learning is end-to-end with batch size one and high momentum, with
the exception of the fixed variant that fixes all features. Note that

FCN-32s is FCN-VGG16, renamed to highlight stride, and the
FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

4.4 Experimental framework
Fine-tuning We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73% of the full fine-tuning performance
as compared in Table 3. Fine-tuning in stages takes 36 hours
on a single GPU. Learning FCN-8s all-at-once takes half the
time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.

7

FCN-32s FCN-16s FCN-8s Ground truth

Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Figure 3).

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Figure 4 shows
the progressively finer structure of the output.

TABLE 3
Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval.

Learning is end-to-end with batch size one and high momentum, with
the exception of the fixed variant that fixes all features. Note that

FCN-32s is FCN-VGG16, renamed to highlight stride, and the
FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

4.4 Experimental framework
Fine-tuning We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73% of the full fine-tuning performance
as compared in Table 3. Fine-tuning in stages takes 36 hours
on a single GPU. Learning FCN-8s all-at-once takes half the
time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.

Bilinear Up sampling: Differentiable, 
train through up-sampling.

http://arxiv.org/pdf/1411.4038.pdf


Fix 1: A trous Conv., Dilated Conv.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille, DeepLab: Semantic Image Segmentation with 
Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI 2017

https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf


Fix 1: A trous Conv., Dilated Conv.

16 x 16
8 x 8

3 x 3

ks = 3, 
stride = 2,
dilation = 1

4 x 4

3 x 3

16 x 16

ks = 3, 
stride = 1,
dilation = 1

16 x 16

3 x 3

ks = 3, 
stride = 1,
dilation = 2

16 x 16

ks = 3, 
stride = 2,
dilation = 1

3 x 3

2 x 2

16 x 16

ks = 3, 
stride = 1,
dilation = 4

ks = 3, 
stride = 2,
dilation = 1

5 x 5
9 x 9



Fix 1: A trous Conv., Dilated Conv.

A. 3x3 conv
stride 2

B. 3x3 conv, stride1

A. 3x3 conv
stride 1

Same as running 
the CNN on shifted 
versions of the 
image and stitching



Fix 1: A trous Conv., Dilated Conv.

Image source

Dilation factor 1 Dilation factor 2 Dilation factor 3

https://qph.fs.quoracdn.net/main-qimg-d9025e88d7d792e26f4040b767b25819.webp


Fix 1: A trous Conv., Dilated Conv.
• Use in FCN to remove downsampling: 

change stride of max pooling layer from 2 to 1, 
dilate subsequent convolutions by factor of 2 
(possibly without re-training any parameters)

• Instead of reducing spatial resolution of feature 
maps, use a large sparse filter

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille, DeepLab: Semantic Image Segmentation with 
Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI 2017

https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf


Fix 1: A trous Conv., Dilated Conv.

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 
ICLR 2016 

F2 produced from 
F1 by 2-dilated 

convolution

F3 produced from 
F2 by 4-dilated 

convolution

FCN Dilated Convolutions

https://arxiv.org/pdf/1511.07122.pdf


Fix 2: Hyper-columns/Skip Connections
• Even though with dilation we can predict each pixel, 

fine-grained information needs to be propagated 
through the network.

• Idea: Additionally use features from within the 
network.

B. Hariharan, P. Arbelaez, R. Girshick, and J. 
Malik, Hypercolumns for Object Segmentation 

and Fine-grained Localization, CVPR 2015
J. Long, et al., Fully Convolutional Networks for 

Semantic Segmentation, CVPR 2015

http://arxiv.org/pdf/1411.5752.pdf
http://arxiv.org/pdf/1411.5752.pdf
http://arxiv.org/pdf/1411.4038.pdf
http://arxiv.org/pdf/1411.4038.pdf


Fix 2: Hyper-columns/Skip Connections

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

• Predictions by 1x1 conv layers, 
bilinear upsampling

• Predictions by 1x1 conv layers, 
learned 2x upsampling, 
fusion by summing

http://arxiv.org/pdf/1411.4038.pdf


Fix 2: Hyper-columns/Skip Connections

J. Long, et al., Fully Convolutional Networks for 
Semantic Segmentation, CVPR 2015

7

FCN-32s FCN-16s FCN-8s Ground truth

Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Figure 3).

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Figure 4 shows
the progressively finer structure of the output.

TABLE 3
Comparison of FCNs on a subset5 of PASCAL VOC 2011 segval.

Learning is end-to-end with batch size one and high momentum, with
the exception of the fixed variant that fixes all features. Note that

FCN-32s is FCN-VGG16, renamed to highlight stride, and the
FCN-poolX are truncated nets with the same strides as FCN-32/16/8s.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

4.4 Experimental framework
Fine-tuning We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73% of the full fine-tuning performance
as compared in Table 3. Fine-tuning in stages takes 36 hours
on a single GPU. Learning FCN-8s all-at-once takes half the
time to reach comparable accuracy. Training from scratch
gives substantially lower accuracy.

More training data The PASCAL VOC 2011 segmen-
tation training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the FCN-
AlexNet score from 39.8 to 48.0 mean IU.

Loss The per-pixel, unnormalized softmax loss is a nat-
ural choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.

Fig. 5. Training on whole images is just as effective as sampling
patches, but results in faster (wall clock time) convergence by making
more efficient use of data. Left shows the effect of sampling on conver-
gence rate for a fixed expected batch size, while right plots the same by
relative wall clock time.

induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary
or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described
earlier, making an independent choice to ignore each final
layer cell with some probability 1�p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1/p. Note that due to the
efficiency of convolution, this form of rejection sampling is
still faster than patchwise training for large enough values
of p (e.g., at least for p > 0.2 according to the numbers
in Section 3.1). Figure 5 shows the effect of this form of
sampling on convergence. We find that sampling does not
have a significant effect on convergence rate compared to
whole image training, but takes significantly more time due
to the larger number of images that need to be considered
per batch. We therefore choose unsampled, whole image
training in our other experiments.

Class balancing Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are back-
ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and code
are publicly available at http://fcn.berkeleyvision.org.

http://arxiv.org/pdf/1411.4038.pdf
http://arxiv.org/pdf/1411.4038.pdf


Fix 2b: Learned Upsampling

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, 
CVPR 2015

• Predictions by 1x1 conv layers, 
bilinear upsampling

• Predictions by 1x1 conv layers, 
learned 2x upsampling, 
fusion by summing

http://arxiv.org/pdf/1411.4038.pdf


• Like FCN, fuse upsampled higher-level feature maps with 
higher-res, lower-level feature maps

• Unlike FCN, fuse by concatenation, predict at the end

U-Net

O. Ronneberger, P. Fischer, T. Brox U-Net: Convolutional Networks for Biomedical 
Image Segmentation, MICCAI 2015

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf


Learned Upsampling (Transposed convolution)

• Use the filter to “paint” in the output: place 
copies of the filter on the output, multiply by 
corresponding value in the input, sum where 
copies of the filter overlap

• 1D example:

Animation: https://distill.pub/2016/deconv-checkerboard/

input

output

𝑥! 𝑥" 𝑥#

𝑤!𝑥!

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

filter: 𝑤! 𝑤" 𝑤#

https://distill.pub/2016/deconv-checkerboard/


Transposed convolution
• Use the filter to “paint” in the output: place 

copies of the filter on the output, multiply by 
corresponding value in the input, sum where 
copies of the filter overlap

• 1D example:

Animation: https://distill.pub/2016/deconv-checkerboard/

input

output

𝑥! 𝑥" 𝑥#

𝑤"𝑥! + 𝑤!𝑥"

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

filter: 𝑤! 𝑤" 𝑤#

https://distill.pub/2016/deconv-checkerboard/


Transposed convolution
• Use the filter to “paint” in the output: place 

copies of the filter on the output, multiply by 
corresponding value in the input, sum where 
copies of the filter overlap

• 1D example:

Animation: https://distill.pub/2016/deconv-checkerboard/

input

output

𝑥! 𝑥" 𝑥#

𝑤#𝑥! + 𝑤"𝑥" + 𝑤!𝑥#

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

filter: 𝑤! 𝑤" 𝑤#

Same as convolution with a flipped filter!

https://distill.pub/2016/deconv-checkerboard/


Transposed convolution
• Use the filter to “paint” in the output: place 

copies of the filter on the output, multiply by 
corresponding value in the input, sum where 
copies of the filter overlap

• 1D example:

Animation: https://distill.pub/2016/deconv-checkerboard/

input

output

𝑥! 𝑥" 𝑥#

𝑤#𝑥" + 𝑤"𝑥# + 𝑤!𝑥$

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

filter: 𝑤! 𝑤" 𝑤#

Same as convolution with a flipped filter!

https://distill.pub/2016/deconv-checkerboard/


Upsampling by transposed convolution
• Backwards-strided convolution: to increase 

resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

input

output

stride 1

𝑥! 𝑥" 𝑥#

𝑤#𝑥" + 𝑤"𝑥# + 𝑤!𝑥$

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

https://distill.pub/2016/deconv-checkerboard/


Upsampling by transposed convolution
• Backwards-strided convolution: to increase 

resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

stride 2
input

output

𝑥! 𝑥" 𝑥#

𝑤!𝑥!

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

https://distill.pub/2016/deconv-checkerboard/


Upsampling by transposed convolution
• Backwards-strided convolution: to increase 

resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

stride 2
input

output

𝑥! 𝑥" 𝑥#

𝑤"𝑥!

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

https://distill.pub/2016/deconv-checkerboard/


Upsampling by transposed convolution
• Backwards-strided convolution: to increase 

resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

stride 2
input

output

𝑥! 𝑥" 𝑥#

𝑤#𝑥! + 𝑤!𝑥"

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

https://distill.pub/2016/deconv-checkerboard/


Upsampling by transposed convolution
• Backwards-strided convolution: to increase 

resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

stride 2
input

output

𝑥! 𝑥" 𝑥#

𝑤"𝑥"

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

https://distill.pub/2016/deconv-checkerboard/


Upsampling by transposed convolution
• Backwards-strided convolution: to increase 

resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

stride 2
input

output

𝑥! 𝑥" 𝑥#

𝑤#𝑥" + 𝑤!𝑥#

𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

https://distill.pub/2016/deconv-checkerboard/


Upsampling by transposed convolution
• Backwards-strided convolution: to increase 

resolution, use output stride > 1
• For stride 2, dilate the input by inserting rows and columns of 

zeros between adjacent entries, convolve with flipped filter
• Sometimes called convolution with fractional input stride 1/2

V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, 
arXiv 2018

input

output
Q: What 3x3 filter would 
correspond to bilinear 
upsampling?

1
4

1
2

1
4

1
2

1
1
2

1
4

1
2

1
4

https://arxiv.org/pdf/1603.07285.pdf


Upsampling by unpooling
• Alternative to transposed convolution: max 

unpooling

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

5 6

7 8

Max 
pooling

Remember 
pooling indices 
(which element 

was max)

0 0 6 0

0 5 0 0

0 0 0 0

7 0 0 8

Max 
unpooling

Output is sparse, so 
unpooling is typically 

followed by a transposed 
convolution layer



Fix 3: Use local edge information (CRFs)

P (y|x) = 1

Z
e�E(y,x)

y⇤ = argmax
y

P (y|x)

= argmin
y

E(y,x)

E(y,x) =
X

i

Edata(yi,x) +
X

i,j2N
Esmooth(yi, yj ,x)

Source: B. Hariharan



Fix 3: Use local edge information (CRFs)

Idea: take convolutional network prediction and 
sharpen using classic techniques

Conditional Random Field

y⇤ = argmin
y

X

i

Edata(yi,x) +
X

i,j2N
Esmooth(yi, yj ,x)

Esmooth(yi, yj ,x) = µ(yi, yj)wij(x)

Label 
compatibility

Pixel 
similarity

Source: B. Hariharan



Fix 3: Use local edge information (CRFs)

Source: B. Hariharan

Largely unnecessary given modern networks



Semantic Segmentation Results14 L.-C Chen, Y. Zhu, G. Papandreou, F. Schro↵, and H. Adam

Fig. 6. Visualization results on val set. The last row shows a failure mode.

Backbone Decoder ASPP Image-Level mIOU

X-65 X X 77.33
X-65 X X X 78.79
X-65 X X 79.14
X-71 X X 79.55

Method Coarse mIOU

ResNet-38 [83] X 80.6
PSPNet [24] X 81.2
Mapillary [86] X 82.0

DeepLabv3 X 81.3

DeepLabv3+ X 82.1

(a) val set results (b) test set results
Table 7. (a) DeepLabv3+ on the Cityscapes val set when trained with train fine set.
(b) DeepLabv3+ on Cityscapes test set. Coarse: Use train extra set (coarse annota-
tions) as well. Only a few top models are listed in this table.

models. As shown in Tab. 7 (b), our proposed DeepLabv3+ attains a performance
of 82.1% on the test set, setting a new state-of-art performance on Cityscapes.

5 Conclusion

Our proposed model “DeepLabv3+” employs the encoder-decoder structure where
DeepLabv3 is used to encode the rich contextual information and a simple yet
e↵ective decoder module is adopted to recover the object boundaries. One could
also apply the atrous convolution to extract the encoder features at an arbitrary
resolution, depending on the available computation resources. We also explore
the Xception model and atrous separable convolution to make the proposed
model faster and stronger. Finally, our experimental results show that the pro-
posed model sets a new state-of-the-art performance on PASCAL VOC 2012 and
Cityscapes datasets.

Acknowledgments We would like to acknowledge the valuable discussions
with Haozhi Qi and Jifeng Dai about Aligned Xception, the feedback from Chen
Sun, and the support from Google Mobile Vision team.

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 13

Method mIOU

Deep Layer Cascade (LC) [82] 82.7
TuSimple [77] 83.1
Large Kernel Matters [60] 83.6
Multipath-RefineNet [58] 84.2
ResNet-38 MS COCO [83] 84.9
PSPNet [24] 85.4
IDW-CNN [84] 86.3
CASIA IVA SDN [63] 86.6
DIS [85] 86.8

DeepLabv3 [23] 85.7
DeepLabv3-JFT [23] 86.9

DeepLabv3+ (Xception) 87.8
DeepLabv3+ (Xception-JFT) 89.0

Table 6. PASCAL VOC 2012 test set results with top-performing models.

Image w/ BU w/ Decoder

(a) mIOU vs. Trimap width (b) Decoder e↵ect

Fig. 5. (a) mIOU as a function of trimap band width around the object boundaries
when employing train output stride = eval output stride = 16. BU: Bilinear upsam-
pling. (b) Qualitative e↵ect of employing the proposed decoder module compared with
the naive bilinear upsampling (denoted as BU). In the examples, we adopt Xception
as feature extractor and train output stride = eval output stride = 16.

module and image-level features [52], attains the performance of 77.33% on the
validation set. Adding the proposed decoder module significantly improves the
performance to 78.79% (1.46% improvement). We notice that removing the aug-
mented image-level feature improves the performance to 79.14%, showing that
in DeepLab model, the image-level features are more e↵ective on the PASCAL
VOC 2012 dataset. We also discover that on the Cityscapes dataset, it is e↵ec-
tive to increase more layers in the entry flow in the Xception [26], the same as
what [31] did for the object detection task. The resulting model building on top
of the deeper network backbone (denoted as X-71 in the table), attains the best
performance of 79.55% on the validation set.

After finding the best model variant on val set, we then further fine-tune
the model on the coarse annotations in order to compete with other state-of-art

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian 
Schroff, Hartwig Adam, DeepLabv3+: Encoder-Decoder with 

Atrous Separable Convolution, ECCV 2018

https://arxiv.org/pdf/1802.02611v3.pdf
https://arxiv.org/pdf/1802.02611v3.pdf


Outline
• Semantic segmentation

• Architectures
• “Convolutionalization”
• Dilated convolutions
• Hyper-columns / skip-connections
• Learned up-sampling architectures

• Other dense prediction problems



Other dense prediction tasks
• Depth estimation
• Surface normal estimation
• Colorization
• ….



Depth and normal estimation
Predicted depth Ground truth

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels 
with a Common Multi-Scale Convolutional Architecture, ICCV 2015

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf


Depth and normal estimation
Predicted normals Ground truth

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels 
with a Common Multi-Scale Convolutional Architecture, ICCV 2015

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf


Colorization

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016

http://richzhang.github.io/colorization/

