Pixel Prediction Tasks

Semantic segmentation

Many Slides from L. Lazebnik.

Colorization

Depth / Surface Normal Estimation

Outline

- Semantic segmentation
 - Architectures
 - "Convolutionalization"
 - Dilated convolutions
 - Hyper-columns / skip-connections
 - Learned up-sampling architectures
- Other dense prediction problems

From Image Classifiers to Semantic Segmentation

Have: an pre-trained image classification network

Want: pixel-wise predictions on arbitrary sized images

J. Long, E. Shelhamer, and T. Darrell, <u>Fully Convolutional Networks for Semantic Segmentation</u>, CVPR 2015

Sparse, Low-resolution Output

J. Long, E. Shelhamer, and T. Darrell, <u>Fully Convolutional Networks for Semantic Segmentation</u>, CVPR 2015

Sparse, Low-resolution Output

Bilinear Up sampling: Differentiable, train through up-sampling.

J. Long, et al., Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille, <u>DeepLab: Semantic Image Segmentation with</u> <u>Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs</u>, PAMI 2017

Same as running the CNN on shifted versions of the image and stitching

B. 3x3 conv, stride1								
	1	6	11	16	21			
	2	7	12	17	22			
	3	8	13	18	23			
	4	9	14	19	24			
	5	10	15	20	25			
V	1	6	11	16	21			
	2	7	12	17	22			
	3	8	13	18	23			
		9	14	19	24			
	5	10	15	20	25			
	1	6	11	16	21	╞		
	2	7	12	17	22			
	3	8	13	18	23			
	4	9	14	19	24			
	5	10	15	20	25			
	1	6	11	16	21			
	2	7	12	17	22			
]	3	8	13	18	23			
	4	9	14	19	24			
	5	10	15	20	25			

											1	6	11	16	21
											2	7	12	17	22
											3	8	13	18	23
			A.	3>	x 3	CC	٥n	/			4	9	14	19	24
						e 1		•			5	10	15	20	25
				50	IQ.						1	6	11	16	21
	1	1	6	6	11	11	16	16	21	21					
	1	1	6	6	11	11	16	16	21	21	2	7	12	17	22
	2	2	7		12		17	17	22	22	3	8	13	18	23
	2	2						17	22	22	4	9	14	19	24
	3	3	8		13		18	18	23	23	5	10	15	20	25
-	3	3						18	23	23	1	6	11	16	21
	4	4	9		14		19	19	24	24	2	7	12	17	22
	4	4	9	9	14	14	19	19	24	24	3	8	13	18	23
	5	5	10	10	15	15	20	20	25	25	4	9	14	19	24
	5	5	10	10	15	15	20	20	25	25	5	10	15	20	25
											1	6	11	16	21
											2	7	12	17	22
											3	8	13	18	23
											4	9	14	19	24

10

15

20

25

Dilation factor 2

Dilation factor 3

- Use in FCN to remove downsampling: change stride of max pooling layer from 2 to 1, dilate subsequent convolutions by factor of 2 (possibly without re-training any parameters)
- Instead of reducing spatial resolution of feature maps, use a large sparse filter

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille, <u>DeepLab: Semantic Image Segmentation with</u> <u>Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs</u>, PAMI 2017

FCN Dilated Convolutions F. Yu and V. Koltun, <u>Multi-scale context aggregation by dilated convolutions</u>, ICLR 2016

Fix 2: Hyper-columns/Skip Connections

- Even though with dilation we can predict each pixel, fine-grained information needs to be propagated through the network.
- Idea: Additionally use features from within the network.

B. Hariharan, P. Arbelaez, R. Girshick, and J.
Malik, <u>Hypercolumns for Object Segmentation</u> <u>and Fine-grained Localization</u>, CVPR 2015
J. Long, et al., <u>Fully Convolutional Networks for</u> <u>Semantic Segmentation</u>, CVPR 2015

Fix 2: Hyper-columns/Skip Connections

- Predictions by 1x1 conv layers, bilinear upsampling
- Predictions by 1x1 conv layers, *learned* 2x upsampling, fusion by summing

J. Long, E. Shelhamer, and T. Darrell, <u>Fully Convolutional Networks for Semantic Segmentation</u>, CVPR 2015

Fix 2: Hyper-columns/Skip Connections

J. Long, et al., <u>Fully Convolutional Networks for</u> <u>Semantic Segmentation</u>, CVPR 2015

Fix 2b: Learned Upsampling

J. Long, E. Shelhamer, and T. Darrell, <u>Fully Convolutional Networks for Semantic Segmentation</u>, CVPR 2015

U-Net

- Like FCN, fuse upsampled higher-level feature maps with higher-res, lower-level feature maps
- Unlike FCN, fuse by concatenation, predict at the end

O. Ronneberger, P. Fischer, T. Brox <u>U-Net: Convolutional Networks for Biomedical</u> <u>Image Segmentation</u>, MICCAI 2015

Learned Upsampling (Transposed convolution)

- Use the filter to "paint" in the output: place copies of the filter on the output, multiply by corresponding value in the input, sum where copies of the filter overlap
- 1D example:

Transposed convolution

- Use the filter to "paint" in the output: place copies of the filter on the output, multiply by corresponding value in the input, sum where copies of the filter overlap
- 1D example:

Transposed convolution

- Use the filter to "paint" in the output: place copies of the filter on the output, multiply by corresponding value in the input, sum where copies of the filter overlap
- 1D example:

Same as convolution with a flipped filter!

Transposed convolution

- Use the filter to "paint" in the output: place copies of the filter on the output, multiply by corresponding value in the input, sum where copies of the filter overlap
- 1D example:

Same as convolution with a flipped filter!

 Backwards-strided convolution: to increase resolution, use output stride > 1

 Backwards-strided convolution: to increase resolution, use output stride > 1

Animation: <u>https://distill.pub/2016/deconv-checkerboard/</u>

 Backwards-strided convolution: to increase resolution, use output stride > 1

Animation: <u>https://distill.pub/2016/deconv-checkerboard/</u>

 Backwards-strided convolution: to increase resolution, use output stride > 1

 Backwards-strided convolution: to increase resolution, use output stride > 1

Animation: <u>https://distill.pub/2016/deconv-checkerboard/</u>

 Backwards-strided convolution: to increase resolution, use output stride > 1

- Backwards-strided convolution: to increase resolution, use output stride > 1
 - For stride 2, dilate the input by inserting rows and columns of zeros between adjacent entries, convolve with flipped filter
 - Sometimes called convolution with *fractional input stride* 1/2

Q: What 3x3 filter would correspond to bilinear upsampling?

$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$
$\frac{1}{2}$	1	$\frac{1}{2}$
$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

V. Dumoulin and F. Visin, <u>A guide to convolution arithmetic for deep learning</u>, arXiv 2018

Upsampling by unpooling

Alternative to transposed convolution: max
 unpooling

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Remember pooling indices (which element was max)

J	0	0	6	0
	0	5	0	0
	0	0	0	0
	7	0	0	8

Output is sparse, so unpooling is typically followed by a transposed convolution layer

Fix 3: Use local edge information (CRFs)

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z}e^{-E(\mathbf{y},\mathbf{x})}$$
$$\mathbf{y}^* = \arg \max_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})$$
$$= \arg \min_{\mathbf{y}} E(\mathbf{y},\mathbf{x})$$

$$E(\mathbf{y}, \mathbf{x}) = \sum_{i} E_{data}(y_i, \mathbf{x}) + \sum_{i, j \in \mathcal{N}} E_{smooth}(y_i, y_j, \mathbf{x})$$

Source: B. Hariharan

Fix 3: Use local edge information (CRFs)

Idea: take convolutional network prediction and sharpen using classic techniques *Conditional Random Field*

$$\mathbf{y}^{*} = \arg\min_{\mathbf{y}} \sum_{i} E_{data}(y_{i}, \mathbf{x}) + \sum_{i,j \in \mathcal{N}} E_{smooth}(y_{i}, y_{j}, \mathbf{x})$$
$$E_{smooth}(y_{i}, y_{j}, \mathbf{x}) = \frac{\mu(y_{i}, y_{j})w_{ij}(\mathbf{x})}{\text{Label}}$$

Fix 3: Use local edge information (CRFs)

Image

VGG-16 Bef.

VGG-16 Aft.

ResNet Bef.

ResNet Aft.

Largely unnecessary given modern networks

Source: B. Hariharan

Semantic Segmentation Results

Method	mIOU
Deep Layer Cascade (LC) [82]	82.7
TuSimple [77]	83.1
Large_Kernel_Matters [60]	83.6
Multipath-RefineNet [58]	84.2
ResNet-38_MS_COCO [83]	84.9
PSPNet [24]	85.4
IDW-CNN [84]	86.3
CASIA_IVA_SDN [63]	86.6
DIS [85]	86.8
DeepLabv3 [23]	85.7
DeepLabv3-JFT [23]	86.9
DeepLabv3+ (Xception)	87.8
DeepLabv3+ (Xception-JFT)	89.0
10 0 0010 1 1	• • •

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam, <u>DeepLabv3+: Encoder-Decoder with</u> <u>Atrous Separable Convolution</u>, ECCV 2018

Outline

- Semantic segmentation
 - Architectures
 - "Convolutionalization"
 - Dilated convolutions
 - Hyper-columns / skip-connections
 - Learned up-sampling architectures
- Other dense prediction problems

Other dense prediction tasks

- Depth estimation
- Surface normal estimation
- Colorization
-

Depth and normal estimation

D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels</u> with a Common Multi-Scale Convolutional Architecture, ICCV 2015

Depth and normal estimation

Predicted normals Ground truth

D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels</u> with a Common Multi-Scale Convolutional Architecture, ICCV 2015

Colorization

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016