Object Detection
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Object Detection: Task Definition

Input: Single RGB Image

Output: A set of detected objects;
For each object predict:

1. Category label (from fixed,
known set of categories)

2. Bounding box (four numbers:
X, y, width, height)
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Object Detection: Challenges

- Multiple outputs: Need to output
variable numbers of objects per image

- Multiple types of output: Need to
predict "what” (category label) as well
as “where” (bounding box)

- Large images: Classification works at
224x224; need higher resolution for
detection, often ~800x600
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Bounding Boxes

Bounding boxes are
typically axis-aligne

Slide from Justin Johnson
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Bounding Boxes

Bounding boxes are
typically axis-aligned

Oriented boxes are
much less common

Slide from Justin Johnson
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Object Detection: Modal vs Amodal Boxes

Bounding boxes (usually)
cover only the visible
portion of the object

Zhu et al, "Semantic Amodal Segmentation”, CVPR 2017 This image is CCO Public Domain
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https://www.rawpixel.com/image/3288641/free-photo-image-abyssinian-animal-cat
https://creativecommons.org/publicdomain/zero/1.0/

Object Detection: Modal vs Amodal Boxes

Bounding boxes (usually)
cover only the visible
portion of the object

Amodal detection:

box covers the entire
extent of the object,
even occluded parts

Zhu et al, “Semantic Amodal Segmentation”, CVPR 2017 This image is CCO Public Domain
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Object Detection: Modal vs Amodal Boxes

“Modal” detection:
Bounding boxes (usually)
cover only the visible
portion of the object

Amodal detection:

box covers the entire
extent of the object,
even occluded parts

Zhu et al, “Semantic Amodal Segmentation”, CVPR 2017 This image is CCO Public Domain
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https://creativecommons.org/publicdomain/zero/1.0/

Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?
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Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson
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https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union
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Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good”,

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good”,
loU > 0.9 is “almost perfect”

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.
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https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Detecting a single object

Vector:
4096

This image is CCO public domain

Treat localization as a
regression problem!
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

DEteCting d Sing|e Object ‘““Nhat” Correct label:

Cat l
Class Scores
Fully
Connected: Cat: 0.9 Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01

Vector:
4096

Treat localization as a
regression problem!
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DeteCting d Sing|e Object ‘““Nhat” Correct label:

Cat l
Class Scores
Fully
Connected: Cat: 0.9 Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01
Vector: \
Fully
Treat localization as a 4096 Zg;gt:cc)tzd: Box . —— L2 Loss
regression problem! Coordinates T
(X, y, w, h)
“Where” Correct box:

(X, y', w’, h')
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DEteCting d Sing|e Object ‘““Nhat” Correct label:

Cat l
Class Scores
Fully
Connected: Cat: 0.9 SOI'ftmaX
0SS :
4096 to 1000 Dog: 0.05 Multitask
Car: 0.01 l L oss
Weighted I. 0SS
Sum
L=1L,gs+ AL
Vector: \ ’ - -
Fully
Treat localization as a 4096 Zg;gt:cc)tzd: Box . —— L2 Loss
regression problem! Coordinates T
(X, y, w, h)
“Where” Correct box:

(X, y', w’, h')
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DEteCting d Sing|e iject ‘““Nhat” Correct label:

Cat l
Fully Class Scores
Often pretrained Connected: Cat: 0.9 Softmax
on ImageNet 4096 to 1000 Dog: 0.05 Loss Multitask
(Transfer learning) Car- 0.01 l Loss
4 NiEtE e Weighted Loss
— L =Lgs+ AL
s image ic domi Vector: \ ' CLS reg
This image is CCO public domain Fu I |y
Treat localization as a 4036 Zgggt:cc)tjd: Box . —— L2 Loss
regression problem! Coordinates T
(%, ¥, w, h)
“Where” Correct box:

(X, y', w’, h')
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DEteCting d Sing|e iject ‘““Nhat” Correct label:

Cat l
_ Fully Class Scores
Often pretrained Connected: Cat: 0.9 Soi‘tmax
on ImageNet 4096101000 " . 0.05 %% Multitask
(Transfer learning) Car: 0.01 l L 0SS
I ek Sum
- L=Les+AL
o Vector: \ ' B -
CCO public domain Fu"y
Treat localization as a 4096 Zg;'g‘:tjd: Box . — L2Loss
regression problem! Coordinates !
(%, v, w, h)
Problem: Images can have  “\\/here” Correct box:
more than one object! (X, ¥, w’, h’)
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Need different numbers
of outputs per image

Detecting Multiple Objects

CAT: (XI Y, W, h) 4 numberS

DOG: (x,y, w, h)

DOG: (x,y, w, h) 12 numbers
CAT: (x, y, w, h)

DUCK: (x, y, w, h)  Many
DUCK: (x, ¥, W, h)  numbers!

Duck image is free to use under the Pixabay license
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https://pixabay.com/photos/duckling-duck-waterbird-chick-3456779/
https://pixabay.com/service/license/

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

: ?};;,;..;28 ><;E><EB Dog? N O
IiE e i Cat? NO

T, b Background? YES

111111
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

: }:-;;‘;,.;28 ><;E><EB D Og ? Y E S
IiE e i Cat? NO

| Background? NO

111111
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

: }:-;;‘;,.;28 ><;E><EB D Og ? Y E S
IiE e i Cat? NO

| Background? NO

111111
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

: }:-;;‘;,.;28 ><;E><EB Dog ? N O
ESEn AR i Cat? YES

| Background? NO

111111
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
are there in an image of size H x W?
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Detecting Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
g 2re there in animage of size H x W?

Consider a box of size h x w:
Possible x positions: W—-w + 1
Possible y positions:H—h + 1
Possible positions:
(W—w+1)*(H-h+1)
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Detecting Multiple Objects: Sliding Window

Slide from Justin Johnson

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
are there in an image of size H x W?

. , Total possible boxes:
Consider a box of size h x w:

H W
Possible x positions: W —w + 1 Z Z W—w+1)(H-h+1)
Possible y positions: H—h + 1 e L

Possible positions:
(W-w+1)*(H-h+1) HH+DOWW +1)
2 2




Detecting Multiple Objects: Sliding Window

Slide from Justin Johnson

800 x 600 image
has ~“58M boxes!
No way we can

evaluate them all

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
are there in an image of size H x W?

. , Total possible boxes:
Consider a box of size h x w:

H W
Possible x positions: W —w + 1 Z Z W—w+1)(H-h+1)
Possible y positions: H—h + 1 e L

Possible positions:
(W-w+1)*(H-h+1) HH+DOWW +1)
2 2




Region Proposals

e Find a small set of boxes that are likely to cover all objects

o Often based on heuristics: e.g. look for “blob-like” image regions

o Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

A 4

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, 1JCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014
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R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

Regions of
Interest (Rol)

from a proposal
Girshick et al, “Rich feature hierarchies for accurate object detection and
m et h 0 d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

/~/ Warped image
regions (224x224)

= _-__—

Regions of

Interest (Rol)

image /] £ d® #8-N%" from a proposal

mMethod (V2K)  cemantcseamentation maosa. e

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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R-CNN: Region-Based CNN

Conv Forward each
Conv Net region through
Net ConvNet
Conv
Net ﬁ Warped image

regions (224x224)

= 1=

Regions of

.
- =7
/7
TE———
1y :

Input } — Interest (Rol)
Image Al £ S #r =X from a proposal
Z e e L 5 o 3 Girshick et al, “Rich feature hierarchies for accurate object detection and

m et h O d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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R-CNN: Region-Based CNN Classily each region

Class
Class 1
=ase Conv Forward each
Conv Net region through
Conv Net ConvNet
ﬁ Warped image

regions (224x224)

Interest (Rol)
from a proposal

Girshick et al, “Rich feature hierarchies for accurate object detection and

m et h O d (~2 k) semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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R-CNN: Region-Based CNN

Slide from Justin Johnson

Bbox || Class
Bbox | | Class !
Bbox | | Class N
Conv
Conv Net
Conv Net
Net

ﬁ Warped image

regions (224x224)

Classify each region

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t, t,, t,)

Forward each
region through

ConvNet

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Box Regression

Slide from Justin Johnson

Consider a region proposal with
center (px, py), width p,,, height n),

Model predicts a transform (tx, ty, tw» th)
to correct the region proposal

44



R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,, height n),

Model predicts a transform (tx, ty, tw» th)
to correct the region proposal

The output box is defined by:

by =Dx +DPwlx  shift center by amount
by = Dy ~+ phty relative to proposal size

bw = Pw exp(tw) Scale proposal; exp ensures
by, = py, exp(th) that scaling factor is >0

Slide from Justin Johnson



R-CNN: Box Regression

Consider a region proposal with
center (px, py), width p,,, height n),

Model predicts a transform (tx, ty, tw» th)
to correct the region proposal

When transform is O,

The output DoX is: Output = prOposal

by = px + Pwix

by = py + pnty L2 regularization
by = by exp(ty,) encourages leaving
bp = ppexp(ty) proposal unchanged

Slide from Justin Johnson



R-CNN: Box Regression

Slide from Justin Johnson

Consider a region proposal with
center (px, py), width p,,, height n),

Model predicts a transform (tx, ty, tw» th)
to correct the region proposal

Scale / Translation invariance:

The output boxis: Transform encodes relative

by = px + Pwitx difference between proposal
by = py + pnty and output; important since
by = by exp(ty) CNN doesn’t see absolute size
bp = ppexp(ty) or position after cropping



R-CNN: Box Regression

Slide from Justin Johnson

Consider a region proposal with
center (px, py), width p,,, height n),

Model predicts a transform (tx, ty, tw» th)
to correct the region proposal

Given proposal and target output,
we can solve for the transform the

The output box is: network should output:
by = px + Dty ty = (b —02)/Dw
by = Py + phty ty — (by — py)/ph

bw = Pw exp(tw) bty = log(bw/pw)
by, = pp exp(ty) tn = log(by,/pn)



R-CNN Training

Input Image

Ground-Truth boxes
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R-CNN Training

Input Image

Ground-Truth boxes

Region Proposals
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R-CNN Training

Input Image

Categorize each region proposal as positive,
negative, or neutral based on overlap with
ground-truth boxes:

Positive: > 0.5 loU with a GT box
Negative: < 0.3 loU with all GT boxes
Neutral: between 0.3 and 0.5 loU with GT boxes

T Boxes | Positive |

Neutral | Negative |
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R-CNN Training

Input Image

Crop pixels from
each positive and
negative proposal,
resize to 224 x 224

GT Boxes | Positive |

Neutral | Negative |

Slide from Justin Johnson



Run each region through CNN

R_C N N Tra | N | ng Positive regions: predict class and transform

Negative regions: just predict class

Input Image

Class target: Cat
Box target: =———p

Class target: Dog
Box target: =———p

T éoxes | Positive |

Class target: Background
Box target: None

Neutral | Negative |

Slide from Justin Johnson



R-CNN Test-Time

Input Image
e 1. Run proposal method

2. Run CNN on each proposal to get class
scores, transforms
3. Threshold class scores to get a set of

detections

2 problems:
- CNN often outputs overlapping boxes

- How to set thresholds?

Region Proposals

Slide from Justin Johnson



Overlapping Boxes

Problem: Object detectors often
output many overlapping detections:

Puppy image is CCO Public Domain

Slide from Justin Johnson 55


https://commons.wikimedia.org/wiki/File:The_Puppy.jpg
https://pxhere.com/en/photo/652302
https://creativecommons.org/publicdomain/zero/1.0/

Overlapping Boxes: Non Max Suppression (NMS)

. 3 \\mmwmm
Problem: Object detectors often ', - _ -*-“‘ e N AN

output many overlapping detections: | §' >4 (dog) 0 7

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Puppy image is CCO Public Domain
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Overlapping Boxes: Non- Max Suppressmn (NMS)

. \\M'mwmn—
Problem: Object detectors often SN - S\ e L=

output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

A0 Pl

IOU(.; .) =0.05 o AR B n
loU(m, =) =0.07

Puppy image is CCO Public Domain
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Overlapping Boxes: Non Max Suppressmn (NMS)

. e L
Problem: Object detectors often 5 e [ S NS :

output many overlapping detections: "= o = (dog) O 75

Solution: Post-process raw T '. | 7'
detections using Non-Max 2 i
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

loU(m, =) =0.74

Puppy image is CCO Public Domain
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Overlapping Boxes: Non Max Suppressmn (NI\/IS)
.- ‘y... , "/_ /m.

-

Problem: Object detectors often -

output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Puppy image is CCO Public Domain
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output many overlapping detections: :

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate “good”
boxes when objects are highly
overlapping... no good solution =(
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https://pixabay.com/photos/audience-crowd-people-persons-828584/
https://pixabay.com/service/license/

Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve

Slide from Justin Johnson



All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -
1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = - - -

area under Precision vs Recall Curve

1. For each detection (highest score to lowest score) All ground-truth dog boxes
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All dog detections sorted by score

Evaluating Object Detectors:
Mean Average Precision (mAP)

>
m

Match: loU > 0.5

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative

All ground-truth dog boxes
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All dog detections sorted by score

Evaluating Object Detectors:
Mean Average Precision (mAP)

>
m

Match: loU > 0.5

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT Precision =1/1=1.0
2. Otherwise mark it as negative Recall =1/3 =0.33
3. Plot a point on PR Curve L ®

All ground-truth dog boxes

Precision

| | |
|
Recall 1.0
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve

Slide from Justin Johnson

Precision

All dog detections sorted by score

/ Match: loU > 0.5

All ground-truth dog boxes

Precision=2/2=1.0
Recall =2/3 =0.67
-+ O O

| | |
|
Recall 1.0




Evaluating Object Detectors:

All dog detections sorted by score

Mean Average Precision (mAP) m - m - -

No match > 0.5 loU with GT

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve

Precision

Slide from Justin Johnson

All ground-truth dog boxes

Precision =2/3 =0.67
Recall =2/3 =0.67

|
Recall 1.0



Evaluating Object Detectors:

All dog detections sorted by score

Mean Average Precision (mAP) m - m - -

No match > 0.5 loU with GT

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve

Precision

Slide from Justin Johnson

All ground-truth dog boxes

Precision =2/4 =0.5
Recall =2/3 =0.67

|
Recall 1.0



All dog detections sorted by score

Evaluating Object Detectors: -

Mean Average Precision (mAP) i 0%
Match: > 0.5 loU /

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT

All ground-truth dog boxes

Precision =3/5=0.6

2. Otherwise mark it as negative Recall=3/3=1.0
3. Plot a point on PR Curve L ® ®
c
kS ®
k% ®
S ®
| -
a
| I I
Recall 1.0

Slide from Justin Johnson



All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve o
2. Average Precision (AP) = area under PR curve

All ground-truth dog boxes

Precision

Dog AP =0.86
| |
| Recall | 1.0

Slide from Justin Johnson



All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve o

All ground-truth dog boxes

2. Average Precision (AP) = area under PR curve CC)
How to get AP = 1.0: Hit all GT §
e it sectmnoied | © | DOBAPS08E
above any “true positives” ' Recall ' 1.0

Slide from Justin Johnson



Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision (AP) = Car AP =0.65
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score) Cat AP =0.80
1. If it matches some GT box with loU > 0.5, _
mark it as positive and eliminate the GT Dog AP =0.86
2. Otherwise mark it as negative mAP@O 5=0.77

3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category

Slide from Justin Johnson



Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category
4. For “COCO mAP”: Compute mAP@thresh for each loU
threshold (0.5, 0.55, 0.6, ..., 0.95) and take average

Slide from Justin Johnson

MAP@0.5 =0.77
MAP@0.55=0.71
MAP@0.60 = 0.65

MAP@0.95 = 0.2

COCO mAP=0.4



RCNN Results

VOC 2010 test | mAP
DPM v5 [20]1 | 33.4
UVA [39] 35.1
Regionlets [41] | 39.7
SegDPM [12]" | 40.4
R-CNN 50.2
R-CNN BB 53.7

VOC 2007 test | mAP
R-CNN pool. | 44.2
R-CNN fcg 462
R-CNN fe- 447 VOC2007 test | mAP
R-CNN FT pool. | 47.3 R-CNNT-Net | 54.2
R-CNN FTfcg | 53.1 R-CNN T-Net BB | 58.5
R-CNN FT fc. | 542 R-CNN O-Net | 62.2
R-CNN FT fc; BB | 58.5 R-CNN O-Net BB | 66.0
DPM v5 [20] 33.7
DPM ST [28] 29.1
DPM HSC [21] | 34.3




Last Time:; R-CNN

Slide from Justin Johnson

Bbox || Class
Bbox | | Class !
Bbox | | Class N
Conv
Conv Net
Conv Net
Net

ﬁ Warped image

regions (224x224)

S -
A!

= _-__—
-

Classify each region

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t, t,, t,)

Forward each
region through

ConvNet

Regions of
Interest (Rol)

from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Last Time:; R-CNN

Slide from Justin Johnson

Bbox || Class
Bbox | | Class !
Bbox | | Class
Conv
Conv Net
Conv Net
Net

Classify each region

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t, t,, t,)

Forward each
region through
ConvNet

Problem: Very slow! Need
to do 2000 forward passes
through CNN per image

ﬁ Warped image

regions (224x224)

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Last Time:; R-CNN

Slide from Justin Johnson

ﬁ Warped image

regions (224x224)

Bbox || Class
Bbox | | Class !
Bbox | | Class
Conv
Conv Net
Conv Net
Net

Forward each
region through

ConvNet

Regions of

Classify each region

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t, t,, t,)

Problem: Very slow! Need
to do 2000 forward passes
through CNN per image

Idea: Overlapping proposals

cause a lot of repeated work:
same pixels processed many

times. Can we avoid this?

Interest (Rol)
from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Slide from Justin Johnson

“Slow” R-CNN

Process each region
independently

Bbox || Class

Bbox

Class

Bbox

Class

Conv

N

Conv
Net

Conv
Net




Fast R-CNN

“Slow” R-CNN

Process each region

Bbox

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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independently
Bbox || Class
Bbox | | Class
Class .
Conv
Conv Net
Conv Net !



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

/ /Image features
“Backbone” T Run whole image
network: through ConvNet
AlexNet, VGG, —

ResNet, etc ConvNet =

(IR

AL

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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“Slow” R-CNN

Process each region

independently
Bbox || Class
Bbox | | Class
Bbox | | Class N
Conv
Conv Net
Conv Net !



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)

from a proposal

method

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

N

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

//é 7:J/Image features

T

(IR

ConvNet
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Run whole image
through ConvNet

Input image

“Slow” R-CNN

Process each region

independently
Bbox || Class
Bbox | | Class
Bbox | | Class N
Conv
Conv Net
Conv Net !



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal

~— ,— Crop + Resize features

method /2 ! 7&y/lmage features
“Backbone” Run whole image
network: through ConvNet
AlexNet, VGG, —

ResNet, etc Com e

(IR

gil

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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“Slow” R-CNN

Process each region

independently
Bbox || Class
Bbox | | Class
Bbox | | Class N
Conv
Conv Net
Conv Net !



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal

Per-Region Network

CNN

= P
pd Z
9

/t7 )7 Crop + Resize features

method /2 ! 7&y/lmage features
“Backbone” Run whole image
network: through ConvNet
AlexNet, VGG, —

ResNet, etc S

(IR

gil

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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“Slow” R-CNN

Process each region

independently
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of

Interest (Rols)
from a proposal

method

Category and box

Bbox Bbox Bbox
Class Class Class
P P
= P Z
(@] (@]

Per-Region Network

/'7 /'7 Crop + Resize features

“Backbone”
network:

AlexNet, VGG,

ResNet, etc

Girshick, “Fast R-CNN”, ICCV 2015. Figure ¢

AL

(IR

ConvNet

opyright Ross Girshick, 2015; source. Reproduced with permission
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@&Mlmage features

Run whole image
through ConvNet

Input image

transform per region

“Slow” R-CNN

Process each region

independently
Bbox || Clas
Bbox | | Class
Bbox | | Class N
Conv
Conv Net
Conv Net !



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)

Category and box

Bbox Bbox Bbox
Class Class Class
P
=
(@]

from a proposal

method

/t7 )7 Crop + Resize features

Per-Region Network

“Backbone”
network:

AlexNet, VGG,

ResNet, etc

Girshick, “Fast R-CNN”, ICCV 2015. Figure co

@&Mlmage features

AATOCTTRAL

pyright Ross Girshick, 2015; source

Slide from Justin Johnson

ConvNet

. Reproduced with permission

Run whole image
through ConvNet

V-4
L

Input image

transform per region

Per-Region network is
relatively lightweight

Most of the computation
happens in backbone
network; this saves work for
overlapping region proposals


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box c o
Class | | Class | | Class | transform per region Xamp e..
When using
- AlexNet for
Regions of = = = || Per-Region Network L
Interest (Rols) z = = detection, five
from a proposal Crop + Resize features conv :cayers are
method /27 used for
Y e iy/lmage features backbone and
uBaCkbonen un Wh0|e |mage tWO FC |ayerS are
network: hrough ConvNet used for per-
AlexNet, VGG, = region network
ConvNet
ResNet, etc

nput image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal
method

Category and box

transform per region

Bbox Bbox Bbox
Class Class Class
P P =2
= P e
(@] (@] @)

Per-Region Network

Crop + Resize features

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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/@&Mlmage features

un whole image
hrough ConvNet

nput image

Softmax

£C 1000

Pool

O
3x3 conv, 512

3x3 cor'1v 512

3x3 conv, 512

3x3 conv, 512

3x3 conv. 512

3x3 conv, 512, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 64

3x3 conv, 64

8x8 conv 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool

/X7 conv, 64, /2

|Input

Example:

For ResNet, last
stage is used as
per-region
network; the rest
of the network is
used as backbone


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box
Class | | Class | | Class | transform per region

t t t

Regions of E = = [| Per-Region Network

Interest (Rols) 5 5 5

from a proposal & /'7 Crop + Resize features How to crop
method &Mlmage features features?
“Backbone” Run whole image

network: through ConvNet

AlexNet, VGG, R =

ResNet, etc A —

' Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Recall: Receptive Fields

Every position in the

output feature map

depends on a 3x3

receptive field in the input

3x3 Conv

Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8
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Recall: Receptive Fields

Every position in the

output feature map

depends on a 3x3

— receptive field in the input

3x3 Conv

Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8

Slide from Justin Johnson



Recall: Receptive Fields

Every position in the

output feature map

depends on a 5x5

receptive field in the input

3x3 Conv 3x3 Conv

Stride 1, pad 1 Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8

Slide from Justin Johnson



Recall: Receptive Fields

Moving one unit in the

output space also moves
the receptive field by one

3x3 Conv 3x3 Conv

Stride 1, pad 1 Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8

Slide from Justin Johnson



Recall: Receptive Fields

(0, 0)

Input Image: 8 x 8

Slide from Justin Johnson

(1, 1)

(0, 0)

Moving one unit in the
output space also moves
the receptive field by one

3x3 Conv 3x3 Conv
Stride 1, pad 1 Stride 1, pad 1

There is a correspondence
between the coordinate
system of the input and
the coordinate system of
the output

(1,1)

Output Image: 8 x 8



Projecting Points

Input Image: 8 x 8

Slide from Justin Johnson

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv 3x3 Conv
Stride 1, pad 1 Stride 1, pad 1

There is a correspondence

between the
and

the coordinate system of
the output

(1,1)

Output Image: 8 x 8



Projecting Points

Input Image: 8 x 8

Slide from Justin Johnson

Same logic holds for more complicated
CNNs, even if spatial resolution of
input and output are different

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv 2x2 MaxPool
Stride 1, pad 1 Stride 2

There is a correspondence

between the
and

the coordinate system of
the output

(1,1)

Output Image: 8 x 8



Projecting Points

Input Image: 8 x 8

Slide from Justin Johnson

Same logic holds for more complicated
CNNs, even if spatial resolution of
input and output are different

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv 4x4 MaxPool
Stride 1, pad 1 Stride 4

There is a correspondence

between the
and

the coordinate system of
the output

(1,1)

Output Image: 8 x 8



Projecting Boxes

(0, 0)

We can use this idea to project
bounding boxes between an
input image and a feature map

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv
Stride 1, pad 1

4x4 MaxPool
Stride 4

Input Image: 8 x 8 (1, 1) the output

Slide from Justin Johnson

There is a correspondence
between the coordinate
system of the input and
the coordinate system of

(1,1)

Output Image: 8 x 8



Cropping Features: Rol Pool

(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Slide from Justin Johnson



Cropping Features: Rol Pool

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.

Slide from Justin Johnson



Cropping Features: Rol Pool

Project proposal \

onto features

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.

Slide from Justin Johnson



Cropping Features: Rol Pool

“Snap” to

Project proposal \ grid cells

onto features

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.

Slide from Justin Johnson



Cropping Features: Rol Pool Divide into 2x2
“Snap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.

Slide from Justin Johnson



Cropping Features: Rol Pool Divide into 2x2
“Snap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Max-pool within
each subregion

\ 4

‘ Region features
— (here 512 x 2 x 2;
In practice 512x7x7)

Input Image Image features

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the
same size even if input

regions have different sizes!

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool Divide into 2x2
“Snap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Max-pool within
each subregion

\ 4

‘ Region features
— (here 512 x 2 x 2;
In practice 512x7x7)

AN 3 N
MR A N NN B R

Input Image Image features

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the
Problem: Slight misalignment due to >aMme Slze even if input
Girshick, “Fast R-CNI", ICCY 2015. snapping; different-sized subregions is weird ~regions have different sizes!
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Divide into equal-sized subregions

Cropping Features: Rol Aligh  (may not be aligned to grid!)

, No “snapping”!
Project proposal

onto features

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017.
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Divide into equal-sized subregions

Cr()pping Features: RoO| A||gn (may not be aligned to grid!)

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features
in each subregion using
; bilinear interpolation
e
CNN
o0 (00
v | o0 |00
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017
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Divide into equal-sized subregions

Cropping Features: RoO| A||gn (may not be aligned to grid!)

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
bilinear interpolation

7
7

/// f6,5 f7,5

/// ‘
6.5,5.8

o~ O O

N

\\\\ f6’6 f7,6

Feature f,, for point (x, y) is a
linear combination of features
at its four neighboring grid cells:
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Divide into equal-sized subregions

Cropping Features: RoO| A||gn (may not be aligned to grid!)

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
bilinear interpolation
O ] '\ | B 1 - B //
/// f6,5 f7,5
Irvsirvs ) ®
7
CNN | = g
L ! ¢ | 6.5,5.8
R RS ,l/v:; N ~ f ‘ ‘f
foy=) fiymax(0,1— |x —x;) max(0,1— |y — ;) ~ = 7.6
L] . .
Feature f,, for point (x, y) is a
—_ * * * * Xy ¢
f6-5:5-8 B (f6,5 0.5%0.2) + (f7,5 0.5%0.2) linear combination of features
+ (fg™ 0.5 %0.8) +(f;* 0.5 * 0.8) at its four neighboring grid cells:
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Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features

{ ®

AR /A8 N
\‘,~ N # ‘\'~‘\&4 X

fxy= _.ﬁ,jmax(orl_|x_xi|)max(0)1_|y_yi)
L]

f6.5,5.8 - (f6,5 * 0-5 * 0.2) + (f7’5 * 0.5 * 0.2)
+ (fos* 0.5 % 0.8) + (f, 4 * 0.5 * 0.8)

Slide from Justin Johnson

in each subregion using

bilinear interpolation
7

7 | Tes f75

0.8

0.5 6.5,5.8

S f6,6 f7,6

~

~N
~N

Feature f,, for point (x, y) is a
linear combination of features
at its four neighboring grid cells:



Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
bilinear interpolation
- )
oo lle e T
oo !lee e 6'5‘
CNN | = il
; :!' / l ? N
. \-.;:' {‘ \& A 3 )/;( ~N <
fey =)  fijmax(0,1 — [x — x;|) max(0,1 — |y — y;]) A
K Feature f,, for point (x, y) is a
— * % * % Xy ’
f6-5,5-8 B (f6,5 0.5%0.2) + (f7,5 0.5%0.2) linear combination of features
+ (fg™ 0.5 %0.8) +(f;* 0.5 * 0.8) at its four neighboring grid cells:

Slide from Justin Johnson



Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
bilinear interpolation
s \ Irvsilirod /// f f
- 6,5 7,5
Irvsirvs ) ®
7
CNN | = g
6.5,5.8
W | ® 0.2 E
BARLELS | —T~_ ‘ P
fop= ) fiymax(0,1— |x —x;]) max(0,1— |y — ;) ~ 000 7.6
L] . .
Feature f,, for point (x, y) is a
—_ * * * * Xy ¢
f5-5:5-8 B (f6,5 0.5%0.2) + (f7,5 0.5%0.2) linear combination of features
+ (fg™ 0.5%0.8) +(f;* 0.5 * 0.8) at its four neighboring grid cells:
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Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features

{ O

X\ y '
) 5 . J
\.,- N A ¥ NN \&4 X

fxy= _.ﬁ,jmax(orl_|x_xi|)max(0)1_|y_yi)
L]

fosss=(fss* 0.5%0.2) +(f,s* 0.5 *0.2)
+ (fge* 0.5 * 0.8) + (f, s * 0.5 * 0.8)

Slide from Justin Johnson

in each subregion using

bilinear interpolation
7

7 | Tes f75

6.5,5.8

@0.2
~o f6’6 0.5 1‘716

~N

~

~N

Feature f,, for point (x, y) is a
linear combination of features
at its four neighboring grid cells:



Cropping Features: Rol Align

, No “snapping”!
Project proposal

onto features

Input Image
(e.g. 3 x 640 x 480)

He et al, “Mask R-CNN”, ICCV 2017

Slide from Justin Johnson

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

After sampling, max-
pool in each subregion

v

Image features
(e.g. 512 x 20 x 15)

Region features
(here 512 x 2 x 2;
In practice e.g 512 x7 x 7)



Fast R-CNN vs “Slow” R-CNN

Fast R-CNN: Apply differentiable
cropping to shared image features

Regions of
Interest (Rols)
from a proposal
method

“Backbone”
network:

AlexNet, VGG,
ResNet, etc

Category and box

[ Class | [ class | transform per region

Bbox Bbox Bbox
Class

T * 1

P

=2 Z Z

(@]

(©)

Per-Region Network

& b Crop + Resize features

ﬁiﬁ Image features

Slide from Justin Johnson

y- -4
g
R

Run whole image
through ConvNet

" Inputimage

“Slow” R-CNN: Apply differentiable
cropping to shared image features

Bbox || Class

Bbox | | Class
Bbox | | Class
Conv
Conv Net

Net

Conv
Net

Forward each
region through
ConvNet

& Warped image

regions (224x224)

Interest (Rol)
from a proposal
method (~2k)



Fast R-CNN vs “Slow” R-CNN

Test time (seconds)

Tral ni ng tl me (HOU I'S) I Including Region propos... [l Excluding Region Propo...
e | RONN
SPP-Net 23
Fast R-CNN- 8.75
2.3
Fast R-CNN l
0 25 50 75 100 0.32
0 15 30 45

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN vs “Slow” R-CNN

R-CNN

SPP-Net

Training time (Hours)

SPP-Net

Fast R-CNN - 8.75
Fast R-CNN
0

25 50 75 100

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Slide from Justin Johnson

Test time (seconds)

I Including Region propos... [l Excluding Region Propo...

4.3
2.3
g 2: Problem: Runtime
032 ° dominated by
i ]
! . region prgposals. .



Fast R-CNN vs “Slow” R-CNN

Test time (seconds)

Tralnlng tlme (HOU rS) I Including Region propos... [l Excluding Region Propo...
SPP-Net 23
et R'CNN. 42 N 2 Problem: Runtime
Fast R-CNN o« -
" o - o 100 0.32 dominated by

' !
region proposals!

0 15

Recall: Region proposals computed by
. s N . ” .
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. h eurl St IC Se I eCt Ve Sea rc h d |go rlt h m on
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014

Girshick, “Fast RCNN”, ICCV 2015 CPU -- let’s learn them with a CNN instead!

Slide from Justin Johnson



Faster R-CNN: Learnable Region Proposals

Insert Region Proposal
Network (RPN) to predict

proposals from features

Otherwise same as Fast R-CNN:
Crop features for each
proposal, classify each one

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Slide from Justin Johnson

proposey /
Region Proposal Network 5o e

CNN '
4 | /




Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Ipu Image | | Ia feaures
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson



Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

\
CNN
/
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson




Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Each feature corresponds
to a pointin the input

el

:; \A NP
NP 4§ ;’-{.‘\v \:‘. » .' -1
AR R S&"hﬂzm {t\'ﬁl\i‘i*i

Image features
(e.g.512 x 5 x 6)

Iput Image
(e.g. 3 x 640 x 480)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson

Imagine an anchor box
of fixed size at each

point in the feature map



Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

RERRRENN A LN NP e AR NN LEAN
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

el

:; \A NP
NP 4§ ;’-{.‘\v \:‘. » .' -1
AR R S&"hﬂzm {t\'ﬁl\i‘i*i

Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson
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of fixed size at each

point in the feature map



Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

Image features Classify each anchor as
(e.g. 3 x 640 x 480) (e.g. 512 x5x6) positive (object) or

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

Image features Classify each anchor as
(e.g. 3 x 640 x 480) (e.g. 512 x5x6) positive (object) or
negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson



Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

Image features Classify each anchor as
(e.g. 3 x 640 x 480) (e.g. 512 x5x6) positive (object) or

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson



Predict object vs not object

RegiOn PrOpOSa| Network (RPN) scores for all anchors with

a conv layer (512 input

Run backbone CNN to get Each feature corresponds filters, 2 output filters)
features aligned to input image to a pointin the input ’

—_— Anchor is
object?
2X5x6

Conv

/

Image feature Classify each anchor as
(e.g. 3 x 640 x 480) (e.g.512 x5 x 6) positive (object) or

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson



For positive anchors, also
predict a transform that
converting the anchor to

Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds  the (like R-CNN)
features aligned to input image to a pointin the input
Anchor is
object?
2x5x6
|mage features Classify each anchor as

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson



For positive anchors, also
predict a transform that
converting the anchor to

Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds  the (like R-CNN)
features aligned to input image to a point in the input Predict transforms with conv
—_— Anchor is
object?
2x5x6
Conv
Anchor
¢ —l
- — transforms
: ;@éu‘,;;ﬁufw Axox6
Image features Classify each anchor as

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson



In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
- Anchor is
object?
2Kx5x6
Conv
Anchor
e
— transforms
o\ AK x5 x 6

” ature
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
- Anchor is
T object?
2Kx5x6
CNN Conv
Anchor
e
. W , | transforms
R s i 4K x5 x 6
Input Image Image features During training, supervised
(e.g. 3 x 640 x 480) (e.g. 512 x5 x 6) positive / negative anchors and

box transforms like R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
- Anchor is
object?
2Kx5x6
Conv
Anchor
—
. transforms
o\ AK x5 x 6
Image teatures Positive anchors: >= 0.7 loU with
(e.g. 3 x 640 x 480) (e.g. 512 x5 x 6) some GT box (plus highest loU to
each GT)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
Anchor is
object?
2Kx5x6
Anchor
e
transforms
AKX 5x 6
Input Image Image features Negative anchors: < 0.3 loU with
(e.g. 3 x 640 x 480) (e.g. 512 x5 x 6) all GT boxes. Don’t supervised

transforms for negative boxes.

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Slide from Justin Johnson



In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
- Anchor is
T object?
2Kx5x6
CNN Conv
Anchor
 ——
- — - transforms
| ,->"[i~"f-. S N RRVERITRY &W‘m%\ﬁ { x5 x6
Input Image Image features Neutral anchors: between 0.3
(e.g. 3 x 640 x 480) (e.8. 512 x 5 x 6) and 0.7 loU with all GT boxes;

ignored during training

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
- Anchor is
T object?
2Kx5x6
CNN Conv
Anchor
 ——
. W , | transforms
Rl s i 4K x5x 6
Input Image Image features At test-time, sort all K*5*6 boxes
(e.g. 3 x 640 x 480) (e.g.512 x5 x6) by their positive score, take top

300 as our region proposals

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Faster R-CNN: Learnable Region Proposals

Jointly train with 4 losses:

1. RPN classification: anchor box is

object / not an object

2. RPN regression: predict transform
from anchor box to proposal box

3. Object classification: classify

proposals as background / object

class

4. Object regression: predict transform
from proposal box to object box

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Figure copyright 2015, Ross Girshick; reproduced with permission
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Faster R-CNN: Learnable Region Proposals

R-CNN Test-Time Speed

R-CNN

SPP-Net

Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45

Slide from Justin Johnson



Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a
Two-stage object detector

Class
|

ification Bounding-box

0SS % ﬂ regression loss
A

Classification
loss

Bounding-box
regression loss

First stage: Run once per image
Backbone network
Region proposal network

Second stage: Run once per region
Crop features: Rol pool / align
Predict object class
Prediction bbox offset

Slide from Justin Johnson
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Faster R-CNN: Learnable Region Proposals

Question: Do we really
need the second stage?

Faster R-CNN is a
Two-stage object detector

Classification

Classification
loss

Bounding-box
regression loss

First stage: Run once per image
Backbone network
Region proposal network

Second stage: Run once per region
Crop features: Rol pool / align
Predict object class
Prediction bbox offset

Slide from Justin Johnson
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proposals ,
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Region Proposal Network
feature map

Bounding-box
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Similar to RPN — but rather

Single-Stage Detectors: RetinaNet  thanclassify anchors as

object/no object, directly

Run backbone CNN to get Each feature corresponds predict object category
features aligned to input image to a pointin the input (among C categories) or
background
— Anchor
—, classification
Conv 2K*(C+1)x5x 6
Anchor
—
— transforms
| ; 4K xX5x6
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Slide from Justin Johnson



Single-Stage Detectors: RetinaNet

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

\
CNN
/ .
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Slide from Justin Johnson

Problem: class imbalance —
many more background
anchors vs non-background

Anchor
—, classification
2K*(C+1)x5x 6

Anchor
—
transforms
4K x5x 6



Problem: class imbalance —

Single-Stage Detectors: RetingNet  many more background

anchors vs non-background

Run backbone CNN to get Each feature corresponds - e et
features aligned to input image to a pointin the input >olution: new foss function
(Focal Loss); see paper
— Anchor
—, classification
Conv 2K*(C+1)x5x 6
Anchor
—
. transforms
PN AKX 5x 6
ARG RN ] G 0N G N7 AVATER ;..-.«ﬁ.f«zm;f\,nk‘&,i
Input Image Ima e features
s : CE(p:) = — log(p:)

(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)
FL(p:) = —(1 — pt)" log(p:)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Slide from Justin Johnson



Single-Stage Detectors: RetinaNet

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

- A

subnet

| |

class+box 7 ’ ; :

/ * subnets ’ | |

/’ I I

( [ |

y 4 class+box [ KA |
/ )$ subnets : :
\ | |

class+box | [ 1 1 1 |

— > $ subnets ' : :
! <l WxH |

I I

| |

| |

| |

| |

box

2 7

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 Figure credit: Lin et al, ICCV 2017
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Single-Stage Detectors: RetinaNet

Single-Stage detectors can be much faster than two-stage detectors

38

1

w
D

COCO AP
W W
ST

w
o

~@ - RetinaNet-50
[G] ~0 RetinaNet-101

AP time

[A] YOLOV2T [27]
[B] SSD321 [22]
[C] DSSD321 [9]
[D] R-FCN¥ [3]

[E] SSD513 [22]
[F] DSSD513 [9]
[G] FPN FRCN [20]

21.6
28.0
28.0
29.9
31.2
33.2
36.2

25
61
85
85
125
156
172

RetinaNet-50-500
RetinaNet-101-500
RetinaNet-101-800

| | |

32.5
34.4
37.8

73
90
198

TNot plotted ¥Extrapolated time

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Slide from Justin Johnson

100 150 200
inference time (ms)

250

Figure credit: Lin et al, ICCV 2017



Single-Stage Detectors: RetinaNet

Single-Stage detectors can be much faster than two-stage detectors

38 r
—@ RetinaNet-50
361 ~0 RetinaNet-101
AP time
[A] YOLOv2T [27] [21.6 25
0 34+ [B] SSD321 [22] |28.0 61
< E [C]DSSD321[9] [28.0 85
O [D] R-FCNT [3] 299 85
O 32+ [E] SSD513[22] |312 125
3 [E]
@)
30 [D]
RetinaNet-101-800 |[37.8 198
28 TNot plotted ¥Extrapolated time
50 100 150 200 250

inference time (ms)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Faster R-CNN
with Feature
Pyramid
Network

Figure credit: Lin et al, ICCV 2017



Single-Stage Detectors: FCOS

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

Slide from Justin Johnson
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“Anchor-free” detector

Slngle_Stage DeteCtorS FCOS Classify points as positive if

they fall into a GT box, or
Run backbone CNN to get Each feature corresponds negative if they don’t

features aligned to input image to a pointin the input

Train independent per-
category logistic regressors

T Class scores
—> Cx5x6

Iput Imag | - Image feature
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019
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“Anchor-free” detector

Single-Stage Detectors: FCOS

For positive points, also

Run backbone CNN to get Each feature corresponds regress distance to left, right,
features aligned to input image to a point in the input top, and bottom of ground-
truth box (with L2 loss)

s Class scores

— > Cx5x6
CNN Box edges
— 4x5x6
RN LR GNP L EER R LR
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019
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“Anchor-free” detector

Single-Stage Detectors: FCOS

For positive points, also

Run backbone CNN to get Each feature corresponds regress distance to left, right,
features aligned to input image to a point in the input top, and bottom of ground-
truth box (with L2 loss)

s Class scores

— > Cx5x6
CNN Box edges
— 4x5x6
RN LR GNP L EER R LR
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

Slide from Justin Johnson



“Anchor-free” detector

Single-Stage Detectors: FCOS

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

Finally, predict “centerness”
for all positive points (using
logistic regression loss)

Class scores

T ™ Cx5x6
Box edges
CNN — 4y 546

Centerness
/
— 1x5x6

ke .0
Image features min(L,R) min(T, B)
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6) CeNLeTness = | hax(L,R) max(T,B)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019 Ranges from 1 at bOX center to O at bOX edge

Slide from Justin Johnson



“Anchor-free” detector

Single-Stage Detectors: FCOS rest-time: predicted

“confidence” for the box from
Run backbone CNN to get Each feature corresponds each point is product of its

features aligned to input image to a pointin the input class score and centerness

Class scores
> Cx5x6

Box edges
— 4x5x6

Centerness
— 1x5x6

Input Image Image features min(L,R) min(T, B)
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6) CeNLeTness = | hax(L,R) max(T,B)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019 Ranges from 1 at bOX center to O at bOX edge

Slide from Justin Johnson



“Anchor-free” detector

Single-Stage Detectors: FCOS

FCOS also uses a Feature Pyramid Network with heads shared across stages

7x8 /128 P7 / > Head
i [

13x16 /64 ‘ /P6 // > Head
ics 7

25x32 /32 7/ 2 F/ » Head
t |
C4 | | P4 ¥ |

50x64 /16 : Head
-
P3 A H

Head

‘ /cs |
100x128 /8%

800x1024

HxW /s Backbone Feature Pyramid

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

Slide from Justin Johnson

Classification
HxWxC

—
— Center-ness

_> ..... * I Wx 7

x4 L

Regression
Hx Wx4

—_ [ > —D

x4

Hx Wx256 Hx Wx256

Shared Heads Between Feature Levels

Classification + Center-ness + Regression



Dealing with Scale

We need to detect objects of many different scales.
How to improve scale invariance of the detector?

f‘) o
.5
/]

This image is free for commercial
use under the Pixabay license

° — -
“

Slide from Justin Johnson


https://pixabay.com/photos/traffic-highway-cars-travel-5623730/
https://pixabay.com/service/license/

Dealing with Scale: Image Pyramid

Classic idea: build an
image pyramid by resizing
the image to different
scales, then process each
image scale independently.

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Slide from Justin Johnson
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Dealing with Scale: Image Pyramid

Classic idea: build an
image pyramid by resizing
the image to different
scales, then process each
image scale independently.

Problem: Expensive! Don’t
share any computation
between scales

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Slide from Justin Johnson
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Dealing with Scale: Multiscale Features

CNNs have multiple stages that

operate at different resolutions.
Attach an independent detector
to the features at each level

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Slide from Justin Johnson

Stage 5 = 7 x 7 features =——> Object
Detector
Stage 4 = 14 x 14 features =—> Object
Detector
Stage 3 —> 28 x 28 features —>| OJ€Ct
Detector
Stage 2 > 56 x 56 features =——> Object
Detector
Stem

f

224 x 224 Image




Dealing with Scale: Multiscale Features

CNNs have multiple stages that

operate at different resolutions.
Attach an independent detector
to the features at each level

Problem: detector on early
features doesn’t make use of the
entire backbone; doesn’t get
access to high-level features

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Slide from Justin Johnson

Stage 5 > 7 x 7 features =—>

Object
Detector

Stage 4 = 14 x 14 features ——>

Object
Detector

Stage 3 =—> 28 x 28 features =—>

Object
Detector

Sta

Object

Detector

Stgm

224 x 224 Image




Dealing with Scale: Feature Pyramid Network

Add top down
connections that feed Stage 5

information from high
level features back down

Stage 4 => 14 x 14 feats
to lower level features

Stage 3 =—> 28 x 28 feats

Stage 2 > 56 x 56 feats

Stem

f

224 x 224 Image

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Slide from Justin Johnson
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Object
Detector




Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Z:)(Jei'fgr
information from high 2x upsample

level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOt)Jeft
to lower level features crector

Stage 3 =—> 28 x 28 feats

Stage 2 > 56 x 56 feats

Stem

f

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017

Slide from Justin Johnson



Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Z:)(Jei'fgr
information from high 2x upsample
level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOt)Jeft
to lower level features crector
2x upsample
Stage 3 => 28 x 28 feats = 1x1 conv Object
Detector

Stage 2 > 56 x 56 feats

Stem

f

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017

Slide from Justin Johnson



Dealing with Scale: Feature Pyramid Network

Add top down
connections that feed
information from high
level features back down
to lower level features

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Slide from Justin Johnson

Stage 5

» 7 x 7 feats =——>

Object
Detector

2x upsample

Stage 4 => 14 x 14 feats —>

1x1 conv

Object
Detector

2x upsample

Stage 3 =—> 28 x 28 feats —>

1x1 conv

Object
Detector

2x upsample

Stage 2 > 56 x 56 feats =

1x1 conv

Stem

f

224 x 224 Image

Object
Detector




Dealing with Scale: Feature Pyramid Network

Add top down
connections that feed
information from high
level features back down
to lower level features

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Slide from Justin Johnson

Stage 5

» 7 x 7 feats =——>

Object
Detector

2x upsample

Stage 4 => 14 x 14 feats —>

1x1 conv

Object
Detector

2x upsample

Stage 3 =—> 28 x 28 feats —>

1x1 conv

Object
Detector

2x upsample

Stage 2 > 56 x 56 feats =

1x1 conv

Stem

f

224 x 224 Image

Object
Detector




Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Z:’é‘zf(t)r
information from high 2x upsample
level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOt)JeEt
to lower level features cector
2x upsample
Stage 3 => 28 x 28 feats = 1x1 conv Object
Detector
2x upsample
Stage 2 = 56 x 56 feats =»{ 1x1 conv > Object
Detector
Stem Faster R-CNN with RPN: Detector at each level
T gets its own RPN to produce proposals; proposals
Lin et al, “Feature Pyramid Networks 224 x 224 Image  from all levels route to a shared second stage
for Object Detection”, ICCV 2017

Slide from Justin Johnson



Single-Stage Detectors: RetinaNet

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

- A

subnet

| |

class+box 7 ’ ; :

/ * subnets ’ | |

/’ I I

( [ |

y 4 class+box [ KA |
/ )$ subnets : :
\ | |

class+box | [ 1 1 1 |

— > $ subnets ' : :
! <l WxH |

I I

| |

| |

| |

| |

box

2 7

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 Figure credit: Lin et al, ICCV 2017

Slide from Justin Johnson



Beyond Image Classification

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE, DOG, DOG, CAT
“ AN SKY AN Y,
' e e
No spatial extent  No objects, just pixels Multiple Objects

This image is CCO public domain

Slide from Justin Johnson


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Mask R-CNN

e Mask R-CNN = Faster R-CNN + FCN on Rols

Classification+regression

branch
U —p> class

box

A0

71 RolAlign

Y

conv> conv

Mask branch: separately predict segmentation
for each possible class

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN,
ICCV 2017 (Best Paper Award)



https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf

RolAlign vs. RolPool

----------------------------------------------------------------------------------------------- &

RolPool: nearest neighbor quantization

RolPool coordinate

................. quantization

quantj

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN,
ICCV 2017 (Best Paper Award)



https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf

RolAlign vs. RolPool

* RolPool: nearest neighbor quantization
* RolAlign: bilinear interpolation

conv feat. map

Grid points of
bilinear interpolation

RolAlign
~  output

(Variable size Rol)

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN,

ICCV 2017 (Best Paper Award)


https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf

Mask R-CNN

* From RolAlign features, predict class label, bounding box,
and segmentation mask

\

Classification/regression
class  head from an established
object detector (e.g., FPN)

7X7
Rol || %256 1024 1024

box

/ / / Separately predict binary
mask for each class with

L 1414 14%14 28X%28. 28%28 -pixel si id
1 il s per-pixel sigmoids, use
Rol || X236 |x4 || X256 X256 %e0 average binary cross-

/ / / entropy loss
1 \ | mask

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN,
ICCV 2017 (Best Paper Award)

AN

\



https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf

Mask R-CNN

28x28 soft prediction

Resized Soft prediction

Final mask

o\

Validation image with box detection shown in red

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN,
ICCV 2017 (Best Paper Award)



https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf

Example results

LT - B——
persgre. M.

ut.95
donut.8 - 5 dom@?onut.&Q
T S S

B donut.9Fonut 99

" donyfeRfr. donut.96
" Bour Conutemit 81

ut.98

trafﬂc lig

donut. 9588 — donut.98

par‘ing meter, donut.96 ws

f




Example results

potted plant.92 Person.8eperses

person.88 .00 #

perso\nfl.oo w : | /
w.98 tv. g4
person1.00
person1.00 bottle.97
Y
;r; glass.99
dining table.95 wine glass1.00 =

.
wine glass1.00 .
cell gihokel37

2 "51_\“
persof98 o

~ person1.00
=

horse.97 s0n.96 5
—— persag.96:n 97 person Y8 horea Oi

- —

/c”] qpr 7

LA 'j persson‘l.ooq’pers"m'00

I o herse.77 Y :
4 :Wi : | !

K- >




Instance segmentation results on COCO

backbone AP APso APrs APs APps APp

MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6

FCIS [26] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -

Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1

Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4

Mask R-CNN ResNeXt-101-FPN 37.1 60.0 394 16.9 39.9 53.5
AP at different loU AP for different

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN,
ICCV 2017 (Best Paper Award)

thresholds

size instances



https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf

Ssummary

“Slow” R-CNN: Run
CNN independently
for each region

Bbox || Class
Bbox | | Class

[BBox] [ciass |

Forward each

Conv
Conv Net region through
Net ConvNet
Conv
Net EWarped image
regions (224x224)

~ Regions of
Interest (Rol)
from a proposal
method (~2k)

Bounding Box
Regression

Slide from Justin Johnson

Fast R-CNN: Apply
differentiable
cropping to shared
image features

Bbox | | Bbox || Bbox | Category and box

Class | [ class | [ class | transform per region

.
Regions of % % % Per-Region Network
Interest (Rols) S S o
o

from a proposal Crop + Resize features

“Backbone” Runwholeimage

network: through ConvNet
AlexNet, VGG, | =4
ResNet, etc

RolPool / RolAlign

Faster R-CNN: Single-Stage:
Compute proposals Fully convolutional
with CNN detector / RetinaNet

| P regressionlc
proposals /
saression oss Rol pooling
|
proposals i ;
=
Region Proposal Network ">

feature map ﬁ O
4 /
’ 7
CNN
y /
4 e




Ssummary

Object detection is the task of localizing objects with bounding boxes

Intersection over Union (loU) quantifies differences between bounding boxes

The R-CNN object detector processes region proposals with a CNN

At test-time, eliminate overlapping detections using non-max suppression (NMS)

Evaluate object detectors using mean average precision (mAP)

Slide from Justin Johnson



Summary: Beyond Image Classification

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE, DOG, DOG, CAT
“ AN SKY AN Y,
' e e
No spatial extent  No objects, just pixels Multiple Objects

This image is CCO public domain

Slide from Justin Johnson


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

