Object Detection

Object Detection: Task Definition

Input: Single RGB Image

Output: A set of detected objects; For each object predict:

1. Category label (from fixed, known set of categories)
2. Bounding box (four numbers: x, y, width, height)

Object Detection: Challenges

- Multiple outputs: Need to output variable numbers of objects per image
- Multiple types of output: Need to predict "what" (category label) as well as "where" (bounding box)
- Large images: Classification works at 224×224; need higher resolution for detection, often $\sim 800 \times 600$

Bounding Boxes

Bounding boxes are typically axis-aligned

Bounding Boxes

Bounding boxes are typically axis-aligned

Oriented boxes are much less common

Object Detection: Modal vs Amodal Boxes

Bounding boxes (usually) cover only the visible portion of the object

Object Detection: Modal vs Amodal Boxes

Bounding boxes (usually) cover only the visible portion of the object

Amodal detection:

 box covers the entire extent of the object, even occluded parts

Object Detection: Modal vs Amodal Boxes

"Modal" detection:

Bounding boxes (usually) cover only the visible portion of the object

Amodal detection: box covers the entire extent of the object, even occluded parts

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
 Area of Union

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
 Area of Union

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union
loU > 0.5 is "decent"

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called "Jaccard similarity" or "Jaccard index"):

$$
\begin{aligned}
& \frac{\text { Area of Intersection }}{\text { Area of Union }} \\
& \text { IoU > } 0.5 \text { is "decent", } \\
& \text { loU }>0.7 \text { is "pretty good", }
\end{aligned}
$$

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)
(Also called "Jaccard similarity" or "Jaccard index"):

$$
\begin{aligned}
& \frac{\text { Area of Intersection }}{\text { Area of Union }} \\
& \text { IoU }>0.5 \text { is "decent", } \\
& \text { IoU }>0.7 \text { is "pretty good", } \\
& \text { IoU }>0.9 \text { is "almost perfect" }
\end{aligned}
$$

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Detecting a single object

Detecting a single object "What"

Detecting a single object "What"

Correct label:

Treat localization as a regression problem!
"Where"

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01

Vector:
4096

Fully
Connected:
4096 to 1000

Connected: Box 4096 to 4

Coordinates
(x, y, w, h)
Correct box: ($x^{\prime}, y^{\prime}, w^{\prime}, h^{\prime}$)

Detecting a single object "What"

Detecting a single object "What"

Often pretrained on ImageNet

Correct label:
Cat
Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
Weighted \qquad Loss

Sum

$L=L_{c l s}+\lambda L_{r e g}$
Connected: BOX
Coordinates
(x, y, w, h)
Correct box:
($x^{\prime}, y^{\prime}, w^{\prime}, h^{\prime}$)

Detecting a single object "What"

Often pretrained on ImageNet (Transfer learning)

This simage is CCO public domain
Treat localization as a regression problem!
Problem: Images can have more than one object!

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01

Fully
Connected: Box
4096 to 4
Coordinates
(x, y, w, h)
"Where"

Correct label:
Cat

Weighted \qquad Loss
Sum
$L=L_{c l s}+\lambda L_{r e g}$

Slide from Justin Johnson

Detecting Multiple Objects

Need different numbers of outputs per image

DUCK: (x, y, w, h) DUCK: (x, y, w, h) Many numbers!

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO
Background? YES

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO
Background? NO

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO
Background? NO

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES
Background? NO

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Question: How many possible boxes are there in an image of size $\mathrm{H} \times \mathrm{W}$?

Detecting Multiple Objects: Sliding Window

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies
 each crop as object or background

Question: How many possible boxes are there in an image of size $\mathrm{H} \times \mathrm{W}$?

Consider a box of size $\mathrm{h} \times \mathrm{w}$:
Possible x positions: $\mathrm{W}-\mathrm{w}+1$
Possible y positions: $\mathrm{H}-\mathrm{h}+1$ Possible positions:
$(W-w+1) *(H-h+1)$

Total possible boxes:

$$
\sum_{h=1}^{H} \sum_{w=1}^{W}(W-w+1)(H-h+1)
$$

$$
=\frac{H(H+1)}{2} \frac{W(W+1)}{2}
$$

Detecting Multiple Objects: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies
 each crop as object or background

Question: How many possible boxes
are there in an image of size $\mathrm{H} \times \mathrm{W}$?
Consider a box of size $\mathrm{h} \times \mathrm{w}$:
Possible x positions: W - w + 1
Possible y positions: $\mathrm{H}-\mathrm{h}+1$ Possible positions:
$(W-w+1) *(H-h+1)$
800×600 image has $\sim 58 \mathrm{M}$ boxes!
No way we can evaluate them all

$$
\begin{aligned}
& \text { Total possible boxes: } \\
& \sum_{h=1}^{H} \sum_{w=1}^{W}(W-w+1)(H-h+1)
\end{aligned}
$$

$$
=\frac{H(H+1)}{2} \frac{W(W+1)}{2}
$$

Region Proposals

- Find a small set of boxes that are likely to cover all objects
- Often based on heuristics: e.g. look for "blob-like" image regions
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Regions of Interest (Rol)
from a proposal method (~2k)

R-CNN: Region-Based CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

R-CNN: Region-Based CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

R-CNN: Region-Based CNN

R-CNN: Region-Based CNN

Classify each region

> Bounding box regression:
> Predict "transform" to correct the Rol: 4 numbers ($\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{w}}$)

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is defined by:
$b_{x}=p_{x}+p_{w} t_{x} \quad$ Shift center by amount
$b_{y}=p_{y}+p_{h} t_{y} \quad$ relative to proposal size
$b_{w}=p_{w} \exp \left(t_{w}\right)$ Scale proposal; exp ensures
$b_{h}=p_{h} \exp \left(t_{h}\right) \quad$ that scaling factor is >0

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is:

$$
\begin{aligned}
& b_{x}=p_{x}+p_{w} t_{x} \\
& b_{y}=p_{y}+p_{h} t_{y} \\
& b_{w}=p_{w} \exp \left(t_{w}\right) \\
& b_{h}=p_{h} \exp \left(t_{h}\right)
\end{aligned}
$$

When transform is 0 , output = proposal

L2 regularization encourages leaving proposal unchanged

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is:
$b_{x}=p_{x}+p_{w} t_{x}$
$b_{y}=p_{y}+p_{h} t_{y}$
$b_{w}=p_{w} \exp \left(t_{w}\right)$
$b_{h}=p_{h} \exp \left(t_{h}\right)$

Scale / Translation invariance: Transform encodes relative difference between proposal and output; important since CNN doesn't see absolute size or position after cropping

R-CNN: Box Regression

Consider a region proposal with center $\left(p_{x}, p_{y}\right)$, width p_{w}, height p_{h}

Model predicts a transform $\left(t_{x}, t_{y}, t_{w}, t_{h}\right)$ to correct the region proposal

The output box is:

$$
\begin{aligned}
& b_{x}=p_{x}+p_{w} t_{x} \\
& b_{y}=p_{y}+p_{h} t_{y} \\
& b_{w}=p_{w} \exp \left(t_{w}\right) \\
& b_{h}=p_{h} \exp \left(t_{h}\right)
\end{aligned}
$$

Given proposal and target output, we can solve for the transform the network should output:

$$
\begin{aligned}
& t_{x}=\left(b_{x}-p_{x}\right) / p_{w} \\
& t_{y}=\left(b_{y}-p_{y}\right) / p_{h} \\
& t_{w}=\log \left(b_{w} / p_{w}\right) \\
& t_{h}=\log \left(b_{h} / p_{h}\right)
\end{aligned}
$$

R-CNN Training

Input Image

Ground-Truth boxes

R-CNN Training

Input Image

Ground-Truth boxes
Region Proposals

R-CNN Training

Input Image

Categorize each region proposal as positive, negative, or neutral based on overlap with ground-truth boxes:

Positive: >0.5 IoU with a GT box
Negative: < 0.3 loU with all GT boxes Neutral: between 0.3 and 0.5 IoU with GT boxes

Slide from Justin Johnson

R-CNN Training

Crop pixels from each positive and negative proposal, resize to 224×224

R-CNN Training

Input Image

Positive
Neutral
Negative

Class target: Background Box target: None

R-CNN Test-Time

Input Image

Region Proposals

1. Run proposal method
2. Run CNN on each proposal to get class scores, transforms
3. Threshold class scores to get a set of detections

2 problems:

- CNN often outputs overlapping boxes
- How to set thresholds?

Overlapping Boxes

Problem: Object detectors often output many overlapping detections:

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections:

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections:

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

$$
\begin{aligned}
& \operatorname{IoU}(■, ■)=0.78 \\
& \operatorname{loU}(\square, ■)=0.05 \\
& \operatorname{IoU}(\square, \square)=0.07
\end{aligned}
$$

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections:

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

$$
\operatorname{IoU}(\square, \square)=0.74
$$

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections:

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Overlapping Boxes: Non-Max Suppression (NMS)

Problem: Object detectors often output many overlapping detections:

Solution: Post-process raw detections using Non-Max Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate "good" boxes when objects are highly
 overlapping... no good solution =(

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)

All dog detections sorted by score

All ground-truth dog boxes

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{IoU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative

All dog detections sorted by score

All ground-truth dog boxes

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve

All ground-truth dog boxes

$$
\text { Precision = 1/1 = } 1.0
$$

$$
\text { Recall }=1 / 3=0.33
$$

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)

4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve

All ground-truth dog boxes

$$
\text { Precision = 2/2 = } 1.0
$$

$$
\text { Recall }=2 / 3=0.67
$$

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)

No match > 0.5 IoU with GT

1. If it matches some GT box with $\mathrm{IoU}>0.5$, mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve

All ground-truth dog boxes

$$
\text { Precision }=2 / 3=0.67
$$

$$
\text { Recall }=2 / 3=0.67
$$

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve

No match $>0.5 \mathrm{loU}$ with GT

All ground-truth dog boxes

$$
\text { Precision }=2 / 4=0.5
$$

Recall $=2 / 3=0.67$

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve

$$
\text { Precision }=3 / 5=0.6
$$

$$
\text { Recall }=3 / 3=1.0
$$

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)

All ground-truth dog boxes

1. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve
4. Average Precision (AP) = area under PR curve

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)

All ground-truth dog boxes

1. If it matches some GT box with loU >0.5, mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve
4. Average Precision (AP) = area under PR curve

How to get AP = 1.0: Hit all GT
boxes with $\mathrm{IoU}>0.5$, and have no
"false positive" detections ranked
above any "true positives"

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{loU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve
7. Average Precision (AP) = area under PR curve
8. Mean Average Precision (mAP) = average of AP for each category

$$
\begin{aligned}
& \text { Car AP }=0.65 \\
& \text { Cat } A P=0.80 \\
& \operatorname{Dog} A P=0.86 \\
& m A P @ 0.5=0.77
\end{aligned}
$$

Evaluating Object Detectors: Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = area under Precision vs Recall Curve
3. For each detection (highest score to lowest score)
4. If it matches some GT box with $\mathrm{loU}>0.5$, mark it as positive and eliminate the GT
5. Otherwise mark it as negative
6. Plot a point on PR Curve
7. Average Precision (AP) = area under PR curve
8. Mean Average Precision (mAP) = average of $A P$ for each category
9. For "COCO mAP": Compute mAP@thresh for each loU threshold ($0.5,0.55,0.6, \ldots, 0.95$) and take average
mAP@0.5 = 0.77
mAP@0.55 = 0.71
mAP@0.60=0.65
mAP@0.95 = 0.2

COCO mAP $=0.4$

RCNN Results	
VOC 2010 test	mAP
DPM v5 [20]	
	33.4
UVA [39]	35.1
Regionlets [41]	39.7
SegDPM [18]	

VOC 2007 test	mAP		
R-CNN pool ${ }_{5}$	44.2		
R-CNN fc ${ }_{6}$	46.2		
R-CNN fc ${ }_{7}$	44.7	VOC 2007 test	mAP
R-CNN FT pool ${ }_{5}$	47.3	R-CNN T-Net	54.2
R-CNN FT fc ${ }_{6}$	53.1	R-CNN T-Net BB	58.5
R-CNN FT fc ${ }_{7}$	54.2	R-CNN O-Net	62.2
R-CNN FT fc ${ }_{7} \mathrm{BB}$	58.5	R-CNN O-Net BB	66.0
DPM v5 [20]	33.7		
DPM ST [28]	29.1		
DPM HSC [31]	34.3		

Last Time: R-CNN

Classify each region

Bounding box regression:
Predict "transform" to correct the Rol: 4 numbers ($\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{w}}$)

Last Time: R-CNN

Classify each region

Bounding box regression: Predict "transform" to correct the Rol: 4 numbers ($\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{w}}$)

Forward each region through ConvNet

Warped image regions (224×224)

Regions of Interest (Rol) from a proposal method (~2k)

Last Time: R-CNN

Classify each region

> Bounding box regression:
> Predict "transform" to correct the Rol: 4 numbers $\left(t_{x}, t_{y}, t_{h}, t_{w}\right)$

Forward each region through ConvNet

Regions of Interest (Rol) from a proposal method (~2k)

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fast R-CNN

Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission

Fast R-CNN

Fast R-CNN

"Slow" R-CNN Process each region independently

[^0]
Fast R-CNN

"Slow" R-CNN Process each region independently

Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fast R-CNN

"Slow" R-CNN Process each region independently

[^1]
Fast R-CNN

Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission
Slide from Justin Johnson

Fast R-CNN

Per-Region network is relatively lightweight

[^2]
Fast R-CNN

Regions of Interest (Rols)
 Per-Region Network from a proposal
 method
 Image features
"Backbone" network: AlexNet, VGG, ResNet, etc

Example: When using AlexNet for detection, five conv layers are used for backbone and two FC layers are used for perregion network

Fast R-CNN

Example:
For ResNet, last stage is used as per-region network; the rest of the network is used as backbone

Fast R-CNN

Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission

Recall: Receptive Fields

Input Image: 8×8

Every position in the output feature map depends on a 3×3 receptive field in the input
3×3 Conv
Stride 1, pad 1

Output Image: 8×8

Recall: Receptive Fields

Input Image: 8×8

Every position in the output feature map depends on a 3×3 receptive field in the input
3×3 Conv
Stride 1, pad 1

Output Image: 8×8

Recall: Receptive Fields

Input Image: 8×8

Every position in the output feature map depends on a 5×5 receptive field in the input

Stride 1, pad 1

$$
\begin{gathered}
3 \times 3 \text { Conv } \\
\text { Stride 1, pad } 1
\end{gathered}
$$

Output Image: 8×8

Recall: Receptive Fields

Input Image: 8×8

Moving one unit in the output space also moves the receptive field by one

| 3×3 Conv |
| :---: | :---: |
| Stride 1, pad 1 | | 3×3 Conv |
| :---: |
| Stride 1, pad 1 |

$$
\text { Stride 1, pad } 1
$$

Output Image: 8×8

Recall: Receptive Fields

(0, 0)

Input Image: 8×8
$(1,1)$

Moving one unit in the output space also moves the receptive field by one

$$
3 \times 3 \text { Cons }
$$

Stride 1, pad 1
There is a correspondence between the coordinate system of the input and the coordinate system of the output
(0, 0)

$(1,1)$

Projecting Points

$(0,0)$

Input Image: 8×8
$(1,1)$

We can align arbitrary points between coordinate system of input and output
3x3 Conv

Stride 1, pad 1

$$
\begin{gathered}
3 \times 3 \text { Conv } \\
\text { Stride 1, pad } 1
\end{gathered}
$$

There is a correspondence between the coordinate system of the input and the coordinate system of the output
(0, 0)

Projecting Points

Same logic holds for more complicated CNN, even if spatial resolution of input and output are different

We can align arbitrary points between coordinate system of input and output
3×3 Cons
Stride 1, pad 1
There is a correspondence between the coordinate system of the input and the coordinate system of the output
$(0,0)$

Projecting Points

Same logic holds for more complicated CNNs, even if spatial resolution of input and output are different

Input Image: 8×8

We can align arbitrary points between coordinate system of input and output

$$
3 \times 3 \text { Conv }
$$

Stride 1, pad 1
(0, 0)

Projecting Boxes

We can use this idea to project bounding boxes between an input image and a feature map

(0, 0)

(0, 0)

Input Image: 8 x 8

We can align arbitrary points between coordinate system of input and output
3×3 Conv
Stride 1, pad 1
There is a correspondence between the coordinate system of the input and the coordinate system of the output

$(1,1)$

Output Image: 8×8

Cropping Features: Rol Pool

Input Image
(e.g. $3 \times 640 \times 480$)

Cropping Features: Rol Pool

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Pool

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Pool

Cropping Features: Rol Pool

"Snap" to grid cells onto features

Input Image
(e.g. $3 \times 640 \times 480$)

Image features
(e.g. $512 \times 20 \times 15$)

Divide into 2×2 grid of (roughly) equal subregions

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Pool

 "Snap" to grid cells onto features

Input Image
(e.g. $3 \times 640 \times 480$)

Image features
(e.g. $512 \times 20 \times 15$)

Divide into 2×2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here $512 \times 2 \times 2$; In practice 512x7x7)

Region features always the same size even if input regions have different sizes!

Cropping Features: Rol Pool

"Snap" to

Input Image
(e.g. $3 \times 640 \times 480$)

Divide into 2×2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here $512 \times 2 \times 2$; In practice $512 \times 7 \times 7$)

Region features always the same size even if input regions have different sizes!

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Input Image
(e.g. $3 \times 640 \times 480$)

No "snapping"!
Project proposal onto features

Image features (e.g. $512 \times 20 \times 15$)

Want features for the box of a fixed size (2×2 in this example, 7×7 or 14×14 in practice)

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Sample features at regularly-spaced points in each subregion using bilinear interpolation

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

Feature $f_{x y}$ for point (x, y) is a linear combination of features at its four neighboring grid cells:

Cropping Features: Rol Align

Divide into equal-sized subregions (may not be aligned to grid!)

$$
\begin{aligned}
f_{x y}= & \sum_{i, j} f_{i, j} \max \left(0,1-\left|x-x_{i}\right|\right) \max \left(0,1-\left|y-y_{i}\right|\right) \\
f_{6.5,5.8} & =\left(\mathrm{f}_{6,5} * 0.5 * 0.2\right)+\left(\mathrm{f}_{7,5} * 0.5 * 0.2\right) \\
& +\left(\mathrm{f}_{6,6} * 0.5 * 0.8\right)+\left(\mathrm{f}_{7,6} * 0.5 * 0.8\right)
\end{aligned}
$$

Feature $f_{x y}$ for point (x, y) is a linear combination of features at its four neighboring grid cells:

Cropping Features: Rol Align

Fast R-CNN vs "Slow" R-CNN

Fast R-CNN: Apply differentiable cropping to shared image features

"Slow" R-CNN: Apply differentiable cropping to shared image features

Fast R-CNN vs "Slow" R-CNN

Fast R-CNN vs "Slow" R-CNN

Fast R-CNN vs "Slow" R-CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014 He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014 Girshick, "Fast R-CNN", ICCV 2015

Test time (seconds)
Including Region propos... \square Excluding Region Propo.

Recall: Region proposals computed by heuristic "Selective Search" algorithm on CPU -- let's learn them with a CNN instead!

Slide from Justin Johnson

Faster R-CNN: Learnable Region Proposals

Insert Region Proposal Network (RPN) to predict proposals from features
Otherwise same as Fast R-CNN:
Crop features for each proposal, classify each one

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Image features
(e.g. $512 \times 5 \times 6$)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Imagine an anchor box of fixed size at each point in the feature map

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Imagine an anchor box of fixed size at each point in the feature map

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Imagine an anchor box of fixed size at each point in the feature map

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Imagine an anchor box of fixed size at each point in the feature map

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image
input lmage
(e.g. $3 \times 640 \times 480$)

Imagine an anchor box of fixed size at each point in the feature map

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Imagine an anchor box of fixed size at each point in the feature map

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

[^3]Predict object vs not object scores for all anchors with a conv layer (512 input filters, 2 output filters)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Classify each anchor as positive (object) or negative (no object)

For positive anchors, also

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

input Image
(e.g. $3 \times 640 \times 480$)

[^4] predict a transform that converting the anchor to the GT box (like R-CNN)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

input Image
(e.g. $3 \times 640 \times 480$)

[^5]For positive anchors, also predict a transform that converting the anchor to the GT box (like R-CNN) Predict transforms with conv

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Classify each anchor as positive (object) or negative (no object)

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)
Image features
(e.g. $512 \times 5 \times 6$)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Anchor is

Anchor
transforms $4 K \times 5 \times 6$

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

During training, supervised positive / negative anchors and box transforms like R-CNN

[^6]
Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Positive anchors: >= 0.7 IoU with some GT box (plus highest loU to each GT)

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Negative anchors: < 0.3 loU with all GT boxes. Don't supervised transforms for negative boxes.

[^7]
Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Image features
(e.g. $512 \times 5 \times 6$)

Neutral anchors: between 0.3 and 0.7 loU with all GT boxes; ignored during training

[^8]
Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

In practice: Rather than using one anchor per point, instead consider K different anchors with different size and scale (here $K=6$)

Image features
(e.g. $512 \times 5 \times 6$)

At test-time, sort all $\mathrm{K}^{*} 5^{*} 6$ boxes by their positive score, take top 300 as our region proposals

[^9]
Faster R-CNN: Learnable Region Proposals

Jointly train with 4 losses:

1. RPN classification: anchor box is object / not an object
```
Classification
    loss
```


2. RPN regression: predict transform from anchor box to proposal box
3. Object classification: classify proposals as background / object class
4. Object regression: predict transform from proposal box to object box

Faster R-CNN: Learnable Region Proposals

R-CNN Test-Time Speed

Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a Two-stage object detector

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a
Two-stage object detector

First stage: Run once per image

- Backbone network

Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Question: Do we really need the second stage?

Similar to RPN - but rather

Single-Stage Detectors: RetinaNet

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$) than classify anchors as object/no object, directly predict object category (among C categories) or background

Single-Stage Detectors: RetinaNet

Run backbone CNN to get
features aligned to input image

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Problem: class imbalance many more background anchors vs non-background

Conv
 $2 K^{*}(C+1) \times 5 \times 6$

Anchor transforms
$4 K \times 5 \times 6$

Single-Stage Detectors: RetinaNet

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Problem: class imbalance many more background anchors vs non-background Solution: new loss function (Focal Loss); see paper

Image features
(e.g. $512 \times 5 \times 6$)
$\operatorname{CE}\left(p_{\mathrm{t}}\right)=-\log \left(p_{\mathrm{t}}\right)$
$\operatorname{FL}\left(p_{\mathrm{t}}\right)=-\left(1-p_{\mathrm{t}}\right)^{\gamma} \log \left(p_{\mathrm{t}}\right)$

Single-Stage Detectors: RetinaNet

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

(a) ResNet
(b) feature pyramid net

Single-Stage Detectors: RetinaNet

Single-Stage detectors can be much faster than two-stage detectors

| 38 |
| :--- | :--- | :--- | :--- |

Single-Stage Detectors: RetinaNet

Single-Stage detectors can be much faster than two-stage detectors

Single-Stage Detectors: FCOS

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds
to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

Slide from Justin Johnson

Single-Stage Detectors: FCOS

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

"Anchor-free" detector

Classify points as positive if they fall into a GT box, or negative if they don't

Train independent percategory logistic regressors

CNN

Single-Stage Detectors: FCOS

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)
"Anchor-free" detector

For positive points, also regress distance to left, right, top, and bottom of groundtruth box (with L2 loss)

Single-Stage Detectors: FCOS

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)
"Anchor-free" detector

For positive points, also regress distance to left, right, top, and bottom of groundtruth box (with L2 loss)

Single-Stage Detectors: FCOS

Run backbone CNN to get
features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

"Anchor-free" detector

Finally, predict "centerness" for all positive points (using logistic regression loss)

Class scores
C $\times 5 \times 6$
Box edges
$4 \times 5 \times 6$
Centerness
$1 \times 5 \times 6$

Single-Stage Detectors: FCOS

Run backbone CNN to get features aligned to input image

Input Image
(e.g. $3 \times 640 \times 480$)

Each feature corresponds to a point in the input

Image features
(e.g. $512 \times 5 \times 6$)

"Anchor-free" detector

Test-time: predicted
"confidence" for the box from each point is product of its class score and centerness

Class scores
C $\times 5 \times 6$
Box edges
$4 \times 5 \times 6$
Centerness
$1 \times 5 \times 6$

Single-Stage Detectors: FCOS

FCOS also uses a Feature Pyramid Network with heads shared across stages

Tian et al, "FCOS: Fully Convolutional One-Stage Object Detection", ICCV 2019

Dealing with Scale

We need to detect objects of many different scales.
How to improve scale invariance of the detector?

Dealing with Scale: Image Pyramid

Classic idea: build an image pyramid by resizing the image to different scales, then process each image scale independently.

Dealing with Scale: Image Pyramid

Classic idea: build an image pyramid by resizing the image to different scales, then process each image scale independently.

Problem: Expensive! Don't share any computation between scales

Dealing with Scale: Multiscale Features

CNNs have multiple stages that operate at different resolutions. Attach an independent detector to the features at each level

Dealing with Scale: Multiscale Features

CNNs have multiple stages that operate at different resolutions. Attach an independent detector to the features at each level

Problem: detector on early features doesn't make use of the entire backbone; doesn't get access to high-level features

Dealing with Scale: Feature Pyramid Network

Add top down

 connections that feed information from high level features back down to lower level features

Dealing with Scale: Feature Pyramid Network

Add top down connections that feed information from high level features back down to lower level features

Dealing with Scale: Feature Pyramid Network

Add top down

 connections that feed information from high level features back down to lower level features

Dealing with Scale: Feature Pyramid Network

Add top down

 connections that feed information from high level features back down to lower level features
Dealing with Scale: Feature Pyramid Network

Add top down connections that feed information from high level features back down to lower level features
 Efficient multiscale features where all levels benefit from the whole backbone! Widely used in practice

Lin et al, "Feature Pyramid Networks for Object Detection", ICCV 2017

Dealing with Scale: Feature Pyramid Network

Add top down connections that feed information from high level features back down to lower level features
 Efficient multiscale features where all levels benefit from the whole backbone! Widely used

224×224 Image

Single-Stage Detectors: RetinaNet

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

(a) ResNet
(b) feature pyramid net
a

(c) class subnet (top)

Beyond Image Classification

Slide from Justin Johnson

- Mask R-CNN = Faster R-CNN + FCN on Rols

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

RolAlign vs. RoIPool

- RoIPool: nearest neighbor quantization

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

RolAlign vs. RoIPool

- RoIPool: nearest neighbor quantization
- RolAlign: bilinear interpolation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Mask R-CNN

- From RolAlign features, predict class label, bounding box, and segmentation mask

Classification/regression head from an established object detector (e.g., FPN)

Separately predict binary mask for each class with per-pixel sigmoids, use average binary crossentropy loss
K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Mask R-CNN

28×28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red
K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Example results

Example results

Instance segmentation results on COCO

	backbone	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	AP_{L}
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5
		AP at different loU thresholds			AP for different size instances		

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Summary

"Slow" R-CNN: Run CNN independently for each region

Bounding Box Regression

Fast R-CNN: Apply differentiable cropping to shared image features

RoIPool / RoIAlign

Faster R-CNN: Single-Stage:

Compute proposals Fully convolutional detector / RetinaNet

Feature Pyramid Network

Summary

Object detection is the task of localizing objects with bounding boxes
Intersection over Union (IoU) quantifies differences between bounding boxes
The R-CNN object detector processes region proposals with a CNN

At test-time, eliminate overlapping detections using non-max suppression (NMS)

Evaluate object detectors using mean average precision (mAP)

Summary: Beyond Image Classification

Slide from Justin Johnson

[^0]: Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission

[^1]: Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission

[^2]: Girshick, "Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permissior

[^3]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

[^4]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

[^5]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

[^6]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

[^7]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

[^8]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

[^9]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

