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Attention (with key, query and value)

Source: http://peterbloem.nl/blog/transformers  See also: Attention is all you need
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H,W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P

2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0

L
) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L
. The classification head is implemented by a MLP with one hidden layer at pre-training

time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).
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Multihead Self-Attention
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Models Dataset Epochs Base LR LR decay Weight decay Dropout

ViT-B/{16,32} JFT-300M 7 8 · 10�4 linear 0.1 0.0
ViT-L/32 JFT-300M 7 6 · 10�4 linear 0.1 0.0
ViT-L/16 JFT-300M 7/14 4 · 10�4 linear 0.1 0.0
ViT-H/14 JFT-300M 14 3 · 10�4 linear 0.1 0.0
R50x{1,2} JFT-300M 7 10�3 linear 0.1 0.0
R101x1 JFT-300M 7 8 · 10�4 linear 0.1 0.0
R152x{1,2} JFT-300M 7 6 · 10�4 linear 0.1 0.0
R50+ViT-B/{16,32} JFT-300M 7 8 · 10�4 linear 0.1 0.0
R50+ViT-L/32 JFT-300M 7 2 · 10�4 linear 0.1 0.0
R50+ViT-L/16 JFT-300M 7/14 4 · 10�4 linear 0.1 0.0
ViT-B/{16,32} ImageNet-21k 90 10�3 linear 0.03 0.1
ViT-L/{16,32} ImageNet-21k 30/90 10�3 linear 0.03 0.1
ViT-⇤ ImageNet 300 3 · 10�3 cosine 0.3 0.1

Table 3: Hyperparameters for training. All models are trained with a batch size of 4096 and learn-
ing rate warmup of 10k steps. For ImageNet we found it beneficial to additionally apply gradient
clipping at global norm 1. Training resolution is 224.

APPENDIX

A MULTIHEAD SELF-ATTENTION

Standard qkv self-attention (SA, Vaswani et al. (2017)) is a popular building block for neural archi-
tectures. For each element in an input sequence z 2 RN⇥D, we compute a weighted sum over all
values v in the sequence. The attention weights Aij are based on the pairwise similarity between
two elements of the sequence and their respective query qi and key kj representations.

[q,k,v] = zUqkv Uqkv 2 RD⇥3Dh , (5)

A = softmax
⇣
qk>

/

p
Dh

⌘
A 2 RN⇥N

, (6)

SA(z) = Av . (7)

Multihead self-attention (MSA) is an extension of SA in which we run k self-attention operations,
called “heads”, in parallel, and project their concatenated outputs. To keep compute and number of
parameters constant when changing k, Dh (Eq. 5) is typically set to D/k.

MSA(z) = [SA1(z); SA2(z); · · · ; SAk(z)]Umsa Umsa 2 Rk·Dh⇥D (8)

B EXPERIMENT DETAILS

B.1 TRAINING

Table 3 summarizes our training setups for our different models. We found strong regularization
to be key when training models from scratch on ImageNet. Dropout, when used, is applied after
every dense layer except for the the qkv-projections and directly after adding positional- to patch
embeddings. Hybrid models are trained with the exact setup as their ViT counterparts. Finally, all
training is done on resolution 224.

B.1.1 FINE-TUNING

We fine-tune all ViT models using SGD with a momentum of 0.9. We run a small grid search over
learning rates, see learning rate ranges in Table 4. To do so, we use small sub-splits from the training
set (10% for Pets and Flowers, 2% for CIFAR, 1% ImageNet) as development set and train on the
remaining data. For final results we train on the entire training set and evaluate on the respective
test data. For fine-tuning ResNets and hybrid models we use the exact same setup, with the only
exception of ImageNet where we add another value 0.06 to the learning rate sweep. Additionally,
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Other Details
• MLP: 1 hidden layer with GELU non-

linearity
• Layer Norm: Normalize representation 

for each token to be normalized to zero 
mean, unit variance

• Learn a Positional Embedding for patch 
locations: 𝑊!"#𝑙"$%&"'

Published as a conference paper at ICLR 2021

Model Layers Hidden size D MLP size Heads Params

ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

We also evaluate on the 19-task VTAB classification suite (Zhai et al., 2019b). VTAB evaluates
low-data transfer to diverse tasks, using 1 000 training examples per task. The tasks are divided into
three groups: Natural – tasks like the above, Pets, CIFAR, etc. Specialized – medical and satellite
imagery, and Structured – tasks that require geometric understanding like localization.

Model Variants. We base ViT configurations on those used for BERT (Devlin et al., 2019), as
summarized in Table 1. The “Base” and “Large” models are directly adopted from BERT and we
add the larger “Huge” model. In what follows we use brief notation to indicate the model size and
the input patch size: for instance, ViT-L/16 means the “Large” variant with 16⇥16 input patch size.
Note that the Transformer’s sequence length is inversely proportional to the square of the patch size,
thus models with smaller patch size are computationally more expensive.

For the baseline CNNs, we use ResNet (He et al., 2016), but replace the Batch Normalization lay-
ers (Ioffe & Szegedy, 2015) with Group Normalization (Wu & He, 2018), and used standardized
convolutions (Qiao et al., 2019). These modifications improve transfer (Kolesnikov et al., 2020),
and we denote the modified model “ResNet (BiT)”. For the hybrids, we feed the intermediate fea-
ture maps into ViT with patch size of one “pixel”. To experiment with different sequence lengths,
we either (i) take the output of stage 4 of a regular ResNet50 or (ii) remove stage 4, place the same
number of layers in stage 3 (keeping the total number of layers), and take the output of this extended
stage 3. Option (ii) results in a 4x longer sequence length, and a more expensive ViT model.

Training & Fine-tuning. We train all models, including ResNets, using Adam (Kingma & Ba,
2015) with �1 = 0.9, �2 = 0.999, a batch size of 4096 and apply a high weight decay of 0.1, which
we found to be useful for transfer of all models (Appendix D.1 shows that, in contrast to common
practices, Adam works slightly better than SGD for ResNets in our setting). We use a linear learning
rate warmup and decay, see Appendix B.1 for details. For fine-tuning we use SGD with momentum,
batch size 512, for all models, see Appendix B.1.1. For ImageNet results in Table 2, we fine-tuned at
higher resolution: 512 for ViT-L/16 and 518 for ViT-H/14, and also used Polyak & Juditsky (1992)
averaging with a factor of 0.9999 (Ramachandran et al., 2019; Wang et al., 2020b).

Metrics. We report results on downstream datasets either through few-shot or fine-tuning accuracy.
Fine-tuning accuracies capture the performance of each model after fine-tuning it on the respective
dataset. Few-shot accuracies are obtained by solving a regularized least-squares regression problem
that maps the (frozen) representation of a subset of training images to {�1, 1}K target vectors. This
formulation allows us to recover the exact solution in closed form. Though we mainly focus on
fine-tuning performance, we sometimes use linear few-shot accuracies for fast on-the-fly evaluation
where fine-tuning would be too costly.

4.2 COMPARISON TO STATE OF THE ART

We first compare our largest models – ViT-H/14 and ViT-L/16 – to state-of-the-art CNNs from
the literature. The first comparison point is Big Transfer (BiT) (Kolesnikov et al., 2020), which
performs supervised transfer learning with large ResNets. The second is Noisy Student (Xie et al.,
2020), which is a large EfficientNet trained using semi-supervised learning on ImageNet and JFT-
300M with the labels removed. Currently, Noisy Student is the state of the art on ImageNet and
BiT-L on the other datasets reported here. All models were trained on TPUv3 hardware, and we
report the number of TPUv3-core-days taken to pre-train each of them, that is, the number of TPU
v3 cores (2 per chip) used for training multiplied by the training time in days.

Table 2 shows the results. The smaller ViT-L/16 model pre-trained on JFT-300M outperforms BiT-L
(which is pre-trained on the same dataset) on all tasks, while requiring substantially less computa-
tional resources to train. The larger model, ViT-H/14, further improves the performance, especially
on the more challenging datasets – ImageNet, CIFAR-100, and the VTAB suite. Interestingly, this
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Results



Scale Better with More Data



Surprisingly, faster than ResNets to train



Visualization

Later layers 
attend to 
quite far!

Some early layers 
attend locally, others 
attend to quite far

Position encoding 
automatically learn 
spatial proximity



Positional Embedding
• Bag of word is insufficient
• Many encodings work well
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H,W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P

2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0

L
) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L
. The classification head is implemented by a MLP with one hidden layer at pre-training

time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).
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Scaling depth is most effective at 
current operating point



Finetuning at Higher-Resolution
• Often beneficial to fine-tune at higher
• Keep patch-size same, increase number of patches
• ViT can in-principle handle longer sequence lengths
• Except, positional encodings need to be interpolated.



How to finetune Transformer architectures?
2 M. Jia et al.

Backbone

(a) Existing tuning protocols (c) Results on visual classification tasks(b) Visual-Prompt Tuning (VPT)

Head
Head

Backbone

Head-oriented:

Backbone-oriented:

Prompt 

Tuned Frozen

Linear
Partial
MLP

Sidetune
Adapter
Bias

Full

Ours

Fig. 1. Visual-Prompt Tuning (VPT) vs. other transfer learning methods. (a) Current
transfer learning protocols are grouped based on the tuning scope: Full fine-tuning,
Head-oriented, and Backbone-oriented approaches. (b) VPT instead adds extra pa-
rameters in the input space. (c) Performance of di↵erent methods on a wide range
of downstream classification tasks adapting a pre-trained ViT-B backbone, with mean
and standard deviation annotated. VPT outperforms Full fine-tuning 20 out of 24 cases
while using less than 1% of all model parameters

One straightforward approach is to turn to other strategies that we have per-
fected for adapting ConvNets to new tasks, as in Fig. 1(a). A popular approach is
to fine-tune only a subset of the parameters, such as the classifier head [56,36,11]
or the bias terms [8]. Prior research has also looked at adding additional resid-
ual blocks (or adapters) to the backbone [68,87]. One could implement similar
strategies for Transformers. However, in general these strategies under-perform
full fine-tuning in accuracy.

We explore a di↵erent route in this paper. Instead of altering or fine-tuning
the pre-trained Transformer itself, we modify the input to the Transformer.
Drawing inspiration from the recent advances on Prompting in NLP [50,48,45,51],
we propose a new simple and e�cient method to adapt transformer models for
downstream vision tasks (Fig. 1(b)), namely Visual-Prompt Tuning (VPT).
Our method only introduces a small amount of task-specific learnable parameters
into the input space while freezing the entire pre-trained Transformer backbone
during downstream training. In practice, these additional parameters are sim-
ply prepended into the input sequence of each Transformer layer and learned
together with a linear head during fine-tuning.

On 24 downstream recognition tasks spanning di↵erent domains using a pre-
trained ViT backbone, VPT beats all other transfer learning baselines, even
surpassing full fine-tuning in 20 cases, while maintaining the advantage of stor-
ing remarkably fewer parameters (less than 1% of backbone parameters) for each
individual task (Fig. 1(c)). This result demonstrates the distinctive strength of
visual prompting: whereas in NLP, prompt tuning is only able to match full
fine-tuning performance under certain circumstances [45]. VPT is especially ef-
fective in the low-data regime, and maintains its advantage across data scales.
Finally, VPT is competitive for a range of Transformer scales and designs (ViT-
Base/Large/Huge, Swin). Put together, our results suggest that VPT is one of
the most e↵ective ways of adapting ever-growing vision backbones.

Visual Prompt Tuning, Jia et al. ECCV 2022

https://arxiv.org/abs/2203.12119
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Fig. 2. Overview of our proposed Visual-Prompt Tuning. We explore two variants:
(a) prepend a set of learnable parameters to each Transformer encoder layer’s input
(VPT-deep); (b) only insert the prompt parameters to the first layer’s input (VPT-
shallow). During training on downstream tasks, only the parameters of prompts and
linear head are updated while the whole Transformer encoder is frozen.

3 Approach

We propose Visual-Prompt Tuning (VPT) for adapting large pre-trained vision
Transformer models. VPT injects a small number of learnable parameters into
Transformer’s input space and keeps the backbone frozen during the downstream
training stage. The overall framework is presented in Fig. 2. We first define the
notations in Sec. 3.1, then describe VPT formally in Sec. 3.2.

3.1 Preliminaries

For a plain Vision Transformer (ViT) [19] with N layers, an input image is
divided into m fixed-sized patches {Ij 2 R3⇥h⇥w | j 2 N, 1  j  m}. h,w are
the height and width of the image patches. Each patch is then first embedded
into d-dimensional latent space with positional encoding:

ej0 = Embed(Ij) ej0 2 Rd, j = 1, 2, . . .m . (1)

We denote the collection of image patch embeddings, Ei = {eji 2 Rd | j 2
N, 1  j  m}, as inputs to the (i+1)-th Transformer layer (Li+1). Together
with an extra learnable classification token ([CLS]), the whole ViT is formulated
as:

[xi,Ei] = Li([xi�1,Ei�1]) i = 1, 2, . . . , N (2)

y = Head(xN ) , (3)

where xi 2 Rd denote [CLS]’s embedding at Li+1’s input space. [·, ·] indicates
stacking and concatenation on the sequence length dimension, i.e., [xi,Ei] 2
R(1+m)⇥d. Each layer Li consists of Multiheaded Self-Attention (MSA) and
Feed-Forward Networks (FFN) together with LayerNorm [1] and residual con-

How to finetune Transformer architectures?



Datasets
• VTAB Dataset

• Collection of 19 diverse visual classification tasks from 3 groups: 
• Natural: natural images captured using standard cameras
• Specialized: such as medical and satellite imagery
• Structured: geometric comprehension like object counting. 

• Each task of VTAB contains 1000 training examples.

• FGVC Dataset
• 5 benchmarked Fine-Grained Visual Classification tasks

• CUB-200-2011 (birds), NABirds, Oxford Flowers, Stanford Dogs, Stanford Cars



Outperforms CNN finetuning methods, deep better than shallow



Appending tokens is best



May need to add many tokens



Tokens in early layers is better than later layers



Also applicable to CNNs!



All representations are at the same scale

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu†* Yutong Lin†* Yue Cao* Han Hu*‡ Yixuan Wei†

Zheng Zhang Stephen Lin Baining Guo
Microsoft Research Asia

{v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

Abstract

This paper presents a new vision Transformer, called

Swin Transformer, that capably serves as a general-purpose

backbone for computer vision. Challenges in adapting

Transformer from language to vision arise from differences

between the two domains, such as large variations in the

scale of visual entities and the high resolution of pixels

in images compared to words in text. To address these

differences, we propose a hierarchical Transformer whose

representation is computed with Shifted windows. The

shifted windowing scheme brings greater efficiency by lim-

iting self-attention computation to non-overlapping local

windows while also allowing for cross-window connection.

This hierarchical architecture has the flexibility to model

at various scales and has linear computational complexity

with respect to image size. These qualities of Swin Trans-

former make it compatible with a broad range of vision

tasks, including image classification (87.3 top-1 accuracy

on ImageNet-1K) and dense prediction tasks such as object

detection (58.7 box AP and 51.1 mask AP on COCO test-

dev) and semantic segmentation (53.5 mIoU on ADE20K

val). Its performance surpasses the previous state-of-the-

art by a large margin of +2.7 box AP and +2.6 mask AP on

COCO, and +3.2 mIoU on ADE20K, demonstrating the po-

tential of Transformer-based models as vision backbones.

The hierarchical design and the shifted window approach

also prove beneficial for all-MLP architectures. The code

and models are publicly available at https://github.
com/microsoft/Swin-Transformer.

1. Introduction
Modeling in computer vision has long been dominated

by convolutional neural networks (CNNs). Beginning with
AlexNet [39] and its revolutionary performance on the
ImageNet image classification challenge, CNN architec-
tures have evolved to become increasingly powerful through

*Equal contribution. †Interns at MSRA. ‡Contact person.

Figure 1. (a) The proposed Swin Transformer builds hierarchical
feature maps by merging image patches (shown in gray) in deeper
layers and has linear computation complexity to input image size
due to computation of self-attention only within each local win-
dow (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks.
(b) In contrast, previous vision Transformers [20] produce fea-
ture maps of a single low resolution and have quadratic compu-
tation complexity to input image size due to computation of self-
attention globally.

greater scale [30, 76], more extensive connections [34], and
more sophisticated forms of convolution [70, 18, 84]. With
CNNs serving as backbone networks for a variety of vision
tasks, these architectural advances have led to performance
improvements that have broadly lifted the entire field.

On the other hand, the evolution of network architectures
in natural language processing (NLP) has taken a different
path, where the prevalent architecture today is instead the
Transformer [64]. Designed for sequence modeling and
transduction tasks, the Transformer is notable for its use
of attention to model long-range dependencies in the data.
Its tremendous success in the language domain has led re-
searchers to investigate its adaptation to computer vision,
where it has recently demonstrated promising results on cer-
tain tasks, specifically image classification [20] and joint
vision-language modeling [47].

In this paper, we seek to expand the applicability of
Transformer such that it can serve as a general-purpose
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FPNs for CNN Object Detectors

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition

systems for detecting objects at different scales. But recent

deep learning object detectors have avoided pyramid rep-

resentations, in part because they are compute and memory

intensive. In this paper, we exploit the inherent multi-scale,

pyramidal hierarchy of deep convolutional networks to con-

struct feature pyramids with marginal extra cost. A top-

down architecture with lateral connections is developed for

building high-level semantic feature maps at all scales. This

architecture, called a Feature Pyramid Network (FPN),

shows significant improvement as a generic feature extrac-

tor in several applications. Using FPN in a basic Faster

R-CNN system, our method achieves state-of-the-art single-

model results on the COCO detection benchmark without

bells and whistles, surpassing all existing single-model en-

tries including those from the COCO 2016 challenge win-

ners. In addition, our method can run at 6 FPS on a GPU

and thus is a practical and accurate solution to multi-scale

object detection. Code will be made publicly available.

1. Introduction
Recognizing objects at vastly different scales is a fun-

damental challenge in computer vision. Feature pyramids

built upon image pyramids (for short we call these featur-

ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 25]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [19, 20]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[15, 11, 29] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [33] and COCO [21] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [16, 35]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are

semantically strong, including the high-resolution levels.
Nevertheless, featurizing each level of an image pyra-

mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep
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RPN feature # anchors lateral? top-down? AR100 AR1k AR1k
s AR1k

m AR1k
l

(a) baseline on conv4 C4 47k 36.1 48.3 32.0 58.7 62.2
(b) baseline on conv5 C5 12k 36.3 44.9 25.3 55.5 64.2
(c) FPN {Pk} 200k X X 44.0 56.3 44.9 63.4 66.2
Ablation experiments follow:

(d) bottom-up pyramid {Pk} 200k X 37.4 49.5 30.5 59.9 68.0
(e) top-down pyramid, w/o lateral {Pk} 200k X 34.5 46.1 26.5 57.4 64.7
(f) only finest level P2 750k X X 38.4 51.3 35.1 59.7 67.6

Table 1. Bounding box proposal results using RPN [29], evaluated on the COCO minival set. All models are trained on trainval35k.
The columns “lateral” and “top-down” denote the presence of lateral and top-down connections, respectively. The column “feature” denotes
the feature maps on which the heads are attached. All results are based on ResNet-50 and share the same hyper-parameters.

Fast R-CNN proposals feature head lateral? top-down? AP@0.5 AP APs APm APl

(a) baseline on conv4 RPN, {Pk} C4 conv5 54.7 31.9 15.7 36.5 45.5
(b) baseline on conv5 RPN, {Pk} C5 2fc 52.9 28.8 11.9 32.4 43.4
(c) FPN RPN, {Pk} {Pk} 2fc X X 56.9 33.9 17.8 37.7 45.8
Ablation experiments follow:

(d) bottom-up pyramid RPN, {Pk} {Pk} 2fc X 44.9 24.9 10.9 24.4 38.5
(e) top-down pyramid, w/o lateral RPN, {Pk} {Pk} 2fc X 54.0 31.3 13.3 35.2 45.3
(f) only finest level RPN, {Pk} P2 2fc X X 56.3 33.4 17.3 37.3 45.6

Table 2. Object detection results using Fast R-CNN [11] on a fixed set of proposals (RPN, {Pk}, Table 1(c)), evaluated on the COCO
minival set. Models are trained on the trainval35k set. All results are based on ResNet-50 and share the same hyper-parameters.

Faster R-CNN proposals feature head lateral? top-down? AP@0.5 AP APs APm APl

(*) baseline from He et al. [16]† RPN, C4 C4 conv5 47.3 26.3 - - -
(a) baseline on conv4 RPN, C4 C4 conv5 53.1 31.6 13.2 35.6 47.1
(b) baseline on conv5 RPN, C5 C5 2fc 51.7 28.0 9.6 31.9 43.1
(c) FPN RPN, {Pk} {Pk} 2fc X X 56.9 33.9 17.8 37.7 45.8

Table 3. Object detection results using Faster R-CNN [29] evaluated on the COCO minival set. The backbone network for RPN are

consistent with Fast R-CNN. Models are trained on the trainval35k set and use ResNet-50. †Provided by authors of [16].

5.2. Object Detection with Fast/Faster R-CNN
Next we investigate FPN for region-based (non-sliding

window) detectors. We evaluate object detection by the
COCO-style Average Precision (AP) and PASCAL-style
AP (at a single IoU threshold of 0.5). We also report COCO
AP on objects of small, medium, and large sizes (namely,
APs, APm, and APl) following the definitions in [21].

Implementation details. The input image is resized such
that its shorter side has 800 pixels. Synchronized SGD is
used to train the model on 8 GPUs. Each mini-batch in-
volves 2 image per GPU and 512 RoIs per image. We use
a weight decay of 0.0001 and a momentum of 0.9. The
learning rate is 0.02 for the first 60k mini-batches and 0.002
for the next 20k. We use 2000 RoIs per image for training
and 1000 for testing. Training Fast R-CNN with FPN takes
about 10 hours on the COCO dataset.

5.2.1 Fast R-CNN (on fixed proposals)

To better investigate FPN’s effects on the region-based de-
tector alone, we conduct ablations of Fast R-CNN on a fixed

set of proposals. We choose to freeze the proposals as com-

puted by RPN on FPN (Table 1(c)), because it has good per-
formance on small objects that are to be recognized by the
detector. For simplicity we do not share features between
Fast R-CNN and RPN, except when specified.

As a ResNet-based Fast R-CNN baseline, following
[16], we adopt RoI pooling with an output size of 14⇥14
and attach all conv5 layers as the hidden layers of the head.
This gives an AP of 31.9 in Table 2(a). Table 2(b) is a base-
line exploiting an MLP head with 2 hidden fc layers, similar
to the head in our architecture. It gets an AP of 28.8, indi-
cating that the 2-fc head does not give us any orthogonal
advantage over the baseline in Table 2(a).

Table 2(c) shows the results of our FPN in Fast R-CNN.
Comparing with the baseline in Table 2(a), our method im-
proves AP by 2.0 points and small object AP by 2.1 points.
Comparing with the baseline that also adopts a 2fc head (Ta-
ble 2(b)), our method improves AP by 5.1 points.5 These
comparisons indicate that our feature pyramid is superior to
single-scale features for a region-based object detector.

Table 2(d) and (e) show that removing top-down con-

5We expect a stronger architecture of the head [30] will improve upon
our results, which is beyond the focus of this paper.
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Abstract

Feature pyramids are a basic component in recognition

systems for detecting objects at different scales. But recent

deep learning object detectors have avoided pyramid rep-

resentations, in part because they are compute and memory

intensive. In this paper, we exploit the inherent multi-scale,

pyramidal hierarchy of deep convolutional networks to con-

struct feature pyramids with marginal extra cost. A top-

down architecture with lateral connections is developed for

building high-level semantic feature maps at all scales. This

architecture, called a Feature Pyramid Network (FPN),

shows significant improvement as a generic feature extrac-

tor in several applications. Using FPN in a basic Faster

R-CNN system, our method achieves state-of-the-art single-

model results on the COCO detection benchmark without

bells and whistles, surpassing all existing single-model en-

tries including those from the COCO 2016 challenge win-

ners. In addition, our method can run at 6 FPS on a GPU

and thus is a practical and accurate solution to multi-scale

object detection. Code will be made publicly available.

1. Introduction
Recognizing objects at vastly different scales is a fun-

damental challenge in computer vision. Feature pyramids

built upon image pyramids (for short we call these featur-

ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 25]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [19, 20]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[15, 11, 29] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [33] and COCO [21] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [16, 35]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are

semantically strong, including the high-resolution levels.
Nevertheless, featurizing each level of an image pyra-

mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep
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SWin Transformer (Patch Merging)
• Merge 2x2 neighboring patches
• Apply linear layer on the 4C-dimensional concatenated features 

(no pooling?)
• Reduces number of tokens by a factor of 4
• Output channels is set to 2C
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Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

with the same feature map resolutions as those of typical
convolutional networks, e.g., VGG [52] and ResNet [30].
As a result, the proposed architecture can conveniently re-
place the backbone networks in existing methods for vari-
ous vision tasks.

Swin Transformer block Swin Transformer is built by
replacing the standard multi-head self attention (MSA)
module in a Transformer block by a module based on
shifted windows (described in Section 3.2), with other lay-
ers kept the same. As illustrated in Figure 3(b), a Swin
Transformer block consists of a shifted window based MSA
module, followed by a 2-layer MLP with GELU non-
linearity in between. A LayerNorm (LN) layer is applied
before each MSA module and each MLP, and a residual
connection is applied after each module.

3.2. Shifted Window based Self-Attention

The standard Transformer architecture [64] and its adap-
tation for image classification [20] both conduct global self-
attention, where the relationships between a token and all
other tokens are computed. The global computation leads to
quadratic complexity with respect to the number of tokens,
making it unsuitable for many vision problems requiring an
immense set of tokens for dense prediction or to represent a
high-resolution image.

Self-attention in non-overlapped windows For efficient
modeling, we propose to compute self-attention within lo-
cal windows. The windows are arranged to evenly partition
the image in a non-overlapping manner. Supposing each
window contains M ⇥M patches, the computational com-
plexity of a global MSA module and a window based one

on an image of h⇥ w patches are3:

⌦(MSA) = 4hwC2 + 2(hw)2C, (1)

⌦(W-MSA) = 4hwC2 + 2M2hwC, (2)

where the former is quadratic to patch number hw, and the
latter is linear when M is fixed (set to 7 by default). Global
self-attention computation is generally unaffordable for a
large hw, while the window based self-attention is scalable.

Shifted window partitioning in successive blocks The
window-based self-attention module lacks connections
across windows, which limits its modeling power. To intro-
duce cross-window connections while maintaining the effi-
cient computation of non-overlapping windows, we propose
a shifted window partitioning approach which alternates be-
tween two partitioning configurations in consecutive Swin
Transformer blocks.

As illustrated in Figure 2, the first module uses a regular
window partitioning strategy which starts from the top-left
pixel, and the 8 ⇥ 8 feature map is evenly partitioned into
2⇥ 2 windows of size 4⇥ 4 (M = 4). Then, the next mod-
ule adopts a windowing configuration that is shifted from
that of the preceding layer, by displacing the windows by
(bM

2 c, bM

2 c) pixels from the regularly partitioned windows.
With the shifted window partitioning approach, consec-

utive Swin Transformer blocks are computed as

ẑl = W-MSA
�
LN

�
zl�1

��
+ zl�1,

zl = MLP
�
LN

�
ẑl
��

+ ẑl,

ẑl+1 = SW-MSA
�
LN

�
zl
��

+ zl,

zl+1 = MLP
�
LN

�
ẑl+1

��
+ ẑl+1, (3)

where ẑl and zl denote the output features of the (S)W-
MSA module and the MLP module for block l, respectively;

3We omit SoftMax computation in determining complexity.
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backbone for computer vision, as it does for NLP and
as CNNs do in vision. We observe that significant chal-
lenges in transferring its high performance in the language
domain to the visual domain can be explained by differ-
ences between the two modalities. One of these differ-
ences involves scale. Unlike the word tokens that serve
as the basic elements of processing in language Trans-
formers, visual elements can vary substantially in scale, a
problem that receives attention in tasks such as object de-
tection [42, 53, 54]. In existing Transformer-based mod-
els [64, 20], tokens are all of a fixed scale, a property un-
suitable for these vision applications. Another difference
is the much higher resolution of pixels in images com-
pared to words in passages of text. There exist many vi-
sion tasks such as semantic segmentation that require dense
prediction at the pixel level, and this would be intractable
for Transformer on high-resolution images, as the compu-
tational complexity of its self-attention is quadratic to im-
age size. To overcome these issues, we propose a general-
purpose Transformer backbone, called Swin Transformer,
which constructs hierarchical feature maps and has linear
computational complexity to image size. As illustrated in
Figure 1(a), Swin Transformer constructs a hierarchical rep-
resentation by starting from small-sized patches (outlined in
gray) and gradually merging neighboring patches in deeper
Transformer layers. With these hierarchical feature maps,
the Swin Transformer model can conveniently leverage ad-
vanced techniques for dense prediction such as feature pyra-
mid networks (FPN) [42] or U-Net [51]. The linear compu-
tational complexity is achieved by computing self-attention
locally within non-overlapping windows that partition an
image (outlined in red). The number of patches in each
window is fixed, and thus the complexity becomes linear
to image size. These merits make Swin Transformer suit-
able as a general-purpose backbone for various vision tasks,
in contrast to previous Transformer based architectures [20]
which produce feature maps of a single resolution and have
quadratic complexity.

A key design element of Swin Transformer is its shift

of the window partition between consecutive self-attention
layers, as illustrated in Figure 2. The shifted windows
bridge the windows of the preceding layer, providing con-
nections among them that significantly enhance modeling
power (see Table 4). This strategy is also efficient in re-
gards to real-world latency: all query patches within a win-
dow share the same key set1, which facilitates memory ac-
cess in hardware. In contrast, earlier sliding window based
self-attention approaches [33, 50] suffer from low latency
on general hardware due to different key sets for different
query pixels2. Our experiments show that the proposed

1The query and key are projection vectors in a self-attention layer.
2While there are efficient methods to implement a sliding-window

based convolution layer on general hardware, thanks to its shared kernel

Figure 2. An illustration of the shifted window approach for com-
puting self-attention in the proposed Swin Transformer architec-
ture. In layer l (left), a regular window partitioning scheme is
adopted, and self-attention is computed within each window. In
the next layer l + 1 (right), the window partitioning is shifted, re-
sulting in new windows. The self-attention computation in the new
windows crosses the boundaries of the previous windows in layer
l, providing connections among them.

shifted window approach has much lower latency than the
sliding window method, yet is similar in modeling power
(see Tables 5 and 6). The shifted window approach also
proves beneficial for all-MLP architectures [61].

The proposed Swin Transformer achieves strong perfor-
mance on the recognition tasks of image classification, ob-
ject detection and semantic segmentation. It outperforms
the ViT / DeiT [20, 63] and ResNe(X)t models [30, 70] sig-
nificantly with similar latency on the three tasks. Its 58.7
box AP and 51.1 mask AP on the COCO test-dev set sur-
pass the previous state-of-the-art results by +2.7 box AP
(Copy-paste [26] without external data) and +2.6 mask AP
(DetectoRS [46]). On ADE20K semantic segmentation, it
obtains 53.5 mIoU on the val set, an improvement of +3.2
mIoU over the previous state-of-the-art (SETR [81]). It also
achieves a top-1 accuracy of 87.3% on ImageNet-1K image
classification.

It is our belief that a unified architecture across com-
puter vision and natural language processing could benefit
both fields, since it would facilitate joint modeling of vi-
sual and textual signals and the modeling knowledge from
both domains can be more deeply shared. We hope that
Swin Transformer’s strong performance on various vision
problems can drive this belief deeper in the community and
encourage unified modeling of vision and language signals.

2. Related Work
CNN and variants CNNs serve as the standard network
model throughout computer vision. While the CNN has ex-
isted for several decades [40], it was not until the introduc-
tion of AlexNet [39] that the CNN took off and became
mainstream. Since then, deeper and more effective con-
volutional neural architectures have been proposed to fur-
ther propel the deep learning wave in computer vision, e.g.,
VGG [52], GoogleNet [57], ResNet [30], DenseNet [34],

weights across a feature map, it is difficult for a sliding-window based
self-attention layer to have efficient memory access in practice.
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weight decay of 0.05 are used. We include most of
the augmentation and regularization strategies of [63]
in training, except for repeated augmentation [31] and
EMA [45], which do not enhance performance. Note
that this is contrary to [63] where repeated augmenta-
tion is crucial to stabilize the training of ViT.

• Pre-training on ImageNet-22K and fine-tuning on

ImageNet-1K. We also pre-train on the larger
ImageNet-22K dataset, which contains 14.2 million
images and 22K classes. We employ an AdamW opti-
mizer for 90 epochs using a linear decay learning rate
scheduler with a 5-epoch linear warm-up. A batch size
of 4096, an initial learning rate of 0.001, and a weight
decay of 0.01 are used. In ImageNet-1K fine-tuning,
we train the models for 30 epochs with a batch size of
1024, a constant learning rate of 10�5, and a weight
decay of 10�8.

Results with regular ImageNet-1K training Table 1(a)
presents comparisons to other backbones, including both
Transformer-based and ConvNet-based, using regular
ImageNet-1K training.

Compared to the previous state-of-the-art Transformer-
based architecture, i.e. DeiT [63], Swin Transformers no-
ticeably surpass the counterpart DeiT architectures with
similar complexities: +1.5% for Swin-T (81.3%) over
DeiT-S (79.8%) using 2242 input, and +1.5%/1.4% for
Swin-B (83.3%/84.5%) over DeiT-B (81.8%/83.1%) using
2242/3842 input, respectively.

Compared with the state-of-the-art ConvNets, i.e. Reg-
Net [48] and EfficientNet [58], the Swin Transformer
achieves a slightly better speed-accuracy trade-off. Not-
ing that while RegNet [48] and EfficientNet [58] are ob-
tained via a thorough architecture search, the proposed
Swin Transformer is adapted from the standard Transformer
and has strong potential for further improvement.

Results with ImageNet-22K pre-training We also pre-
train the larger-capacity Swin-B and Swin-L on ImageNet-
22K. Results fine-tuned on ImageNet-1K image classifica-
tion are shown in Table 1(b). For Swin-B, the ImageNet-
22K pre-training brings 1.8%⇠1.9% gains over training
on ImageNet-1K from scratch. Compared with the previ-
ous best results for ImageNet-22K pre-training, our mod-
els achieve significantly better speed-accuracy trade-offs:
Swin-B obtains 86.4% top-1 accuracy, which is 2.4% higher
than that of ViT with similar inference throughput (84.7
vs. 85.9 images/sec) and slightly lower FLOPs (47.0G vs.
55.4G). The larger Swin-L model achieves 87.3% top-1 ac-
curacy, +0.9% better than that of the Swin-B model.

(a) Regular ImageNet-1K trained models

method image
size #param. FLOPs throughput

(image / s)
ImageNet
top-1 acc.

RegNetY-4G [48] 2242 21M 4.0G 1156.7 80.0
RegNetY-8G [48] 2242 39M 8.0G 591.6 81.7

RegNetY-16G [48] 2242 84M 16.0G 334.7 82.9
EffNet-B3 [58] 3002 12M 1.8G 732.1 81.6
EffNet-B4 [58] 3802 19M 4.2G 349.4 82.9
EffNet-B5 [58] 4562 30M 9.9G 169.1 83.6
EffNet-B6 [58] 5282 43M 19.0G 96.9 84.0
EffNet-B7 [58] 6002 66M 37.0G 55.1 84.3
ViT-B/16 [20] 3842 86M 55.4G 85.9 77.9
ViT-L/16 [20] 3842 307M 190.7G 27.3 76.5
DeiT-S [63] 2242 22M 4.6G 940.4 79.8
DeiT-B [63] 2242 86M 17.5G 292.3 81.8
DeiT-B [63] 3842 86M 55.4G 85.9 83.1

Swin-T 2242 29M 4.5G 755.2 81.3
Swin-S 2242 50M 8.7G 436.9 83.0
Swin-B 2242 88M 15.4G 278.1 83.5
Swin-B 3842 88M 47.0G 84.7 84.5

(b) ImageNet-22K pre-trained models

method image
size #param. FLOPs throughput

(image / s)
ImageNet
top-1 acc.

R-101x3 [38] 3842 388M 204.6G - 84.4
R-152x4 [38] 4802 937M 840.5G - 85.4
ViT-B/16 [20] 3842 86M 55.4G 85.9 84.0
ViT-L/16 [20] 3842 307M 190.7G 27.3 85.2

Swin-B 2242 88M 15.4G 278.1 85.2
Swin-B 3842 88M 47.0G 84.7 86.4
Swin-L 3842 197M 103.9G 42.1 87.3

Table 1. Comparison of different backbones on ImageNet-1K clas-
sification. Throughput is measured using the GitHub repository
of [68] and a V100 GPU, following [63].

4.2. Object Detection on COCO

Settings Object detection and instance segmentation ex-
periments are conducted on COCO 2017, which contains
118K training, 5K validation and 20K test-dev images. An
ablation study is performed using the validation set, and a
system-level comparison is reported on test-dev. For the
ablation study, we consider four typical object detection
frameworks: Cascade Mask R-CNN [29, 6], ATSS [79],
RepPoints v2 [12], and Sparse RCNN [56] in mmdetec-
tion [10]. For these four frameworks, we utilize the same
settings: multi-scale training [8, 56] (resizing the input such
that the shorter side is between 480 and 800 while the longer
side is at most 1333), AdamW [44] optimizer (initial learn-
ing rate of 0.0001, weight decay of 0.05, and batch size of
16), and 3x schedule (36 epochs). For system-level compar-
ison, we adopt an improved HTC [9] (denoted as HTC++)
with instaboost [22], stronger multi-scale training [7], 6x
schedule (72 epochs), soft-NMS [5], and ImageNet-22K
pre-trained model as initialization.

We compare our Swin Transformer to standard Con-

6

(a) Various frameworks
Method Backbone APbox APbox

50 APbox
75 #param. FLOPs FPS

Cascade
Mask R-CNN

R-50 46.3 64.3 50.5 82M 739G 18.0
Swin-T 50.5 69.3 54.9 86M 745G 15.3

ATSS R-50 43.5 61.9 47.0 32M 205G 28.3
Swin-T 47.2 66.5 51.3 36M 215G 22.3

RepPointsV2 R-50 46.5 64.6 50.3 42M 274G 13.6
Swin-T 50.0 68.5 54.2 45M 283G 12.0

Sparse
R-CNN

R-50 44.5 63.4 48.2 106M 166G 21.0
Swin-T 47.9 67.3 52.3 110M 172G 18.4

(b) Various backbones w. Cascade Mask R-CNN
APboxAPbox

50 APbox
75 APmaskAPmask

50 APmask
75 paramFLOPsFPS

DeiT-S† 48.0 67.2 51.7 41.4 64.2 44.3 80M 889G 10.4
R50 46.3 64.3 50.5 40.1 61.7 43.4 82M 739G 18.0

Swin-T 50.5 69.3 54.9 43.7 66.6 47.1 86M 745G 15.3
X101-32 48.1 66.5 52.4 41.6 63.9 45.2 101M 819G 12.8
Swin-S 51.8 70.4 56.3 44.7 67.9 48.5 107M 838G 12.0

X101-64 48.3 66.4 52.3 41.7 64.0 45.1 140M 972G 10.4
Swin-B 51.9 70.9 56.5 45.0 68.4 48.7 145M 982G 11.6

(c) System-level Comparison

Method mini-val test-dev #param. FLOPs
APbox APmask APbox APmask

RepPointsV2* [12] - - 52.1 - - -
GCNet* [7] 51.8 44.7 52.3 45.4 - 1041G

RelationNet++* [13] - - 52.7 - - -
SpineNet-190 [21] 52.6 - 52.8 - 164M 1885G
ResNeSt-200* [78] 52.5 - 53.3 47.1 - -

EfficientDet-D7 [59] 54.4 - 55.1 - 77M 410G
DetectoRS* [46] - - 55.7 48.5 - -
YOLOv4 P7* [4] - - 55.8 - - -
Copy-paste [26] 55.9 47.2 56.0 47.4 185M 1440G

X101-64 (HTC++) 52.3 46.0 - - 155M 1033G
Swin-B (HTC++) 56.4 49.1 - - 160M 1043G
Swin-L (HTC++) 57.1 49.5 57.7 50.2 284M 1470G

Swin-L (HTC++)* 58.0 50.4 58.7 51.1 284M -
Table 2. Results on COCO object detection and instance segmen-
tation. †denotes that additional decovolution layers are used to
produce hierarchical feature maps. * indicates multi-scale testing.

vNets, i.e. ResNe(X)t, and previous Transformer networks,
e.g. DeiT. The comparisons are conducted by changing only
the backbones with other settings unchanged. Note that
while Swin Transformer and ResNe(X)t are directly appli-
cable to all the above frameworks because of their hierar-
chical feature maps, DeiT only produces a single resolu-
tion of feature maps and cannot be directly applied. For fair
comparison, we follow [81] to construct hierarchical feature
maps for DeiT using deconvolution layers.

Comparison to ResNe(X)t Table 2(a) lists the results of
Swin-T and ResNet-50 on the four object detection frame-
works. Our Swin-T architecture brings consistent +3.4⇠4.2
box AP gains over ResNet-50, with slightly larger model
size, FLOPs and latency.

Table 2(b) compares Swin Transformer and ResNe(X)t

ADE20K val test #param. FLOPs FPSMethod Backbone mIoU score
DANet [23] ResNet-101 45.2 - 69M 1119G 15.2

DLab.v3+ [11] ResNet-101 44.1 - 63M 1021G 16.0
ACNet [24] ResNet-101 45.9 38.5 -
DNL [71] ResNet-101 46.0 56.2 69M 1249G 14.8

OCRNet [73] ResNet-101 45.3 56.0 56M 923G 19.3
UperNet [69] ResNet-101 44.9 - 86M 1029G 20.1
OCRNet [73] HRNet-w48 45.7 - 71M 664G 12.5

DLab.v3+ [11] ResNeSt-101 46.9 55.1 66M 1051G 11.9
DLab.v3+ [11] ResNeSt-200 48.4 - 88M 1381G 8.1

SETR [81] T-Large‡ 50.3 61.7 308M - -
UperNet DeiT-S† 44.0 - 52M 1099G 16.2
UperNet Swin-T 46.1 - 60M 945G 18.5
UperNet Swin-S 49.3 - 81M 1038G 15.2
UperNet Swin-B‡ 51.6 - 121M 1841G 8.7
UperNet Swin-L‡ 53.5 62.8 234M 3230G 6.2

Table 3. Results of semantic segmentation on the ADE20K val
and test set. † indicates additional deconvolution layers are used
to produce hierarchical feature maps. ‡ indicates that the model is
pre-trained on ImageNet-22K.

under different model capacity using Cascade Mask R-
CNN. Swin Transformer achieves a high detection accuracy
of 51.9 box AP and 45.0 mask AP, which are significant
gains of +3.6 box AP and +3.3 mask AP over ResNeXt101-
64x4d, which has similar model size, FLOPs and latency.
On a higher baseline of 52.3 box AP and 46.0 mask AP us-
ing an improved HTC framework, the gains by Swin Trans-
former are also high, at +4.1 box AP and +3.1 mask AP (see
Table 2(c)). Regarding inference speed, while ResNe(X)t is
built by highly optimized Cudnn functions, our architecture
is implemented with built-in PyTorch functions that are not
all well-optimized. A thorough kernel optimization is be-
yond the scope of this paper.

Comparison to DeiT The performance of DeiT-S us-
ing the Cascade Mask R-CNN framework is shown in Ta-
ble 2(b). The results of Swin-T are +2.5 box AP and +2.3
mask AP higher than DeiT-S with similar model size (86M
vs. 80M) and significantly higher inference speed (15.3 FPS
vs. 10.4 FPS). The lower inference speed of DeiT is mainly
due to its quadratic complexity to input image size.

Comparison to previous state-of-the-art Table 2(c)
compares our best results with those of previous state-of-
the-art models. Our best model achieves 58.7 box AP and
51.1 mask AP on COCO test-dev, surpassing the previous
best results by +2.7 box AP (Copy-paste [26] without exter-
nal data) and +2.6 mask AP (DetectoRS [46]).

4.3. Semantic Segmentation on ADE20K
Settings ADE20K [83] is a widely-used semantic seg-
mentation dataset, covering a broad range of 150 semantic
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Figure 1: A typical hierarchical-backbone detector (left) vs. our plain-backbone
detector (right). Traditional hierarchical backbones can be naturally adapted
for multi-scale detection, e.g ., using FPN. Instead, we explore building a simple
pyramid from only the last, large-stride (16) feature map of a plain backbone.

ine�cient to use with high-resolution detection images? One solution, which
abandons this pursuit, is to re-introduce hierarchical designs into the backbone.
This solution, e.g ., Swin Transformers [42] and related works [55,17,34,29], can
inherit the ConvNet-based detector design and has shown successful results.

In this work, we pursue a di↵erent direction: we explore object detectors
that use only plain, non-hierarchical backbones.2 If this direction is success-
ful, it will enable the use of original ViT backbones for object detection; this
will decouple the pre-training design from the fine-tuning demands, maintain-
ing the independence of upstream vs. downstream tasks, as has been the case
for ConvNet-based research. This direction also in part follows the ViT philos-
ophy of “fewer inductive biases” [14] in the pursuit of universal features. As the
non-local self-attention computation [54] can learn translation-equivariant fea-
tures [14], they may also learn scale-equivariant features from certain forms of
supervised or self-supervised pre-training.

In our study, we do not aim to develop new components; instead, we make
minimal adaptations that are su�cient to overcome the aforementioned chal-
lenges. In particular, our detector builds a simple feature pyramid from only
the last feature map of a plain ViT backbone (Figure 1). This abandons the
FPN design [37] and waives the requirement of a hierarchical backbone. To
e�ciently extract features from high-resolution images, our detector uses sim-
ple non-overlapping window attention (without “shifting”, unlike [42]). A small
number of cross-window blocks (e.g ., 4), which could be global attention [54] or
convolutions, are used to propagate information. These adaptations are made
only during fine-tuning and do not alter pre-training.

Our simple design turns out to achieve surprising results. We find that the
FPN design is not necessary in the case of a plain ViT backbone and its benefit
can be e↵ectively gained by a simple pyramid built from a large-stride (16),
single-scale map. We also find that window attention is su�cient as long as
information is well propagated across windows in a small number of layers.

More surprisingly, under some circumstances, our plain-backbone detector,
named ViTDet, can compete with the leading hierarchical-backbone detectors
(e.g ., Swin [42], MViT [17,34]). With Masked Autoencoder (MAE) [24] pre-

2 In this paper, “backbone” refers to architectural components that can be inherited
from pre-training and “plain” refers to the non-hierarchical, single-scale property.
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Figure 2: Building a feature pyramid on a plain backbone. (a) FPN-like: to
mimic a hierarchical backbone, the plain backbone is artificially divided into
multiple stages. (b) FPN-like, but using only the last feature map without stage
division. (c) Our simple feature pyramid without FPN. In all three cases, strided
convolutions/deconvolutions are used whenever the scale changes.

If the backbone is non-hierarchical, the foundation of the FPN motivation
is lost, as all the feature maps in the backbone are of the same resolution. In
our scenario, we simply use only the last feature map from the backbone, which
should have the strongest features. On this map, we apply a set of convolutions
or deconvolutions in parallel to produce multi-scale feature maps. Specifically,
with the default ViT feature map of a scale of 1

16 (stride = 16 [14]), we produce
feature maps of scales { 1

32 ,
1
16 ,

1
8 ,

1
4} using convolutions of strides {2, 1, 1

2 ,
1
4},

where a fractional stride indicates a deconvolution. We refer to this as a “simple
feature pyramid” (Figure 1 right).

The strategy of building multi-scale feature maps from a single map is related
to that of SSD [40]. However, our scenario involves upsampling from a deep, low-
resolution feature map, unlike [40], which taps into shallower feature maps. In
hierarchical backbones, upsampling is often aided by lateral connection [37]; in
plain ViT backbones, we empirically find this is not necessary (Sec. 4) and simple
deconvolutions are su�cient. We hypothesize that this is because ViT can rely
on positional embedding [54] for encoding locations and also because the high-
dimensional ViT patch embeddings do not necessarily discard information.4

We will compare with two FPN variants that are also built on a plain back-
bone (Figure 2). In the first variant, the backbone is artificially divided into
multiple stages to mimic the stages of a hierarchical backbone, with lateral and
top-down connections applied (Figure 2 (a)) [16]. The second variant is like the
first one, but uses only the last map instead of the divided stages (Figure 2 (b)).
We show that these FPN variants are not necessary (Sec. 4).5

Backbone adaptation. Object detectors benefit from high-resolution input
images, but computing global self-attention throughout the backbone is pro-
hibitive in memory and is slow. In this study, we focus on the scenario where
the pre-trained backbone performs global self-attention, which is then adapted
to higher-resolution inputs during fine-tuning. This is in contrast to the recent

4 With a patch size of 16⇥16 and 3 colors, a hidden dimension �768 (ViT-B and
larger) can preserve all information of a patch if necessary.

5 From a broader perspective, the spirit of FPN [37] is “to build a feature pyramid
inside a network”. Our simple feature pyramid follows this spirit. In the context of
this paper, the term of “FPN” refers to the specific architecture design in [37].
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ViT-B ViT-L
pyramid design APbox APmask APbox APmask

no feature pyramid 47.8 42.5 51.2 45.4
(a) FPN, 4-stage 50.3 (+2.5) 44.9 (+2.4) 54.4 (+3.2) 48.4 (+3.0)
(b) FPN, last-map 50.9 (+3.1) 45.3 (+2.8) 54.6 (+3.4) 48.5 (+3.1)
(c) simple feature pyramid 51.2 (+3.4) 45.5 (+3.0) 54.6 (+3.4) 48.6 (+3.2)

Table 1: Ablation on feature pyramid design with plain ViT backbones, us-
ing Mask R-CNN evaluated on COCO. The backbone is ViT-B (left) and ViT-L
(right). The entries (a-c) correspond to Figure 2 (a-c), compared to a baseline
without any pyramid. Both FPN and our simple pyramid are substantially better
than the baseline, while our simple pyramid is su�cient.

connections) as in Figure 2 (a, b). Table 1 (a, b) shows that while both FPN vari-
ants achieve strong gains over the baseline with no pyramid (as has been widely
observed with the original FPN on hierarchical backbones), they are no better
than our simple feature pyramid. The original FPN [37] was motivated by com-
bining lower-resolution, stronger feature maps with higher-resolution, weaker
feature maps. This foundation is lost when the backbone is plain and has no
high-resolution maps, which can explain why our simple pyramid is su�cient.

Our ablation reveals that the set of pyramidal feature maps, rather than
the top-down/lateral connections, is the key to e↵ective multi-scale detection.
To see this, we study an even more aggressive case of the simple pyramid: we
generate only the finest scale ( 14 ) feature map by deconvolution and then from
this finest map we subsample other scales in parallel by strided average pooling.
There are no unshared, per-scale parameters in this design. This aggressively-
simple pyramid is nearly as good: it has 54.5 AP (ViT-L), 3.3 higher than the
no pyramid baseline. This shows the importance of pyramidal feature maps. For
any variant of these feature pyramids, the anchors (in RPN) and regions (in RoI
heads) are mapped to the corresponding level in the pyramid based on their
scales, as in [37]. We hypothesize that this explicit scale-equivariant mapping,
rather than the top-down/lateral connection, is the main reason why a feature
pyramid can greatly benefit multi-scale object detection.

Window attention is su�cient when aided by a few propagation blocks.
Table 2 ablates our backbone adaptation approach. In short, on top of a base-
line that has purely window attention and none of the cross-window propagation
blocks (Table 2, “none”), various ways of propagation can show decent gains.8

In Table 2a, we compare our global and convolutional propagation strategies
vs. the no propagation baseline. They have a gain of 1.7 and 1.9 over the baseline.
We also compare with the “shifted window” (Swin [42]) strategy, in which the
window grid is shifted by a half-window size for every other block. The shifted

8 Even our baseline with no propagation in the backbone is reasonably good (52.9 AP).
This can be explained by the fact that the layers beyond the backbone (the simple
feature pyramid, RPN, and RoI heads) also induce cross-window communication.
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Mask R-CNN Cascade Mask R-CNN

backbone pre-train APbox APmask APbox APmask

hierarchical-backbone detectors:
Swin-B 21K, sup 51.4 45.4 54.0 46.5
Swin-L 21K, sup 52.4 46.2 54.8 47.3
MViTv2-B 21K, sup 53.1 47.4 55.6 48.1
MViTv2-L 21K, sup 53.6 47.5 55.7 48.3
MViTv2-H 21K, sup 54.1 47.7 55.8 48.3
our plain-backbone detectors:
ViT-B 1K, MAE 51.6 45.9 54.0 46.7
ViT-L 1K, MAE 55.6 49.2 57.6 49.8
ViT-H 1K, MAE 56.7 50.1 58.7 50.9

Table 5: Comparisons of plain vs. hierarchical backbones using Mask R-
CNN [25] and Cascade Mask R-CNN [4] on COCO. Tradeo↵s are plotted in
Figure 3. All entries are implemented and run by us to align low-level details.

the vanilla ViT [14], with fewer inductive biases, may require higher-capacity to
learn translation and scale equivariant features, while higher-capacity models are
prone to heavier overfitting. MAE pre-training can help to relieve this problem.
We discuss more about MAE in context next.

4.2 Comparisons with Hierarchical Backbones

Modern detection systems involve many implementation details and subtleties.
To focus on comparing backbones under as fair conditions as possible, we incor-
porate the Swin [42] and MViTv2 [34] backbones into our implementation.

Settings. We use the same implementation of Mask R-CNN [25] and Cas-
cade Mask R-CNN [4] for all ViT, Swin, and MViTv2 backbones. We use FPN
for the hierarchical backbones of Swin/MViTv2. We search for optimal hyper-
parameters separately for each backbone (see the appendix). Our Swin results
are better than their counterparts in the original paper;9 our MViTv2 results
are better than or on par with those reported in [34].

Following the original papers [42,34], Swin and MViTv2 both use relative
position biases [46]. For a fairer comparison, here we also adopt relative position
biases in our ViT backbones as per [34], but only during fine-tuning, not a↵ecting
pre-training. This addition improves AP by ⇠1 point. Note that our ablations in
Sec. 4.1 are without relative position biases.

Results and analysis. Table 5 shows the comparisons. Figure 3 plots the trade-
o↵s. The comparisons here involve two factors: the backbone and the pre-training
strategy. Our plain-backbone detector, combined with MAE pre-training, presents
better scaling behavior. When the models are large, our method outperforms the

9 For example, Swin-B (IN-1K, Cascade Mask R-CNN) has 51.9 APbox reported in
the o�cial repo. This result in our implementation is 52.7.
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boxes; (2) an architecture that predicts (in a single pass) a set of objects and
models their relation. We describe our architecture in detail in Figure 2.

3.1 Object detection set prediction loss

DETR infers a fixed-size set of N predictions, in a single pass through the
decoder, where N is set to be significantly larger than the typical number of
objects in an image. One of the main di�culties of training is to score predicted
objects (class, position, size) with respect to the ground truth. Our loss produces
an optimal bipartite matching between predicted and ground truth objects, and
then optimize object-specific (bounding box) losses.

Let us denote by y the ground truth set of objects, and ŷ = {ŷi}
N

i=1
the

set of N predictions. Assuming N is larger than the number of objects in the
image, we consider y also as a set of size N padded with ? (no object). To find
a bipartite matching between these two sets we search for a permutation of N
elements � 2 SN with the lowest cost:

�̂ = argmin
�2SN

NX

i

Lmatch(yi, ŷ�(i)), (1)

where Lmatch(yi, ŷ�(i)) is a pair-wise matching cost between ground truth yi and
a prediction with index �(i). This optimal assignment is computed e�ciently
with the Hungarian algorithm, following prior work (e.g . [43]).

The matching cost takes into account both the class prediction and the sim-
ilarity of predicted and ground truth boxes. Each element i of the ground truth
set can be seen as a yi = (ci, bi) where ci is the target class label (which
may be ?) and bi 2 [0, 1]4 is a vector that defines ground truth box cen-
ter coordinates and its height and width relative to the image size. For the
prediction with index �(i) we define probability of class ci as p̂�(i)(ci) and

the predicted box as b̂�(i). With these notations we define Lmatch(yi, ŷ�(i)) as

�1{ci 6=?}p̂�(i)(ci) + 1{ci 6=?}Lbox(bi, b̂�(i)).
This procedure of finding matching plays the same role as the heuristic assign-

ment rules used to match proposal [37] or anchors [22] to ground truth objects
in modern detectors. The main di↵erence is that we need to find one-to-one
matching for direct set prediction without duplicates.

The second step is to compute the loss function, the Hungarian loss for all
pairs matched in the previous step. We define the loss similarly to the losses of
common object detectors, i.e. a linear combination of a negative log-likelihood
for class prediction and a box loss defined later:

LHungarian(y, ŷ) =
NX

i=1

h
� log p̂�̂(i)(ci) + 1{ci 6=?}Lbox(bi, b̂�̂(i))

i
, (2)

where �̂ is the optimal assignment computed in the first step (1). In practice, we
down-weight the log-probability term when ci = ? by a factor 10 to account for
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